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Abstract 

In multi-camera tracking systems, camera 
placement can have a significant impact on the overall 
performance. In feature-based motion capture systems, 
degradation can come from two major sources, low 
image resolution and target occlusion. In order to 
achieve better tracking and  automate the camera 
placement process, a quantitative metric to evaluate 
the quality of multi-camera configurations is needed.  

We propose a quality metric that estimates the 
error caused by both image resolution and occlusion.. 
It includes a probabilistic occlusion model that reflects 
the dynamic self-occlusion of the target. Using this 
metric, we show the impact of occlusion on optimal 
camera pose by analyzing several camera 
configurations. Finally, we show camera placement 
examples that demonstrate how this metric can be 
applied toward the automatic design of more accurate 
and robust tracking systems. 

 

1 Introduction 

In designing a vision-based tracking system it is 
important to define a metric to measure the “quality” of 
a given camera configuration. Such a quality measure 
has several applications: first, by combining it with an 
optimization process we can automate the camera 
placement process and do better than a human 
designer, especially as the tracking environment gets 
more complex and the number of cameras increase; 
second, there are classes of applications where camera 
configurations change dynamically and some metric is 
needed to guide the automatic choice of best 
configuration. For example, a multi-target tracking 
system with multiple pan-tilt cameras might want to 
dynamically focus different subsets of cameras on each 
target. Other applications might require dynamic 
configuration due to bandwidth or processor power 
limitations, for instance in a system with hundreds of 

cameras, only a subset of the cameras can be active. In 
these situations it is crucial to have a quality metric so 
that the camera configuration that enables the best 
tracking performance can be found. 

In a motion capture system, multiple cameras 
observe a  target moving around in a working volume. 
Features on the target are identified in each image. 
Triangulation or disparity can be used to compute each 
feature’s 3D position. In such a system, performance 
degradation can come from two major sources: (1) low 
resolution which results in poor feature identification; 
and (2) occlusion which results in failure to see the 
feature. Occlusion may be due to either the target itself 
or other objects in the scene. When not enough 
cameras see a feature, it is difficult or impossible to 
calculate its 3D position. In fact, the primary reason 
commercial motion capture systems consist of many 
cameras is to reduce occlusion, rather than to increase 
resolution or coverage. In order to achieve accurate and 
robust tracking, both occlusion and resolution must be 
considered. A quality metric for placing cameras 
should reflect the impact of both factors. 

In this paper we propose a quality metric that 
accounts for both the resolution and occlusion 
characteristics of a camera configuration. Its target 
application is the automatic placement and control of 
cameras for motion capture systems. It can be used 
both to design static camera arrangements, and 
dynamically focus subsets of cameras on different 
targets in a multi-target tracking system.  

The metric computes the uncertainty or error in the 
tracking system’s ability to estimate the 3D positions 
of features. This uncertainty is caused by limited 2D 
image resolution, as well as occlusion due to the 
environment and/or the moving target itself. The error 
due to image resolution is computed by projecting the 
2D image error of each camera into 3D space and 
measuring the size of the resulting 3D error volume. 
The uncertainty due to target occlusion is estimated by 
sampling the space of possible occluders and 
computing the probability that points are occluded. 
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The major contribution of this paper is a quality 
metric for multi-camera configurations that includes a 
probabilistic occlusion model. This metric allows 
cameras to be placed more robustly than previous 
resolution-only metrics. It models the target self-
occlusion behavior that can be commonly found in 
feature-based motion capture systems. In addition, the 
use of sampling in the metric computation allows for 
easy adaptation to tracking scenarios with disparate 
occlusion characteristics. Lastly, we present simulation 
and analysis for some camera placement scenarios. 
These examples illustrate the usefulness of the metric, 
and provide insight on the location of “good places” to 
put cameras for accurate and robust tracking. 

The rest of the paper is organized as follows. 
Section 2 describes previous work related to camera 
placement. Section 3 describes the metric we propose, 
focusing specifically on how dynamic occlusion is 
modeled. Section 4 shows simulation results that 
illustrate the impact of resolution and occlusion on 
optimal camera placement. Section 5 presents some 
camera arrangement tasks where this metric can be 
applied. Section 6 gives conclusion and future work. 

2 Related work 

The camera placement problem can be regarded as 
an extension to the well-known art-gallery problem [1]. 
Both problems have the goal of covering a space using 
a minimum number of cameras and the solutions are 
greatly affected by the visibility relationship between 
the sensor and target space. However, there are 
significant differences between these two problems. 
The art-gallery problem focuses on finding the 
theoretical lower-bounds on the number of guards for 
spaces of various (possibly very complex) shapes. Both 
the target space and the locations of guards are 
restricted to 2D. Additionally the visibility model is 
very simple—it assumes the guard has a 360-degree 
field of view (FOV) and there is no resolution 
degradation with viewing distance. The camera 
placement problem we consider is a practical problem 
and the camera has a more complex model which 
includes 3D projection, limited FOV and image 
resolution. Although the space to cover in practical 
camera placement is usually geometrically simple, 
there are usually constraints on allowable camera 
placement, such as ceilings and walls. In our work, the 
goal is not necessarily to find the absolute global 
optimum, but rather to enable the evaluation and 
comparison of the subset of potential solutions. 

There is some previous work in automatic sensor 
planning in the area of robotic vision [2-5], motion 
planning [7], and image-based modeling [8]. To a large 
degree, the previous work shares our view of camera 

placement as an optimization problem, and that an 
important step toward automatic solutions is the 
construction of a quality metric to evaluate various 
camera configurations. However, the problem domain 
and goals of the previous work are quite different from 
ours. Their target is usually a static object whose 
geometry is assumed to be known a priori, and the task 
is to find a viewpoint or a minimum number of 
viewpoints that exposes the features of interest on the 
target as much as possible. There is usually only one 
camera in the system and the quality metric includes 
the target geometry explicitly. The camera placement 
problem for motion capture differs because the target is 
moving and its geometry and motion is not known a 
priori. In addition, there are multiple cameras working 
together in the system and system performance is 
affected by their relative pose.  

A few researchers have proposed uncertainty 
analysis for placing multiple cameras. Olague and 
Mohr [9] approximated the projective transformation 
of a camera using Taylor expansion, and used a scalar 
function of the covariance matrix as the uncertainty 
measure. Wu et. al. [10] proposed a computational 
technique to estimate the 3D uncertainty volume by 
fitting an ellipsoid to intersection of projected error 
pyramids Both papers consider limited image 
resolution as the only cause of 3D uncertainty. 
However, occlusion is frequently present in feature-
based motion tracking systems and is sometimes the 
dominant source of error. The quality metric presented 
in this paper estimates the 3D uncertainty caused by 
both occlusion and image resolution. This metric is 
able to model the dynamic and probabilistic 
characteristics of a moving target, as well as the mutual 
resolution compensation among multiple cameras. 

3. Construction of the quality metric 

Given some camera configuration (i.e. the focal 
length, position, and orientation of multiple cameras), 
the quality metric is a mapping from this configuration 
to a real number, with respect to some target space. 
Since resolution and occlusion characteristics vary 
over the target space, we define a spatially dependant 
quality metric. By sampling the target space and 
aggregating the per-point metric, the overall quality 
can be computed. For example if the target space is a 
room, then we calculate the uncertainty at each point in 
the room, and aggregate these values. 

The next step is to define the quality at a given 
point in the target space. As described in the previous 
section, poor image resolution and occlusion cause 
error and uncertainty in determining the 3D position of 
a point. It follows that we can use this 3D uncertainty 
as the per-point quality metric. For any given point, we 



estimate uncertainty as a combination of two factors. 
We estimate the error due to poor image resolution by 
projecting the 2D image error region into 3D. We 
estimate the uncertainty due to occlusion by simulating 
an occluder at a sampled set of locations and 
calculating the visibility from all cameras. In the 
following subsections we describe in detail how these 
estimates are computed and combined.  

3.1 Resolution  

As is well known in the vision community, one 
major source of error in determining 3D position is 
limited 2D image resolution. Most vision-based 
tracking system perform some sort of triangulation on 
rays from two or more cameras. Some target feature is 
detected on the image and the ray defined by its 2D 
location and the camera center is back-projected into 
3D space. The intersection point of rays from multiple 
cameras defined by the same feature is the 3D location 
of the feature. However, one can only determine the 
2D location of a feature on an image to a certain 
precision, as limited by the feature detection process 
and the image resolution. Thus each 2D observation 
from a camera gives rise to a cone of rays with some 
probability density rather than a single ray. This cone 
can be approximated as pyramid of rays. As shown in 
Figure 1, the intersection of ray pyramids from 
multiple cameras form a 3D volume rather than a point. 
The actual target point has high probability of being 
located anywhere in the error volume. The bigger the 
error volume, the higher the uncertainty in the point’s 
actual position.  

It should be noted that the size of the uncertainty 
volume is not isotropic, it varies with direction. In 
order to estimate the size of the volume, we measure its 
dimension in a set of sampled directions and then 
aggregate the error in all directions (Figure 2). 
To compute the 3D error for a given direction, we first 
compute the 3D error in that direction for each camera, 

as shown in Figure 2. When there are multiple cameras, 
the cameras having better resolution (smaller |PR|) will 
cut the error volume and make it smaller. Thus, the 
combined uncertainty of all the cameras is the 
minimum of all.  

3.2 Static occlusion  

 Static occlusion is caused by static objects in the 
scene that are known a priori and time-invariant. Due 
to these occlusions, a point P is not visible from certain 
cameras. These occlusions can be included in the 
above formulation: Whenever we project P onto the 
image plane of a camera, we need to perform two 
visibility tests. One is to check whether P is within the 
camera’s field of view; another is to see if any static 
object in the scene is between point P and the optical 
center of camera C. If P is not visible due to either 
cause, its 3D uncertainty is infinite.  

3.3 Dynamic occlusion  

Dynamic occlusion occurs when a target point is 
not visible from a camera due to occlusion by the 
target itself or other objects in the scene. The challenge 
to computing the error caused by this type of occlusion 
is that we do not know exactly where the target or 
occluder will be at any time. Without knowledge of 
target and occluder location it is impossible to arrange 
cameras such that the target is guaranteed to be visible.  
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Figure 1 Left: Camera projection pyramid 
with a 3D square error region; Right: 
Intersection of the error regions of two 
cameras. 
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Figure 2 Left: We compute the per-point error 
volume by sampling various directions; 
Right: To compute the size of the 3D error 
volume at P in direction D: (1) Project the unit 
vector PQ in direction D to the image plane to 
get P’Q’ (2) scale P’Q’ by image plane error ?
to R’; (3) Back-project P’R’ in 3D to get PR. 
(4) For multiple cameras, pick the smallest 
PR. 



We address the dynamic occlusion problem by 
first assuming perfect knowledge and then making 
several approximations that allow a probabilistic model 
to be developed. Assume first that we know exactly the 
geometric model of a target object and the path that the 
object takes during a tracking session. We can evaluate 
the error caused by dynamic occlusion precisely, 
because we can simulate the entire process and count 
exactly how many feature points are occluded at any 
time. Of course, this method is not very useful for 
designing a real tracking system. In reality, the path 
that a target takes could vary greatly and camera 
configurations optimized for one specific path may be 
poor for other paths. So the next question is, how can 
we find a camera configuration that avoids occlusion 
for all possible paths? 

Instead of simulating a precise path when 
calculating occlusion, we can take a probabilistic 
approach. Though we may not know exactly where the 
“occluders” will be, we may have some idea as to how 
likely they are at certain positions and orientations. In 
other words, we have a probability distribution for the 
occluder. We can generate possible occluders by 
drawing samples from the distribution. For each 
possible occluder, we calculate how many cameras are 
obstructed from observing the target point P. The result 
for each occluder that is sampled from the distribution 
are aggregated into a single estimate of occlusion 
characteristics. The more often occlusion occurs and 
the more cameras that get occluded, the greater the 3D 
uncertainty. Sampling the space of all possible 
occluders gives us an occlusion metric for a particular 
camera configuration.   

Many occluder distribution models are possible. 
We derive a relatively simple distribution function by 
considering a motion tracking system where reflective 
point features are attached to the human body. A 
feature can be occluded either by the part of body it’s 
attached to, or by another part of body from a distance 
(figure 3). Obviously in the most general case, the 
visibility of a point depends on the position, orientation 
and size of the occluder. However, the worst case 
occlusion occurs when the occluder is very near the 
point. In this location a whole hemisphere is occluded. 
To obtain a conservative estimate of occlusion, we 
need only simulate this worst case occluder pose. 
When the occluder is in this position, very near the 
target point, the size of the occluder does not matter. 
Therefore, to generate a conservative estimate of 
occlusion at point P, we can generate planar occluders 
through P. The orientation of these occluders is 
determined by some probability distribution.  

To summarize, the 3D uncertainty due to dynamic 
occlusion of point P is determined by aggregating the 
number of visible cameras for many occluders, 
sampled from the orientation probability density 
function.       

3.4 Combined quality metric 

We can now combine resolution and occlusion to 
define the overall metric. Given a camera 
configuration ? ={C1, C2, ….CN}, the overall quality 
metric E. is defined as the k-norm of the per-point 
quality, where the per-point quality is the weighted 
sum of 3D error due to the resolution, and dynamic 
occlusion: 

? ?res res oc oc
all target point 
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where wP is the importance weighting of point P, and 
Eres and Eoc are the per-point 3D error caused by 
resolution and dynamic occlusion, respectively. The 
wres and woc terms are their relative weightings 
respectively and  ? ( ? )k  denotes k-norm. The per-point 
error caused by image resolution is defined as:  
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where L(C,D,P) is the 3D error of camera C in 
direction D at target P; The per-point uncertainty due 
to dynamic occlusion is: 
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where V(P,oc, ? ) measures the “occludability” of 
point P given the occluder oc and camera configuration 
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Figure 3 The size and orientation of an 
occluder determine the shape of the occluded 
region. A conservative estimate of occluded 
region can be made by assuming the occluder 
is very close to point P. In this case an entire 
hemisphere of camera locations will not be 
able to see point P.  

 



? . To be consistent with the fact that larger values 
indicates worse quality, V is set to 1 if fewer than two 
cameras see the point (i.e. the “bad” cases), and it is set 
to 0 if two or more cameras sees the point.  

It should be noted that random samples of target 
points, directions and occluders are used in the 
computation of the quality metric and they are 
generated according to some probability distribution. 
The use of sampling and the distribution allows us to 
encode further application-specific knowledge into the 
quality metric. For example, one might know a priori 
that certain parts of the target spaces needs more 
resolution, or that the occluders tend to be in certain 
directions more often than others. Even with a simple 
uniform distribution, the use of a probabilistic 
approach allows us to model the dynamic and 
unpredictable nature of motion tracking tasks, 
providing us with a general estimate of the uncertainty 
in the reconstruction of 3D positions. 

3.5 Practical Issues 

The quality metric defined above is the theoretical 
quantity we would like to use to measure camera 
configurations. However in practice there are situations 
in which we need to use a slightly modified version of 
the original definition. For example, the choice of the 
k-norm with which to combine the samples usually 
depends on the application: If one wants to evaluate the 
worst-case, one should use the infinity-norm, which is 
the max() function. If one wants to evaluate the 
average quality, 1-norm or 2-norm can be used. If one 
wants to combine this metric with some generic 
optimizer to obtain an optimal solution, it should be 
noted that the infinity-norm results in flat regions on 
the function landscape. Therefore, optimizers which 
rely on gradient in the landscape will not work 
optimally. We have found that a 2-norm works well in 

practice. 

4. Impact of occlusion and resolution 

The occlusion and resolution terms of our quality 
metric are often opposed. This has a significant impact 
on the optimal pose and field of view of camera 
configurations. In order to understand the impact of 
adding an occlusion model to our coverage quality 
metric, we consider several simple examples. These 
examples can provide some intuition into the tradeoff 
between resolution and robustness. In each example we 
consider a metric determined entirely by occlusion or 
resolution, and analyze the optimal configuration under 
these conditions. We find that there is a tradeoff 
between these two terms, which must be balanced. 
Unless specifically stated, the probability distribution 
we used for dynamic occluder directions is uniform. 

The first example shows the impact of occlusion 
on camera placement pattern. Cameras are constrained 
to move on an outer sphere, and both have a fixed field 
of view (FOV) that is enough to cover the target sphere. 
Because of symmetry, the parameter that really 
independently affects the quality is the relative angle 
theta between the two cameras (Figure 6). We plot the 
quality for thetas from 0 to 180 degree. with and 
without considering occlusion. If we consider 
resolution only, the best configuration occurs when the 
two cameras are oriented perpendicular to each other, 
since the “good” direction of the 3D error of one 
camera cancels the “bad” direction of the other. 
However, when dynamic occlusion is considered to be 
dominant, the best configuration is with the two 
cameras facing opposite to each other, because this 
increases the probability that there is at least one 
camera seeing the target space for occluders with 
arbitrary orientations. 

The second example illustrates the impact of 

??

    
Figure 4 Left: Two cameras constrained to move on an outer sphere try to cover a inner spherical 
target space; the angle with which they intersect the sphere center is ? . The occlusion and 
resolution   metrics are minimized at different angles. Center: 3D uncertainty vs. ? considering 
resolution only . Right: 3D uncertainty vs. ? considering occlusion only. (? is from 0 to 180 
degrees.)  



occlusion on the number of cameras needed to cover a 
certain space. As in the first example, the task is to 
cover a spherical space and cameras are constrained to 
stay on an outer sphere with fixed FOV. We used an 
evolutionary algorithm based optimizer [10] to find the 
best quality achievable for a given number of cameras. 
Figure 5 plots the best quality vs. the number of 
cameras. It can been seen that, if resolution is the only 
consideration, the best quality doesn’t improve much 
after the space is covered by two cameras. However, if 
dynamic occlusion is considered, adding more cameras 
continues to improve the quality.  

The next example demonstrates the impact of 
occlusion on the setting of camera focal length (or 
equivalently, the FOV). Two typical extreme 
configurations are considered (Figure 6). One 
configuration has two clusters of cameras. Each cluster 

consists of 4 narrow-angle cameras, each covering only 
one-quarter of the target space. The two clusters are 
placed so that they are 90 degrees apart on the outer 
sphere. This configuration is analogous to using two 
perpendicular high-resolution cameras. The other 
configuration consists of 8 cameras spread evenly 
around the sphere. In this configuration each camera’s 
FOV is wide enough to cover the whole sphere. If no 
occlusion is considered, the narrow-angle solution 
gives the best overall resolution. If occlusion is 
considered, the wide-angle configuration is better since 
it is more robust. In the wide angle configuration each 
point is observed by eight cameras rather than two. 
This example shows that resolution improvement and 
occlusion reduction have conflicting requirements on 
the FOV of cameras. Thus, given limited camera 
resources, trade-offs have to be made between the 
importance of resolution and robustness depending on 
the specific application. 

5 Practical camera placement examples 

In this section we show an example that 
demonstrate how one can apply the proposed metric to 
automate the camera placement process. 

We combine the metric with an evolutionary-
algorithm-based optimizer [10]. in order to 
automatically find a placement solution. This optimizer 
is chosen because it is robust when function landscapes 
are discontinuous and also because of its ability to 
allow constraints on the variables we want to optimize.  

First we try to place three cameras of fixed field of 
view to cover a square floor, considering resolution 
only. The cameras are constrained to be on the ceiling. 
As shown in Fig. 7, one of the configurations that the 
optimizer generated that gives good overall resolution 
put two cameras far enough to just cover the whole 
floor, with the relative orientation between them 
approximately 90 degrees. What’s interesting is the 
pose of the 3rd camera. In the solution shown, it is 
placed on the ceiling looking straight down and 
covering the “back” region relative to the other two 
cameras. This makes sense because even though the 
two perpendicular cameras already cancel out the 
“bad” direction of  each other and provide more-or-less 
even resolution in all directions, the region that is 
farther from the camera has worse resolution. To 
compensate, the 3rd camera is placed closest to that 
region to provide higher  resolution.  

In contrast, if our goal is to optimize for the least 
probability of occlusion, by applying the metric with a 
high occlusion weighting, the placement that the 
optimizer found is shown in Figure 8. As can be seen, 
this arrangement has all three cameras backed off so 
that each of them cover the whole square. In other 
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Figure 6 Left: Two camera clusters form 90 
degrees, each cluster consists of 4 narrow 
angle cameras, equivalent to a single high 
resolution camera; Right: All cameras are 
wide-angle and evenly spread around the 
sphere in 3D. The diagram is a visualization 
only, the cameras are not coplanar. The 
resolution metric prefers the former case, 
while the occlusion metric prefers the latter. 
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Figure 5 3D uncertainty  vs. number of 
cameras. Error due to imager resolution is 
nearly minimized by only two cameras. Many 
more cameras are needed to robust insure 
against occlusion. 



words, every point on the floor is covered with all three 
cameras. This matches our intuition that the more 
camera seeing the target the less often occlusion might 
happen. 

It is interesting to note that, we have asked people 
in our lab to propose camera configurations. No one 
proposed a design simlar to the optimzer’s optimal 
resolution placement, however once they saw the 
computer generated design, they agree that it makes 
sense. This illustrates the necessity of a quantitative 
approach to camera placement. 

6 Conclusion and future work 

We have proposed a metric to evaluate the quality 
of a multi-camera configuration, in terms of both 
resolution and occlusion. It includes a probabilistic 
occlusion model that reflects the target self-occlusion 
behavior which is commonly found in feature-based 
motion tracking systems. The computation of the 
model is sample-based, making it easily adaptable to 
applications with various occlusion characteristics. In 
addition, a metric that takes into account both 
resolution and occlusion allows the previously ad hoc 
process of placing multiple cameras to become an 
automated quantitative process. The inclusion of a 
probabilistic based occlusion model makes it especially 
useful for designing motion capture systems and other 
occlusion-dominant tracking systems. In simple 
situations, it should do as well as a human designer’s 
intuitive solution. In more complex situations, it 
enables the automatic generation of solutions that may 

take a human designer a long time to find. Moreover, it 
enables the finding of optimal camera configurations 
when the placement solution has to be automatically 
generated. We have demonstrated how this metric can 
help us in understanding the design trade-offs of 
camera placement. Additionally, camera configurations 
can be designed automatically or semi-automatically 
for tracking systems with various requirement and 
constraints. 

The metric defined in the paper steps toward 
solving the general problem of optimal sensor 
placement for multi-camera vision-based systems. It 
provides us with a quantitative tool for evaluating 
various camera configurations. We plan to analyze 
various camera configurations using this metric and to 
synthesize a set of widely applicable guidelines for 
systematically placing cameras. This will contribute to 
the theoretical understanding of the impact of camera 
placement, and enable the building of “smart tools” to 
aid the design of practical motion tracking systems. 
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