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Abstract

The space of images is known to be a non-linear sub-
space that is difficult to model. This paper derives an al-
gorithm that walks within this space. We seek a manifold
through the video volume that is constrained to lie locally
in this space. Every local neighborhood within the mani-
fold resembles some image patch. We call this the Scene
Manifold because the solution traces the scene outline. For
a broad class of inputs the problem can be posed as finding
the shortest path in a graph and can thus be solved effi-
ciently to produce the globally optimal solution. Constrain-
ing appearance rather than geometry gives rise to numerous
new capabilities.

Here we demonstrate the usefulness of this approach by
posing the well-studied problem of mosaicing in a new way.
Instead of treating it as geometrical alignment, we pose it
as an appearance optimization. Since the manifold is con-
strained to lie in the space of valid image patches, the re-
sulting mosaic is guaranteed to have the least distortions
possible. Any small part of it can be seen in some image
even though the manifold spans the whole video. Thus it
can deal seamlessly with both static and dynamic scenes,
with or without 3D parallax. Essentially, the method simul-
taneously solves two problems that have been solved only
separately until now: alignment and mosaicing.

1. Introduction

The space of real images and image patches is known
to be a small non-linear subspace of all pixel color com-
binations. This sub-space is difficult to model. Neverthe-
less, it is very structured and the strong constraints it in-
duces can be very useful. Each video frame provides a con-
crete sample from that space and the ordered collection of
all frames creates the space-time volume as is depicted in
Fig. 1. There are many ways to cut through this volume.
The surface of any manifold through it induces an image
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Figure 1. The scene manifold is constrained to cut the
space-time volume so that to incur no distortions. See
Fig. 4.

that is likely to contain many visual artifacts. In this work
we seek to find the manifold that will incur the fewest dis-
tortions and artifacts. The parameters of the best manifold
depend on the motion of the camera as well as dynamic
changes in the world. Rather than use explicit geometrical
constraints, we constrain the appearance of the image in-
duced by the manifold to lie in the space of real images:
every local neighborhood in it resembles some image. In
many useful cases, there will be no distortions at all and the
method described here is guaranteed to find the correct so-
lution. We call the resulting slice the Scene Manifold as the
solution traces the scene outline. Essentially, the method
simultaneously solves two problems that have been solved
only separately until now: alignment and mosaicing.

A natural domain to test this approach is the well-studied
problem of mosaicing, where a video sequence is repre-
sented by one image. Previous takes on this problem fo-
cused on the geometrical aspects, whether in the 2D image
space or the 3D world coordinates. The geometrical align-
ment was often followed by some post-processing to elim-
inate seams. Our approach addresses the mosaicing prob-
lem from a new angle. It seeks to find a manifold that cuts
through the space-time volume in a way that will minimize
visual artifacts. This reliance on appearance, rather than
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(a) Input frames

(b) The scene manifold within the volume

(c) The image induced by the scene manifold

Figure 2. “Head” sequence from [7]. Note how the man-
ifold in (b) traces the face and head, thus recovering the
surface correctly and resulting in a “peeled out” figure ex-
terior. The reader is encouraged to compare this result with
the one in [7].

geometry, allows the method to deal seamlessly with both
static and dynamic scenes, with or without parallax. The
algorithm finds the optimal manifold for a large class of
videos by posing the appearance constraint as an efficient
shortest-path computation in a graph.

2. Previous work

The closest work to this one is probably [1] where the
goal is also the creation of mosaics. Each video frame is
parametrically aligned and a fixed strip in it is fused to form
a mosaic. As the alignment is local, the resulting global
2D coordinate system on the mosaic does not necessarily
correspond to a plane in the world but can span a manifold
in 3D. Note that this should not be confused with the Scene
Manifold discussed here which lies within the space-time
volume. The reliance on parametric image alignment means
that the method is only suitable to mostly-static scenes with
no parallax. In our approach those restrictions do not exist
and the manifold can also cross the same frame more than
once as is shown in Fig. 7.

In [7], constraints on the light rays in 3D are used to clas-
sify the family of stereo images for perspective and multi-
perspective images. The work concentrates on the geomet-
rical aspects of the projection and assumes a rigid world set-

(a) sample input frames

(b) The manifold on top of an X − T slice

(c) The image induced by the scene manifold

Figure 3. “Dinner” sequence. Dynamic scene with mov-
ing camera. The X − T slice in (b) shows a top view of
the space-time volume. The convention here is that time is
along the horizontal axis.

ting. Under the motion model there, a straight cut through
the volume produces mosaics. Other cuts through this vol-
ume may also be interesting as shown in [12]. Fig. 2 shows
that our approach can also handle cases when the camera
moves around an object to capture its 360o appearance and
create a multiple-center-of-projection image automatically,
without any geometric assumptions or explicit alignment.

As our objective is based on appearance, it is also re-
lated to the domain of creation and synthesis of textures.
The famous work of [10] samples from the space of tex-
ture patches to synthesize textures. As it only samples from
that space, it does not need to model it in any way. In
[8] both 3D geometry and 2D image texture were used
for synthesizing new views. In our work the appearance
constraint is stronger and is computed efficiently in closed-
form, thus further geometrical considerations are unneces-
sary. The work of [9] and other works derived from it (such
as [11]) use maximum-flow formulation to combine image
and video patches. Note that this formulation requires the
patches to be pre-aligned and so are not applicable here.

The recent work of [2] deals with the creation of a video
mosaic that nicely extends the idea of mosaicing. It modi-
fies the space-time volume so that sweeping a (multi)linear
cut through it will produce a pleasing video with a larger
spatial extent than the original. This works for stochastic



motion texture but does not seem to extend as is for struc-
tured motion, such as the moving people in Fig. 3.

The approach taken here is very different for a number
of reasons. First, no alignment is assumed. Instead we
consider several possible neighborhoods for each patch and
decide among them during the global search. Second, the
patches used here are very small (1-pixel wide) and so do
not contain perspective effects (e.g. parallax) - thus no post-
correction is needed. Third, the method presented here is
guaranteed to find the global optimum within this domain
in an efficient way.

3. The Algorithm

We seek a manifold that will cut through the space-time
volume, from the first frame to the last, in a way that does
not incur any visual artifacts, i.e. looks locally like a real
image. The motivation behind this definition is that each
image is a sample from the space of real images and the
resulting manifold should be embedded in this space.

The main difficulty in this task arises from the fact that
the space-time volume, as shown in Fig. 1, is not symmet-
rical in all dimensions. Each X − Y slice is an image and
so, by definition, contains a valid projection of the world.
This means that the manifold can pass freely within each
image. In contrast, the time dimension T is more problem-
atic and the manifold cannot always cross from one image to
another. Between the video frames, the camera may move
in the world and the scene may change as a whole or only
locally in some areas. According to the above definition,
neighboring patches in one image can be neighbors in the
manifold whereas successive pairs from two images may or
may not form a valid, artifact-free, image patch and hence
are undesirable.

In this work we restrict ourselves to manifolds that cut
the volume to form a ruled surface which we assume to be
vertically aligned. This scenario is common and appears,
for example, when the camera pans and translates mostly
along one direction (e.g. the ground plane). Under this as-
sumption, the manifold is uniquely defined by a path in a
2D profile, such as the curve on top of Fig. 1. This path en-
codes the appearance and placement of the manifold. Each
point in the path represents a vertical strip in the manifold
(a one-pixel wide column of pixels). The path also induces
an ordering on the manifold. A point in it has two neigh-
bors, one before it and one after it. Thus the quality of a
manifold depends only on local neighborhoods within it. In
Section 3.4 we show how to extend the graph to handle ver-
tical motion as well.

While the number of paths in the volume is exponentially
large, we do not need to check all of them. The locality
allows us to use dynamic programming to find the global
optimum efficiently. For a patch in one image we test sev-

(a) Input frames

(b) The manifold on top of an X − T slice

(c) The image induced by the scene manifold

Figure 4. “Beach” sequence. The camera is panning with
vertical jitter which is handled by the algorithm. All the
motion in the scene is handled seamlessly.

eral possible transitions onto the next images. Each transi-
tion can be scored according to the appearance it induces on
the manifold. To find the optimal path we construct graph
where the nodes represent image strips and the edges are
the possible transitions. The optimal manifold is then the
shortest path in this graph.

3.1. Definitions

Let V be a video sequence, which is an ordered set of
images {Ψf}N

1 . Each image in turn contains an ordered set
of strips ψ1

f ...ψ
K
f and so, the space-time volume is the set of

strips {ψi
f} (i is coordinate on the spatial X axis, f is coor-

dinate on the time axis). Using these notations, the desired
scene manifold can be denoted by a list of strips {ψkj

fj
}L

j=1.
The width of the strips is set to one pixel as wider strips
may form naturally when needed. We seek to find the scene
manifold which cuts this space without any visual artifacts
or distortions. These can only arise by stacking together
pairs of strips that do not appear in the space of real im-
ages and so we define a cost measure for any pair of strips
(ψk

f , ψ
l
g) as

D(ψi
f , ψ

j
g) = min

n
min

UV⊂Ψn

||UV − ψi
fψ

j
g|| (1)

That is, a pair of strips are valid neighbors if, when placed
side-by-side, they are similar to some pair in one of the
video images (a similar formula was used in [6] but was
formulated there in statistical terms which did not lead to a
closed-form solution). We can get a good upper bound on
D(·, ·) by

D(ψi
f , ψ

j
g) ≤ C(ψi

f , ψ
j
g) = (2)



= min
{
||ψi

fψ
j
g − ψi

fψ
i+1
f ||,

||ψi
fψ

j
g − ψj−1

g ψj
g||

}
= min

{
||ψj

g − ψi+1
f ||, ||ψi

f − ψj−1
g ||

}
This bound is fairly tight since we already know two loca-
tions where the cost is close to the global minimum. The
cost function (2) allows us to define a graph where the cost
of each edge efficiently encodes the cost of cutting the vol-
ume along it.

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������

������������������

���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������

	�	�	�	�	�	
	�	�	�	�	�	
	�	�	�	�	�	
	�	�	�	�	�	
	�	�	�	�	�	
	�	�	�	�	�	
	�	�	�	�	�	
	�	�	�	�	�	
	�	�	�	�	�	
	�	�	�	�	�	
	�	�	�	�	�	
	�	�	�	�	�	
	�	�	�	�	�	
	�	�	�	�	�	
	�	�	�	�	�	
	�	�	�	�	�	
	�	�	�	�	�	
	�	�	�	�	�	
	�	�	�	�	�	


�
�
�
�
�


�
�
�
�
�


�
�
�
�
�


�
�
�
�
�


�
�
�
�
�


�
�
�
�
�


�
�
�
�
�


�
�
�
�
�


�
�
�
�
�


�
�
�
�
�


�
�
�
�
�


�
�
�
�
�


�
�
�
�
�


�
�
�
�
�


�
�
�
�
�


�
�
�
�
�


�
�
�
�
�


�
�
�
�
�


�
�
�
�
�


p
0

Time→

p5

Frame 1 Frame 2

p4

p3

p2

p1

Ψ4
2

Ψ5
2

Ψ3
2

Ψ2
2

Ψ1
2

Ψ5
1

Ψ4
1

Ψ3
1

Ψ2
1

Ψ1
1

x

frame 16 17 18 19 t. . .

(a) (b)

Figure 5. Graph construction. The graph encodes possi-
ble strip transitions. Each circle in (a) denotes a strip and
the edges represent possible transitions between them. In
(a), a pixel in Frame 1 has one natural transition within the
same frame (p0) and 5 possible transitions to the next frame
(p1,...,5). (b) shows the manifold as it passes in the volume.
The graph arc in (b) will have a small cost either if the bro-
ken rectangles are similar or if the solid ovals are similar
(Eq. 2). In both cases a broken rectangle and a solid oval
can be seamlessly put side by side.

3.2. Graph Construction

Let G = (V,E) denote a graph where the nodes V =
{ψi

f} are the K · N image strips and the edges E ⊆ V ×
V encode the possible transitions between the strips. Each
edge has an associated transition costC : E → < as defined
in Eq.(2). Consider for example the two patches ψ3

1 from
the first image and ψ4

2 from the second image, denoted by
circles in Fig. 5. The error of this placement is small if
the pair ψ3

1 , ψ
4
2 appears together in some image. Instead of

performing a costly search, we compute the similarity of ψ3
1

and ψ3
2 , and if they are similar, then ψ4

2 can be placed next
to ψ3

1 (just like it is already placed next to ψ3
2). Thus, the

cost of a transition from node ψj
i to ψl

k is directly related to
the similarity between ψj

i to ψl−1
k as is given in Eq. (2).

As we assume the frames come from a video sequence,
there is no need to add to the graph all possible edges. In-
stead, we only compute edges between nearby patches in
space and in time. This limit depends on the maximal mo-
tion velocity that is expected, which is typically five pixels
and frames.

3.3. Global Optimization

When the edge costs are computed, two special nodes
need to be added to mark the beginning and end points of
the manifold. For most examples presented here, the goal is
to find a path from the first frame to the last so that the whole
video sequence is represented. The node vstart is connected
to all the nodes in the first frame with zero cost and vend is
connected to all the nodes in the last frame with zero cost.
The shortest path between them contains the manifold with
the least amount of distortions.

In Fig 7 we show how one can use this method to create
a synopsis of a scene where specific events at different lo-
cations and times are combined together. The path is forced
to pass through these points so that they are included in the
manifold as explained in Section 4.

Now, each path from vstart to vend corresponds to a
manifold. The edge weights encode the transition costs and
we seek the one with the least distortions. The well known
shortest-path algorithm of [5] can now be employed to find
this global optimum efficiently. The resulting minimal-cost
path can be directly translated to a mosaic by stacking to-
gether the strips corresponding to {ψkj

fj
}L

j=1 side by side.
The above construction guarantees that this manifold has
the least cumulative visual errors.

3.4. On-Line Graph Construction

We have introduced the algorithm in two steps (graph
construction and optimization) only for the sake of sim-
plicity. In practice, there is no need to pre-compute the
whole graph but instead it is constructed on-line during the
shortest-path algorithm. As a node is visited, the cost edges
connected to it are computed and added to a priority queue.
The advantage of such computation is that most possible
transitions incur a very high cost in Eq. (2) and so will never
be taken. Hence most edge costs need not be computed at all
and the complexity is proportional to the manifold length.

This saving is more noticeable for more complex motion
types, including vertical shifts. For example, if one wishes
to handle vertical shake as well, a patch ψj

f may match sev-
eral vertical shifts of ψl

g and so several nodes are needed for
each strip, multiplying the number of nodes in the graph by
the number of allowed shifts. While the number of nodes
grows rapidly, the number of nodes actually visited ones
does not.



(a) Input frames

(b) The manifold on top of an X − T slice

(c) The image induced by the scene manifold

Figure 6. Translating camera from [2]. Note the result-
ing mosaic contains no noticeable distortions as the path
chooses the correct transition in each step thus avoiding par-
allax artifacts. This example also demonstrates both hori-
zontal and vertical alignment

3.5. Coarse-To-Fine Computation

Another improvement of the algorithm is the use of
a coarse-to-fine framework. A spatio-temporal Gaussian
pyramid is built from the input video. Each pyramid level is
down-scaled to contain half the resolution in the spatial and
in the temporal dimensions thus each level contains 1

8 of the
pixels of the level below it. At the coarsest level a complete
graph is built and the optimal path is extracted. The path is
then transformed to the next resolution and only strips close
to that path in space and in time will be used to build the
graph for the higher resolution level.

The main advantage of this multi-scale framework is that
the similarity computation in the coarser levels captures
global features and so consistency of larger video features
will be maintained. The refinements on subsequent levels
make the small adjustments necessary to ensure consistency
of the finer details. As the refined path is constrained to lie
in the vicinity of the coarser one, global features cannot be
disrupted even if they would agree locally.

Another advantage of the multi-scale process is compu-
tational cost. The graph contains one node per strip so each
subsequent pyramid level reduces the graph to have 1

4 the
number of nodes. Typically, when the computation reaches
the finest level, roughly 5% of the strips are used, thus re-
sulting in a substantial speedup.

4. Experiments

We have implemented the algorithm in Mat-
lab and have conducted several experiments to
test it. Please visit the project’s website at:
http://www.wisdom.weizmann.ac.il/
∼vision/SpaceTimeSceneManifolds

The “Dinner” sequence in Fig. 3 contains a natural set-
ting. The camera translates while people are moving about.
The parallax and the motion of the people can clearly be
seen in the X − T slice in 3(b) (where time is the hori-
zontal axis). In the resulting mosaic the two children on
the left were taken from the same image as is evident in
the large vertical line on the path in 3(b). As they move
non-rigidly, any stitch between frames passing through the
children would incur visible seam in the mosaic, which is
automatically avoided by our algorithm.

The “Cricket” sequence in Fig. 7 demonstrates the cre-
ation of a synopsis mosaic. In this example we manually
picked three points, two of which are in one frame. The
path was constrained to pass through three points at dif-
ferent times and so must include these events as shown in
Fig. 7(d). Note that the objects (in this case people) do not
need to be segmented or even accurately located as the al-
gorithm will automatically ensure that they are not cut or
distorted.

We have included here two known sequences for refer-
ence. The “Head” sequence in Fig. 2 was taken from [7].
It was taken by a rotating camera that surrounds a person’s
head. As the head surface is not cylindrical, the distance
from it to the camera changes. The freedom to choose the
transition locations allows the resulting manifold to avoid
foreshortening effects that were apparent in [7]. A close
examination of Fig. 2(b) shows that that it wraps the head
accurately. The sequence in Fig. 6 was taken from [2]. The
camera moves horizontally from left to right and the scene
contains substantial parallax, as is seen by the varying an-
gles on the X − T slice in 6(b). The resulting manifold
contains minor visual artifacts on the left-hand side. The
manifold was allowed to move vertically ±5 pixels as can
be seen on the top and bottom boundaries in 6(c).

5. Summary and Conclusions

We have presented the notion of the Scene Manifold, that
cuts through the space-time volume so as to minimize visual
artifacts. The resulting manifold will lie in the subspace of
real images from the video itself whenever possible and will
minimize the distance from it otherwise. We have demon-
strated the strength of this approach by constructing mo-
saics of very challenging, highly dynamic videos, without
the use of any geometrical information and without assum-
ing alignment.

http://www.wisdom.weizmann.ac.il/~vision/SpaceTimeSceneManifolds
http://www.wisdom.weizmann.ac.il/~vision/SpaceTimeSceneManifolds
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(a) Input frames

(b) Points of interest marked on two frames

(c) The manifold within the volume

(d) The image induced by the scene manifold

Figure 7. A synopsis example. This input is from a static
camera covering a cricket match. Three people were se-
lected in the input by manually choosing 3 points in the
space-time volume as shown in (c). The resulting manifold
contains a synopsis of the event and the points are marked
in red. Note that no segmentation is needed as the manifold
automatically includes the entire objects.
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