
Chapter 4

Irradiance Environment Maps

In the introduction to this dissertation, we noted that complex realistic lighting environ-

ments are rarely used in either forward or inverse rendering. We also stated our thesis that

a deeper understanding of the computational nature of reflection and illumination helps to

address these difficulties and restrictions in a number of areas in computer graphics and

vision. Subsequently, in chapters 2 and 3, we have developed a new way of looking at re-

flection, formalizing the idea of reflection as a spherical convolution of the incident illumi-

nation and BRDF. The insights from these two chapters lead to the possibility of attacking

a number of difficult forward and inverse rendering problems in the frequency domain.

Chapters 4, 5 and 6 of this dissertation are devoted to practical applications of the

signal-processing ideas developed theoretically in the previous two chapters. Chapters 4

and 5 deal with efficient representations and algorithms for forward rendering using envi-

ronment maps, which are representations of the (distant) incident illumination distribution

at a point. This chapter considers the case of Irradiance Environment Maps, correspond-

ing to the reflection from diffuse or Lambertian objects. We show that frequency-space

analysis can be used to reduce the effects of arbitrarily complex (but distant) incident illu-

mination to a simple analytic low-dimensional formula. In the next chapter, we will extend

these ideas, using similar methods for general BRDFs, further showcasing the practical

benefits of frequency-space concepts like sampling rate analysis and efficient frequency do-

main convolutions. Finally, chapter 6 presents practical algorithms for inverse rendering—

estimation of illumination and material properties.

80

4.1. INTRODUCTION AND PREVIOUS WORK 81

In this chapter, we consider the rendering of diffuse objects under distant illumina-

tion, as specified by an environment map. Using an analytic expression for the irradiance

in terms of spherical harmonic coefficients of the lighting, derived in chapter 3.2.5, we

show that one needs to compute and use only 9 coefficients, corresponding to the lowest-

frequency modes of the illumination, in order to achieve average errors of only 1%. In other

words, the irradiance is insensitive to high frequencies in the lighting, and is well approx-

imated using only 9 parameters. In fact, we show that the irradiance can be procedurally

represented simply as a quadratic polynomial in the cartesian components of the surface

normal, and give explicit formulae. These observations lead to a simple and efficient pro-

cedural rendering algorithm amenable to hardware implementation, a prefiltering method

up to three orders of magnitude faster than previous techniques, and new representations

for lighting design and image-based rendering.

The rest of this chapter is organized as follows. After an introduction to the specific

problem of interest here, in section 1, we briefly describe the relevant background and

practical details from the previous theoretical analysis required here in section 2. Section

3 discusses practical implementation of our algorithms. Finally, section 4 concludes this

paper and suggests directions for future work. This chapter corresponds to our SIGGRAPH

paper on An Efficient Representation for Irradiance Environment Maps [71].

4.1 Introduction and Previous Work

Lighting in most real scenes is complex, coming from a variety of sources including area

lights and large continuous lighting distributions like skylight. But current graphics hard-

ware only supports point or directional light sources. One reason is the lack of simple

procedural formulas for general lighting distributions. Instead, an integration over the up-

per hemisphere must be done for each pixel.

One approach to using general lighting distributions is the method of environment

maps. Environment maps are representations of the incident illumination at a point. Blinn

and Newell [5] used them to efficiently find reflections of distant objects. Miller and Hoff-

man [59], and Greene [22] prefiltered environment maps, precomputing separate reflection

82 CHAPTER 4. IRRADIANCE ENVIRONMENT MAPS

Figure 4.1: The diffuse shading on all the objects is computed procedurally in real-time using
our method. The middle sphere, armadillo, and table are white diffuse reflectors. The colors come
from the environment—owing to a variety of colored sources, including blue stained-glass windows.
Our method can also be combined with standard texture mapping—used to modulate the albedo of
the pool-ball on the right—and reflection mapping—used for specular highlights on the pool-ball,
and for the mirror sphere on the left. The environment is a light probe of the Grace Cathedral.
Tone mapping is used to convey high dynamic range for the background and the mirror sphere; the
remaining objects are shaded using a linear scale.

maps for the diffuse and specular components of the BRDF. Cabral et al. [8] handled gen-

eral BRDFs by using a 2D set of prerendered images. Prefiltering is generally an offline,

computationally expensive process. After prefiltering, rendering can usually be performed

at interactive rates with graphics hardware using texture-mapping.

Of course, environment maps, and the relevant techniques presented in this dissertation,

are only an approximation and do not account for near-field illumination, cast shadows, or

interreflection. Nevertheless, they have proven an effective tool for interactive rendering

with realistic lighting effects.

This chapter focuses on the Lambertian component of the BRDF. We use the term

irradiance environment map for a diffuse reflection map indexed by the surface normal,

4.2. BACKGROUND 83

since each pixel simply stores the irradiance for a particular orientation of the surface. For

applications like games, irradiance maps are often stored directly on the surface, instead

of as a function of the normal vector, and are called light maps. Irradiance environment

maps can also be extended to spatially varying illumination by computing an irradiance

volume, as done by Greger et al. [23]. Many of the same ideas can be applied to speeding

up global illumination algorithms. The slowly varying nature of irradiance has led to Ward

and Heckbert [85] proposing interpolation using irradiance gradients, while the idea of

storing irradiance as a function of surface orientation in orientation lightmaps has been

proposed by Wilkie et al. [87].

Our approach relies on the rapid computation of an analytic approximation to the ir-

radiance environment map. For rendering, we demonstrate a simple procedural algorithm

that runs at interactive frame rates, and is amenable to hardware implementation. The pro-

cedural approach is preferable to texture-mapping in some applications. Since irradiance

varies slowly with orientation, it need only be computed per-vertex and interpolated across

triangles. Further, we require only a single texturing pass to render textured objects with

irradiance environment maps, since the irradiance is computed procedurally. On the other

hand, the standard approach requires a separate texture for the irradiance, and needs mul-

titexturing support or multiple texturing passes. In other applications, where per-fragment

texture-mapping is relatively inexpensive, our method can be used to very efficiently com-

pute the irradiance environment map texture. Our novel representation also suggests new

approaches to lighting design and image-based rendering.

4.2 Background

Empirically, it is well known that the reflected intensity from a diffuse surface varies slowly

as a function of surface orientation. This qualitative observation has been used to justify

representing irradiance environment maps at low resolutions [59], and in efficiently com-

puting the shading hierarchically [39, 45]. Our goal is to use an analytic quantitative

formula for the irradiance, derived in section 3.2.5, which formalizes these observations,

and allows for principled approximations.

84 CHAPTER 4. IRRADIANCE ENVIRONMENT MAPS

Let L denote the distant lighting distribution. As is common with environment map al-

gorithms, we neglect the effects of cast shadows and near-field illumination. The irradiance

E is then a function of the surface normal only and is given by an integral over the upper

or visible hemisphere,

E(α, β) =
∫ π/2

θ′i=0

∫ 2π

φ′
i=0

L (Rα,β(θ′i, φ
′
i)) cos θ′i dθ

′
idφ

′
i. (4.1)

We must scale E by the surface albedo1, which may be dependent on position �X and be

described by a texture T (�X), to find the reflected light field B, which corresponds directly

to the image intensity,

B(�X;α, β) = T (�X)E(α, β). (4.2)

Our main concern will be approximating the irradiance E. A texture map T (�X) may

be used later to simply modulate the reflected light field computed. Note that the form of

equation 4.1 is simply a special case of the reflection equation 2.11 for isotropic surfaces

with no outgoing angular dependence. The limits of the θ′i integral range from 0 to π/2

because we consider only the front hemisphere, where the cosine of the incident angle

is positive. The transfer function corresponding to the Lambertian BRDF is the clamped

cosine function ρ̂(θ′i) = max(cos θ′i, 0).

In section 3.2.5 (a more detailed version of which is published in [72]), we have been

able to derive an analytic formula for the irradiance by determining the spherical harmonic

filter coefficients for the Lambertian clamped-cosine function. Similar results have been

obtained independently by Basri and Jacobs [2] in simultaneous work on face recognition.

For the purposes of implementation, it is often convenient to use real-valued functions

where possible, rather than the complex forms of the spherical harmonics given in equa-

tion 2.27. It is easy to define real forms of the spherical harmonics, simply by considering

the real and complex parts separately. For this purpose, we define the real form of the

1Technically, for Lambertian objects, the BRDF is given by 1/π times the albedo, so the textures should
be multiplied by 1/π.

4.2. BACKGROUND 85

spherical harmonics as follows (c.f. equation 2.26),

Nlm =

√√√√2l + 1

4π

(l −m)!

(l + m)!

Ylm(θ, φ) = NlmPlm(cos θ)azm(φ), (4.3)

where the azimuthal basis functions are defined by

az+m(φ) =
√

2 cosφ

az0(φ) = 1

az−m(φ) =
√

2 sinφ. (4.4)

While this is essentially the standard definition of the real form of the spherical harmonics,

the sign conventions used are not always consistent. For that reason, we will make explicit

the numerical values used here to fix the precise conventions used by us.

Recall that the spherical harmonics may be written as polynomials of the cartesian com-

ponents (x, y, z). Below, we give the numeric values of the the first 9 spherical harmonics

(with l ≤ 2), which are simply constant (l = 0), linear (l = 1), and quadratic (l = 2)

polynomials (c.f. figure 2.3),

(x, y, z) = (sin θ cosφ, sin θ sinφ, cos θ)

Y00(θ, φ) = 0.282095

(Y11;Y10;Y1−1) (θ, φ) = 0.488603 (x; z; y)

(Y21;Y2−1;Y2−2) (θ, φ) = 1.092548 (xz; yz; xy)

Y20(θ, φ) = 0.315392
(
3z2 − 1

)

Y22(θ, φ) = 0.546274
(
x2 − y2

)
. (4.5)

Note that these basis functions are closely related to the spherical polynomials used by

Arvo [1] in his irradiance tensor formulation.

E(α, β) and L(θ, φ) can be represented by the coefficients—Elm and Llm—in their

86 CHAPTER 4. IRRADIANCE ENVIRONMENT MAPS

spherical harmonic expansion,

L(θ, φ) =
∞∑
l=0

l∑
m=−l

LlmYlm(θ, φ)

E(α, β) =
∞∑
l=0

l∑
m=−l

ElmYlm(α, β). (4.6)

We may also expand the Lambertian transfer function ρ̂(θ′i) = max(cos θ′i, 0), i.e. the

clamped cosine, in terms of spherical harmonics. Since ρ̂ has no azimuthal dependence,

m = 0 and we use only the l index,

ρ̂(θ) = max [cos θ, 0] =
∑

l

ρ̂lYl0(θ). (4.7)

With these definitions, one can directly apply equation 2.62 or equation 3.10,

Elm = Λlρ̂lLlm, (4.8)

where Λl =
√

4π/(2l + 1). The only difference in equation 3.28 in section 3.2.5 is that we

used there the reflected light field B, which is simply a scaled version of the irradiance E

for Lambertian surfaces.

It will be convenient to define a new variable Al by

Al = Λlρ̂l, (4.9)

and to expand out the irradiance for rendering,

E(α, β) =
∑
l,m

AlLlmYlm(α, β). (4.10)

An analytic formula for ρ̂l (and hence Al) has been derived in section 3.2.5. It can be shown

that Al vanishes for odd values of l > 1, and even terms fall off very rapidly as l−5/2. The

4.3. ALGORITHMS AND RESULTS 87

analytic formulae are given by (c.f. equation 3.32)

l = 1 Al = 2π
3

l > 1,odd Al = 0

l even Al = (−1)
l
2
−1 2π

(l + 2)(l − 1)


 l!
2l

(
l
2 !

)2


 .

(4.11)

Numerically, the first few terms are

A0 = 3.141593 A1 = 2.094395 A2 = 0.785398

A3 = 0 A4 = −0.130900 A5 = 0 A6 = 0.049087. (4.12)

Approximation: For rendering, we make use of the observation that Al decays so fast

that we need consider only low-frequency lighting coefficients, of order l ≤ 2. Equiva-

lently, the irradiance is well approximated by only 9 parameters—1 for l = 0,m = 0,

3 for l = 1,−1 ≤ m ≤ 1, and 5 for l = 2,−2 ≤ m ≤ 2. By working in frequency-

space, we exploit the low-frequency character of the Lambertian BRDF filter, using a few

coefficients instead of a full hemispherical integral. The simple form of the first 9 spherical

harmonics, given in equation 4.5, makes implementation straightforward.

4.3 Algorithms and Results

In this section, we discuss three applications of this result. First, we show how to rapidly

prefilter the lighting distribution, computing the coefficients Llm. Next, we develop a sim-

ple real-time procedural shader for rendering that takes these coefficients as inputs. Finally,

we discuss other applications of our representation.

4.3.1 Prefiltering

For a given environment map, we first find the 9 lighting coefficients, Llm for l ≤ 2, by

integrating against the spherical harmonic basis functions. Each color channel is treated

88 CHAPTER 4. IRRADIANCE ENVIRONMENT MAPS

separately, so the coefficients can be thought of as RGB values,

Llm =
∫ π

θ=0

∫ 2π

φ=0
L(θ, φ)Ylm(θ, φ) sin θ dθdφ. (4.13)

The expressions for the Ylm are found in equation 4.5. The integrals are simply sums of the

pixels in the environment map L, weighted by the functions Ylm. The integrals can also be

viewed as moments of the lighting, or as inner-products of the functions L and Ylm.

Since we compute 9 numbers, the prefiltering step takes O(9S) time, where S is the

size (total number of pixels) of the environment map. By comparison, the standard method

of computing an irradiance environment map texture takes O(| T | ·S) time, where | T |
is the number of texels in the irradiance environment map. Our method will therefore be

approximately | T | /9 times faster2. Even if a conventional irradiance environment map is

computed at a very low resolution of 64 × 64, corresponding to | T |= 4096, our method

will be nearly 500 times faster.

We have implemented prefiltering as a preprocessing step for a given environment map.

Values of Llm for a few light probes are tabulated in figure 4.1. The computation time for a

300x300 environment map was less than a second. This indicates that our approach might

be able to handle scenes with dynamic lighting in the future. By contrast, the standard

method of performing a hemispherical integral for each pixel to compute the irradiance

environment map took approximately two hours. In fact, if an explicit representation of the

irradiance environment map texture is required, we believe the best way of computing it is

to first compute the 9 coefficients Llm using our method, and then use these to very rapidly

generate the irradiance environment map using the rendering method described below.

It is important to know what errors result from our 9 parameter approximation. The

maximum error for any pixel, as a fraction of the total intensity of the illumination, is 9%

and corresponds to the maximum error in the order 2 approximation of the clamped cosine

function. Furthermore, the average error over all surface orientations can be shown to be

under 3% for any physical input lighting distribution [2]. For the environment maps used

in our examples, corresponding to complex natural illumination, the results are somewhat

2It may be possible to use a hierarchical integration scheme, as demonstrated by Kautz et al. [39] for
Phong BRDFs, to speed up both our method and the conventional approach. Hardware acceleration may also
be possible.

4.3. ALGORITHMS AND RESULTS 89

Grace Cathedral Eucalyptus Grove St. Peters Basilica
L00 .79 .44 .54 .38 .43 .45 .36 .26 .23
L1−1 .39 .35 .60 .29 .36 .41 .18 .14 .13
L10 -.34 -.18 -.27 .04 .03 .01 -.02 -.01 -.00
L11 -.29 -.06 .01 -.10 -.10 -.09 .03 .02 .01
L2−2 -.11 -.05 -.12 -.06 -.06 -.04 .02 .01 .00
L2−1 -.26 -.22 -.47 .01 -.01 -.05 -.05 -.03 -.01
L20 -.16 -.09 -.15 -.09 -.13 -.15 -.09 -.08 -.07
L21 .56 .21 .14 -.06 -.05 -.04 .01 .00 .00
L22 .21 -.05 -.30 .02 -.00 -.05 -.08 -.06 .00

Table 4.1: Scaled RGB values of lighting coefficients for a few environments. These may be used
directly for rendering, and for checking the correctness of implementations.

better than the worst-case bounds—the average error is under 1%, and the maximum pixel

error is under 5%. Finally, figure 4.2 provides a visual comparison of the quality of our

results with standard prefiltering, showing that our method produces a perceptually accurate

answer.

4.3.2 Rendering

For rendering, we can find the irradiance using equation 4.10. Since we are only con-

sidering l ≤ 2, the irradiance is simply a quadratic polynomial of the coordinates of the

(normalized) surface normal. Hence, with �N t = (x y z 1), we can write

E(�N) = �N tM �N. (4.14)

M is a symmetric 4x4 matrix. Each color has an independent matrix M . Equation 4.14 is

particularly useful for rendering, since we require only a matrix-vector multiplication and

a dot-product to compute E. The matrix M is obtained by expanding equation 4.10,

90 CHAPTER 4. IRRADIANCE ENVIRONMENT MAPS

STANDARD OUR METHOD

GRACE CATHEDRAL

STANDARD OUR METHOD

EUCALYPTUS GROVE

Figure 4.2: A comparison of irradiance maps from our method to standard prefiltering. The
irradiance map resolutions are 256x256. For each light probe, the left image is a tone-mapped
version of the environment. Below that, we show the brightest parts of the environment on a lin-
ear scale. Both environments have bright bluish lights—from stained-glass windows, and the sky
respectively—which are not apparent in the tone-mapped images. This accounts for the bluish por-
tions of the irradiance maps. It can be seen that our method produces a result very close to the
correct answer. Note that our rendering algorithm does not actually use irradiance maps; we com-
puted them here solely for the purposes of the quality comparison. The coordinate mapping in the
images is such that the center of the image is straight forward (θ = 0, the north pole or +Z), the cir-
cumference of the image is straight backwards (θ = π, the south pole or -Z), and θ varies uniformly
in the radial direction from 0 to π. The azimuthal angle φ corresponds to the image polar angle.

M =




c1L22 c1L2−2 c1L21 c2L11

c1L2−2 −c1L22 c1L2−1 c2L1−1

c1L21 c1L2−1 c3L20 c2L10

c2L11 c2L1−1 c2L10 c4L00 − c5L20




c1 = 0.429043 c2 = 0.511664

c3 = 0.743125 c4 = 0.886227 c5 = 0.247708. (4.15)

4.3. ALGORITHMS AND RESULTS 91

The entries of M depend3 on the 9 lighting coefficients Llm and the expressions for the

spherical harmonics. The constants come from the numerical values of Al given in equa-

tion 4.12, and the spherical harmonic normalizations given in equation 4.5.

On systems not optimized for matrix and vector operations, it may be more efficient

to explicitly write out equation 4.10 for the irradiance as a sum of terms,i.e. expand equa-

tion 4.15,

E(�N) = c1L22

(
x2 − y2

)
+ c3L20z

2 + c4L00 − c5L20

+ 2c1 (L2−2xy + L21xz + L2−1yz)

+ 2c2 (L11x + L1−1y + L10z) . (4.16)

We implemented equations 4.14 and 4.16 as procedural shaders in the Stanford real-time

programmable shading system [68]. We used the ability of that system to perform compu-

tations per-vertex. Since E varies slowly, this is adequate and the shading is insensitive to

how finely the surfaces are tessellated. The irradiance computations may be performed in

software or compiled to vertex programming hardware, if available. The simple forms of

equations 4.14 and 4.16 indicate that a per-fragment method could also be implemented in

programmable hardware.

We were able to achieve real-time frame rates on PCs and SGIs. As shown in the SIG-

GRAPH 2001 conference proceedings videotape, we can interactively rotate objects and

move our viewpoint, with the irradiance being procedurally recomputed at every frame.

We can also rotate the lighting by applying the inverse rotation to the normal �N . Images

rendered using our method look identical to those obtained by texture-mapping after pre-

computing irradiance environment maps.

4.3.3 Representation

Conceptually, the final image is composed of a sum of spherical harmonic basis functions,

scaled by the lighting coefficients Llm. These 3D irradiance basis functions depend on the

surface normal and are defined over the entire object, making it possible to generate an

3A symmetric 4x4 matrix has 10 degrees of freedom. One additional degree is removed since �N lies on
the unit sphere.

92 CHAPTER 4. IRRADIANCE ENVIRONMENT MAPS

0.180.430.060.240.55 0.18
Coefficients (L)lm

-0.07-0.14-0.23 (sum of scaled

Sc
al

ed
 B

as
is

 F
un

ct
io

ns
B

as
is

 F
un

ct
io

ns Sp
he

re
A

rm
ad

ill
o

+

M
an

ua
lly

 E
di

te
d

basis functions)

Final Images

View 1

View 2

View 1

View 2

(2,-1)(2,-2)(1,1)(1,0)(1,-1) (2,0)(l,m) = (0,0) (2,2)(2,1)

Figure 4.3: Illustration of our representation, and applications to control appearance. The basis
functions have both positive values, shown in green, and negative values, shown in blue. Topmost,
we show the spherical harmonic basis functions on a sphere—note that these are actual images, not
the coordinate mappings of figure 4.2—and the armadillo. The basis functions are defined over the
entire object surface; we show only two views. The rightmost 5 functions are dimmer since they
have the highest frequency (l = 2) and contribute the least. Conceptually, the basis functions are
then scaled by the lighting coefficients Llm and added to produce renderings. Llm are actually RGB
values; for simplicity, we show the coefficients for only one color (green). The coefficients Llm may
be adjusted manually to manipulate appearance. This editing can be fairly intuitive—for instance,
we make L11 large and positive to darken the right side (with respect to us) and left arm of the
armadillo image, since the basis function (1, 1) is negative in that region.

image from any viewpoint. We may also manually adjust the 9 lighting coefficients Llm

to directly control appearance, as shown in figure 4.3. The lighting coefficients can often

be assigned intuitive meanings. For instance, L1−1 is the moment about the vertical or

y-axis, and measures the extent to which the upper hemisphere is brighter than the lower

hemisphere. As can be seen from figure 4.1, L1−1 is usually large and positive, since most

scenes are lit from above. By making this value negative, we could give the appearance of

the object being lit from below.

Our representation may also be useful in the future for image-based rendering with

varying illumination. Hallinan [30] and Epstein et al. [18] have observed empirically that,

4.4. CONCLUSIONS AND FUTURE WORK 93

for a given view, images of a matte object under variable lighting lie in a low-dimensional

subspace. Our theory explains this observation, and indicates that a 9D subspace suf-

fices. Basri and Jacobs [2] have obtained similar theoretical results. To synthesize images

of a diffuse object under arbitrary illumination, we therefore need only the 9 basis func-

tions, which could be computed from a small number of photographs. Such an approach

would significantly speed up both acquisition and rendering in a method such as Debevec

et al. [15].

4.4 Conclusions and Future Work

We have described a novel analytic representation for environment maps used to render dif-

fuse objects, and have given explicit formulae for implementation. Our approach allows us

to use an arbitrary illumination distribution for the diffuse component of the BRDF, instead

of the limitation of current graphics hardware to point or directional sources. We simply

specify or compute the first 9 moments of the lighting. Even where more conventional

texture-mapping methods are desired, our approach allows us to very efficiently compute

irradiance environment map textures.

It should be noted that environment mapping in general, and the methods described in

this and the next chapter in particular, are restricted to distant illumination without cast

shadows or interreflection. An obvious question is how we can modify and utilize our re-

sults when the theoretical assumptions don’t exactly hold, i.e. we want to account for some

spatially-varying illumination, cast shadows, and interreflection. It is our belief that low-

dimensional subspaces may still be appropriate, even if they are not specified by simple

analytic formulae in terms of spherical harmonics, or can be described using only 9 pa-

rameters. Some preliminary work in this area has already been demonstrated by Sloan et

al. [66].

Another interesting question is whether we can use similar frequency-space methods

for the specular BRDF component, and more general non-Lambertian reflection functions.

One solution to this problem will be presented in the next chapter. In the future, we would

also like to further explore the applications to lighting design and image-based rendering

discussed in this chapter.

