
Chapter 6

Inverse Rendering Under Complex

Illumination

The previous two chapters have applied our signal processing framework to efficient render-

ing with environment maps. In this chapter, we switch from forward to inverse rendering,

addressing estimation of lighting and material properties from real photographs.

Accurate modeling of the visual world requires accurate models for object geometry

and appearance. There has been a significant body of computer vision research over the

last two decades on determining shape from observations. However, much less attention

has been paid to determining illumination and reflectance properties, even though the per-

ception of materials may be considered as important as the perception of shape in visual

modeling. Similarly, until recently, computer graphics has focussed on geometric model-

ing and the development of accurate physically-based light transport algorithms. However,

creation of realistic computer-generated images also requires accurate input models of il-

lumination and reflective properties (BRDFs and textures) of surfaces. In the past, the

illumination and reflective properties have usually been set in an ad-hoc manner. This is

often now the limiting factor in the realism of synthetic imagery, and is one reason for the

growth of image-based rendering techniques. In its simplest form, image-based rendering

uses view interpolation to construct new images from acquired images without constructing

a conventional scene model.

The quality of view interpolation may be significantly improved if it is coupled with
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inverse rendering. Inverse rendering measures rendering attributes—lighting, textures, and

BRDF—from photographs. Whether traditional or image-based rendering algorithms are

used, rendered images use measurements from real objects, and therefore appear very simi-

lar to real scenes. Measuring scene attributes also introduces structure into the raw imagery,

making it easier to manipulate the scene in intuitive ways. For example, an artist can change

independently the material properties or the lighting.

In the last few years, there has been a significant amount of research in inverse ren-

dering. The methods of Debevec et al. [15], Marschner et al. [55], Sato et al. [77], and

others have produced high quality measurements, leading to the creation of very realistic

images. However, most previous work has been conducted in highly controlled lighting

conditions, usually by careful active positioning of a single point source. Even methods

that work in outdoor conditions, such as those of Yu and Malik [90], Sato and Ikeuchi [76]

and Love [50], are designed specifically for natural illumination, and assume a simple para-

metric model for skylight.

The usefulness of inverse rendering would be greatly enhanced if it could be applied

under general uncontrolled, and possibly unknown, lighting. For instance, this would allow

for application in general unconstrained indoor or outdoor settings, or for estimation of

BRDFs under unknown illumination. There are also a number of applications to human

vision and perception. For instance, Dror et al. [16] have studied reflectance classification

from a single image of a sphere under complex illumination to clarify how well the human

visual system perceives materials, and to develop computational vision methods for the

same task.

One reason there has previously been relatively little work in considering complex il-

lumination is the lack of a common theoretical framework for determining under what

conditions inverse problems can and cannot be solved, and for making principled approxi-

mations. Recently, we [72, 73] have developed a signal-processing framework for reflection

on a curved surface, whereby the reflected light field can be viewed as a spherical convolu-

tion of the incident illumination and the BRDF. This framework can be used to determine

the well-posedness of inverse problems, i.e. analyze which inverse problems can be solved,

and to make appropriate approximations.
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In this chapter, we first develop a taxonomy of inverse problems under complex illu-

mination, indicating which problems have been addressed, which will be solved in this

article, and which remain subjects for future investigations. We will then use the insights

from our previous theoretical analysis to derive new representations and algorithms for

inverse rendering under complex illumination. Our contributions include a new dual an-

gular and frequency-space low parameter representation, and new methods for estimating

BRDFs, illumination, and factoring the reflected light field to simultaneously determine

the lighting and BRDF.

This chapter is an expanded version of the practical aspects of our earlier SIGGRAPH

paper [73]. That earlier work derived the theoretical signal-processing framework and

briefly described applications to inverse rendering. Here, we assume the theoretical frame-

work and focus in more detail on the practical algorithms for inverse rendering under com-

plex illumination.

The rest of this chapter is organized as follows. In section 6.1, we develop a taxonomy

of inverse problems, classifying previous work, and indicating unsolved problems that are

the subject of this paper. In section 6.2, we give some background on our assumptions

and the signal-processing framework we apply here, introducing the main practical impli-

cations. In section 6.3, we use these ideas to derive a new low-parameter dual angular

and frequency space representation applied in the next section. Section 6.4 presents our

new practical algorithms, and illustrates the concepts using spheres of different materials.

Section 6.5 presents our results using complex geometric objects, demonstrating improved

and more general methods for inverse rendering under complex illumination. Finally, sec-

tion 6.6 concludes the chapter and suggests directions for future work.

6.1 Taxonomy of Inverse problems and Previous Work

We introduce a taxonomy of inverse problems and algorithms based on a number of factors.

To motivate the taxonomy, we first write a simplified version of the reflection equation,

omitting visibility. This is the standard reflection equation (c.f. equation 2.8), except that
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we have added a single spatially varying texture T ( �X) to modulate the reflectance,

B( �X, θ′o, φ
′
o) =

∫
Ω′

i

T ( �X)L(θi, φi)ρ(θ
′
i, φ

′
i, θ

′
o, φ

′
o) cos θ′i dω

′
i. (6.1)

In practice, we would use separate textures for the diffuse and specular components of the

BRDF, and more generally, the BRDF could be spatially varying, i.e. ρ(�X, θ′i, φ
′
i, θ

′
o, φ

′
o).

The integrand is a product of terms—the texture T ( �X), the BRDF ρ(θ′i, φ
′
i, θ

′
o, φ

′
o), and

the lighting L( �X, θ′i, φ
′
i). Inverse rendering, assuming known geometry, involves inverting

the integral in equation 6.1 to recover one or more of ρ, L, or T . If two or more quantities

are unknown, inverse rendering involves factoring the reflected light field. There are a

number of axes along which we can classify inverse problems and solutions, as described

below.

Unknown quantities—Lighting/BRDF/Texture: We may classify inverse problems de-

pending on how many of the three quantities—lighting, BRDF and texture—are unknown.

Considering all possible combinations, this gives rise to a total of seven problem classes.

BRDF representation—low parameter/factored/full measured: Next, we may con-

sider the assumptions made about the form of the illumination and BRDF. Since we are

considering complex illumination, we will assume the lighting to be represented as a 2D

distant illumination field or environment map, although we will also discuss previous work

that makes the assumption of point light sources only. The more interesting axis for us

will be the assumptions made for the BRDF. We may assume the BRDF to be a parametric

low-parameter representation such as the Torrance-Sparrow [84] model. Alternatively, we

may use or estimate a full measured BRDF. In between these two alternatives is the largely

unexplored area of lower-dimensional factored representations [37, 57].

Acquired image dataset—2D/3D/4D: In this chapter, we will assume static scenes, with

multiple images acquired simply by using a new viewing direction. The image datasets we

use could be 2D—corresponding to a single image or a small number of images, 3D—

corresponding to a 1D sequence of 2D images, or 4D—corresponding to a dense sampling

of the entire reflected light field.
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Algorithm and Representation—angular/frequency/dual: Finally, we may classify the

solution methods and representations as working in the spatial or angular domain (as with

most previous work), working purely in the frequency domain, or using a combination of

angular and frequency domains. We develop new algorithms that use either the frequency

domain or a combination of angular and frequency domains.

6.1.1 Previous Work on Inverse Rendering

We now proceed to classify previous work according to the taxonomy above. To fully

describe the taxonomy above in terms of each of the four categories, we would need a four-

dimensional representation. Instead, we will organize the work according to the unknown

quantities. For each of the seven classes, we will discuss the remaining axes of the taxon-

omy. We will then consider unsolved problems, some of which will be addressed in this

chapter.

1. Unknown Texture: We first consider the case when we seek to estimate only the

texture, with the lighting and BRDF known. Previous methods have recovered the diffuse

texture on a surface using a single point light source by dividing by the irradiance in order to

estimate the albedo at each point. Details are given by Marschner [81] and Levoy et al. [49].

More complex methods that also make an estimate of the specular component of the BRDF

will be covered in other categories. Since the texture is simply an albedo map, it is easy

to calculate given the lighting, BRDF, and image data. Therefore, this problem could be

solved simply with any BRDF representation. A single image (2D slice of reflected light

field) suffices in principle, though better estimates may be obtained with more images. No

particular benefit has so far been demonstrated of considering this problem in the frequency

domain, except that irradiance calculations may be more efficient.

2. Unknown BRDF: We now consider the case when the lighting and texture are known,

and we seek to estimate the BRDF. Essentially all work in this category has assumed ho-

mogeneous untextured surfaces, since it is difficult to independently determine the texture.

The BRDF [62] is a fundamental intrinsic surface property. Active measurement methods,

known as gonioreflectometry, involving a single point source and a single observation at
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a time, have been developed. Improvements are suggested by Ward [85] and Karner et

al. [36]. More recently, image-based BRDF measurement methods have been proposed by

Lu et al. [51] and Marschner et al. [55]. These methods work with a single point light

source, and estimate a full BRDF representation. Therefore, they use a large number of

input images. A 3D dataset or 1D sequence of images is required for an isotropic BRDF.

A 4D dataset (or 2D sequence of 2D images) would be required for anisotropic BRDFs.

While some such measurements have been made by Dana et al. [14], as part of the BRDF

data in the CURET database, this data is still very sparse (only 205 measurements for each

sample), and there is room for future work on dense BRDF measurements of anisotropic

materials.

An alternative representation is by low-parameter models such as those of Ward [85]

or Torrance and Sparrow [84]. The parametric BRDF will generally not be as accurate as

a full measured BRDF. However, parametric models are often preferred in practice since

they are compact, and are simpler to estimate. Often, a small number of images suffices

(2D data), and even a single image may be used. There has been some previous work on

determining parametric BRDFs under nontrivial lighting conditions. Love [50] estimates

parametric BRDFs under natural illumination, assuming a low-parameter model for sky-

light and sunlight. Dror et al. [16] use a single image of a homogeneous sphere to classify

the surface reflectance as one of a small number of predetermined BRDFs, making use of

assumed statistical characteristics of natural lighting.

The inverse BRDF problem has not been solved for general illumination. Within this

context, there are a number of open questions, including estimation of low parameter, fac-

tored and full measured representations. It is not obvious how much data (2D/3D/4D) one

needs for each of these tasks or what the best ways of solving the problem (angular vs

frequency domain) are. Some of these problems are addressed in this chapter.

3. Unknown Lighting: A common solution is to use a mirrored ball, as done by Miller

and Hoffman [59]. Marschner and Greenberg [54] find the lighting from a Lambertian

surface. D’Zmura [17] proposes, but does not demonstrate, estimating spherical harmonic

coefficients. For Lambertian objects, we [72] have shown how to recover the first 9 spheri-

cal harmonics. Since we’re assuming here that the lighting is distant and can be described
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by a 2D environment map, a small number of images suffices with any BRDF representa-

tion. However, a single image is usually inadequate because of sampling and conditioning

problems. Previous work has not estimated the lighting from curved surfaces with general

parametric or measured BRDFs. We will address this question here, and demonstrate the

benefits of frequency domain and dual angular/frequency space algorithms.

4. Factorization—Unknown Lighting and BRDF: For the special case when the light-

ing consists of a single source of unknown direction, BRDF estimation methods have been

proposed by Ikeuchi and Sato [31] and Tominaga and Tanaka [83]. Sato et al. [75] use

shadows on a plane to estimate the illumination distribution and the surface reflectance

properties.

However, this problem remains unsolved for complex lighting distributions and curved

surfaces. There are a number of issues to be addressed, including both parametric and mea-

sured BRDF models. As for BRDF estimation, it is not obvious how much data (2D/3D/4D)

is required for each of these cases, nor what the best algorithms (angular/freqeuency) are.

5. Factorization—Unknown Texture and BRDF: This corresponds to recovering tex-

tured, or spatially-varying BRDFs. For estimation of textured parametric BRDFs, a small

number of input images suffices, though using more images gives greater accuracy, and

allows for observation of specular highlights over most of the surface, in at least one of the

input images. Kay and Caelli [41] use a few images, taken under point sources at different

locations, to estimate a simplified Torrance-Sparrow model for each pixel. Sato et al. [77]

rotate an object on a turntable, using a single point source, to recover BRDF parameters

and texture. Yu et al. [89] recover a texture only for the diffuse BRDF component, but

account for interreflections. Sato and Ikeuchi [76] and Yu and Malik [90] recover BRDFs

and diffuse textures under natural illumination, assuming a simple parametric model for

skylight, and using a sequence of images acquired under different illumination conditions.

Most of the above methods recover only diffuse textures; constant values, or relatively

low-resolution textures, are used for the specular parameters. If more detailed models are

sought, a small number of images is no longer sufficient and 4D or larger image datasets

are required. Using a large number of images obtained by moving a point source around a



140 CHAPTER 6. INVERSE RENDERING UNDER COMPLEX ILLUMINATION

sphere surrounding the subject, Debevec et al. [15] acquire the reflectance field of a human

face, and recover parameters of a microfacet BRDF model for each surface location. Dana

et al. [14] generalize BRDFs to a 6D bi-directional texture function (BTF).

6. Factorization—Unknown Lighting and Texture: We can also try to simultaneously

determine the lighting and texture, given a known (in the simplest case, Lambertian) BRDF.

This corresponds to texture estimation under unknown lighting. We have shown [72] that

a distant illumination field can cause only low frequency —with respect to curvature—

variation in the radiosity of a convex Lambertian surface. This implies that, for a diffuse

object, high-frequency texture can be recovered independently of lighting. These observa-

tions are in agreement with the perception literature, such as Land’s retinex theory [46],

wherein high-frequency variation is usually attributed to texture, and low-frequency vari-

ation associated with illumination. However, note that there is a fundamental ambiguity

between low-frequency texture and lighting effects. Therefore, lighting and texture cannot

be factored without using active methods or making further assumptions regarding their

expected statistical characteristics.

For non-Lambertian BRDFs, it would be possible in principle to separate the diffuse

and specular components of the reflected light, based on the change of specular intensity for

different viewing directions. This could then be used to determine the irradiance and hence,

the diffuse texture. We have not in practice found this to be a viable solution technique

because the effects are subtle and the assumed reflection models are not exact. Some recent

results along these lines are reported by Nishino et al. [64], but they also appear to have

difficulty obtaining accurate results.

7. Factorization—Unknown Lighting, Texture, BRDF: Ultimately, we wish to recover

textured BRDFs under unknown lighting. We cannot solve this problem without further

assumptions, because we must first resolve the lighting-texture ambiguity.

Our approach differs from much of the previous work in that it is derived from a math-

ematical theory of inverse rendering. As such, it has similarities to inverse methods used in

areas of radiative transfer and transport theory such as hydrologic optics [67] and neutron
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scattering. See McCormick [58] for a review. Our results are based on recent theoretical

work, where we have formalized the notion of reflection on a curved surface as a spherical

convolution for flatland light fields [70], Lambertian surfaces [72], and finally for general

isotropic BRDFs [73] . For the Lambertian case, similar results have been derived inde-

pendently by Basri and Jacobs [2].

6.1.2 Open Problems

Based on the taxonomy introduced in the previous subsection, we may identify a number of

open problems, some of which will be addressed in this chapter, and some of which identify

directions for future research. In this subsection, we identify some important classes of

open problems, discuss our contributions, and the questions that remain unanswered. In

the next subsection, we will give an overview of our new algorithms and important future

directions of work.

(Textured) BRDF estimation under complex illumination: The inverse-BRDF prob-

lem remains largely unexplored for general complex illumination, as does estimation of

textured BRDFs, although considerable progress has been made for specific models of

skylight illumination [50, 76, 90]. We address this question for parametric BRDF models,

using a small number of views. An important future direction is estimating factored or

measured BRDF representations.

Factorization of Lighting and BRDF: Simultaneous determination of BRDFs and light-

ing under complex uncontrolled illumination for complex geometric surfaces has not been

fully addressed. One of the main practical contributions of this chapter is one solution to

this problem for curved surfaces, allowing us to estimate parametric BRDFs under general

unknown illumination, while also determining the lighting, from a small number of in-

put photographs. Estimation of higher-dimensional or measured BRDFs remains an open

problem.
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Factorization of lighting/BRDF/texture: We have already discussed how factoring light-

ing and texture (and consequently determining lighting, BRDFs and texture simultane-

ously) is an ill-posed problem. However, it is possible to make statistical assumptions or

assume one or more quantities may be represented by a low-parameter function. A full

exploration of these ideas is a subject of future work.

Single-view estimation of lighting and BRDF: While a number of inverse rendering

problems can be solved using a 2D slice of the reflected light field, there has been rela-

tively less work on single view modeling of reflectance and lighting properties. Boivin

and Gagalowicz [6] take a first step, including interreflections, with known lighting from

a small number of point sources. There has also recently been considerable interest in

single-view geometric modeling [65, 92], and single-view reflectance modeling is a natural

extension.

Frequency domain and hybrid angular and frequency space algorithms: Most pre-

vious work has used spatial or angular domain method. By using methods based on our

signal-processing framework [73], we can develop new frequency-space and hybrid an-

gular and frequency-domain representations and methods. We demonstrate the improved

quality of these new approaches.

Our practical contributions include five algorithms for BRDF and lighting estimation

under complex illumination. We present two types of methods—algorithms that recover co-

efficients of a purely frequency-space description of the lighting or BRDF by representing

these quantities as a sum of spherical harmonic terms, and algorithms that estimate param-

eters corresponding to a new dual angular and frequency-space representation introduced

later in this chapter.

It should be noted that a number of the open problems discussed above remain unan-

swered in this chapter, and are directions for future investigation. Specifically, estimation

of factored and full measured BRDF representations under complex illumination remains

an open problem, under both known and unknown lighting. Single view estimation and

modeling of reflectance and illumination also remains an open problem, as does the use of
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statistical and other assumptions for a full factorization into lighting, BRDF and texture.

6.2 Preliminaries

The input to our algorithms consists of object geometry (acquired using a laser range scan-

ner and a volumetric merging algorithm [13]) and photographs from a number of different

viewing directions, with known extrinsic and intrinsic camera parameters. We assume static

scenes, i.e. that the object remains stationary and the lighting remains the same between

views. Our method is a passive-vision approach; we do not actively disturb the environ-

ment. In this chapter, we will also assume the illumination comes from distant sources, as

we have been doing throughout this dissertation, and is a function only of the global inci-

dent direction, which can be represented with an environment map. For simplicity, we will

restrict ourselves to isotropic BRDFs and neglect the effects of interreflection. Our theo-

retical analysis also discounts self-shadowing for concave surfaces, although our practical

algorithms will account for it where necessary. Our assumptions (known geometry, distant

illumination, isotropic BRDFs and no interreflections) are commonly made in computer

vision and interactive computer graphics.

In the theoretical part of this dissertation, in chapters 2 and 3, we have developed a

signal-processing framework for reflection based on the assumptions outlined above, ig-

noring concavities and self-shadowing. Thus, the reflected light field can be expressed as a

spherical convolution of the incident illumination and the BRDF, and expressed as a prod-

uct of spherical harmonic coefficients of the lighting and BRDF. This allows us to view

inverse rendering as deconvolution, or as a factorization of the reflected light field into the

lighting and BRDF. Our analysis also allows us to formally determine which inverse prob-

lems are ill-conditioned or ill-posed versus well-conditioned and well-posed. In particular,

we may view the incident lighting as a signal and the BRDF as a filter, so inverse prob-

lems are ill-posed when certain modes in the signal or filter vanish. For instance, we may

formally say that determining the surface roughness on a cloudy day is ill-posed since the

incident illumination does not include high frequencies, and the high frequencies of the

BRDF cannot therefore be estimated.

Our theory leads to several new insights by reformulating reflection in the frequency
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domain. However, the frequency-space ideas must be put into practice carefully. This

is analogous to practical implementation of the Fourier-space theory of aliasing. The ideal

Fourier-space bandpass filter in the spatial domain, the sinc function, is usually modified for

practical purposes because it has infinite extent and leads to ringing. Similarly, representing

BRDFs purely as a linear combination of spherical harmonics leads to ringing. Moreover,

it is difficult to compute Fourier spectra from sparse irregularly sampled data. Similarly,

it is difficult to compute the reflected light field coefficients from a few photographs; we

would require a very large number of input images, densely sampling the entire sphere of

possible directions.

Here, we consider the implications of the theoretical analysis for practical inverse ren-

dering algorithms. We first briefly discuss a number of practical implications of the theory.

We then use these ideas to derive a simple practical model of the reflected light field for the

microfacet BRDF. A similar form can be derived for other common BRDFs like the Phong

reflection model. This representation will be used extensively in the practical algorithms of

section 6.4.

6.2.1 Practical implications of theory

We now discuss a number of ideas and quantitative results obtained from the theory that

influence our practical representations.

Dual Angular and Frequency-Space Representations: Quantities local in angular space

have broad frequency spectra and vice-versa. By developing a frequency-space view of

reflection, we ensure that we can use either the angular-space or frequency-space represen-

tation, or even a combination of the two. The diffuse BRDF component is slowly varying

in angular-space, but is local in frequency-space, while the specular BRDF component is

local in the angular domain. For representing the lighting, the frequency-space view is ap-

propriate for the diffuse BRDF component, while the angular-space view is appropriate for

the specular component.

Irradiance formula: For the Lambertian BRDF component, we have derived [72] a sim-

ple analytic formula, and have shown that the irradiance at all surface orientations can
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be approximated to within 1% using only 9 parameters, i.e. coefficients of spherical har-

monics up to order 2. Thus, it makes sense to apply this simple formula where possible,

representing the diffuse component of the reflected light field in the frequency domain.

Associativity of convolution: Because the coefficients of the reflected light field in the

frequency domain are simply a product of the spherical harmonic coefficients of the in-

cident illumination and the BRDF, we may apply the associativity of convolution. Thus,

we can blur the illumination and sharpen the BRDF without changing the final results. In

the extreme case, for specular models like the Phong BRDF, we may treat the BRDF as

a mirror, while blurring the illumination, convolving it with the BRDF filter. Within the

context of environment map rendering [22, 59], this is known as prefiltering. Besides in-

creased efficiency, this approach also allows for very efficient approximate computation of

shadows. One need simply check the reflected ray, as if the surface were a mirror, which is

a simple operation in a raytracer.

Separation of slow and fast-varying lighting: In general, because the lighting and

BRDF are not one-dimensional quantities, applying the associativity property above de-

stroys the symmetries and reciprocity of the BRDF, so we cannot simply blur the illumi-

nation and treat the BRDF as a perfect mirror. However, for radially symmetric specular

BRDFs, like the Phong model, where the BRDF depends only on the angle between the

incident illumination and the reflection of the viewing direction about the surface normal,

this is a valid operation. Therefore, we separate the illumination into slow and fast-varying

components, corresponding to area sources and point sources. It can be shown that for

low-frequency lighting, models like the microfacet BRDF (Torrance-Sparrow [84] model)

behave much like a Phong model (the dominant term is Phong-like reflection), so that we

may blur the illumination and treat the BRDF as a mirror. Furthermore, the largest er-

rors in this approximation occur for grazing angles, where measurements are accorded low

confidence in practical applications anyway. The fast-varying lighting components may

be treated as point sources, which makes it easy to find angular-space formulae for the

reflected light field.

It should be noted that the theoretical analysis is conducted without taking concavities
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into account. We will derive our representation in the next section under the convex-surface

assumption. However, we will also show there how the representation can be simply ex-

tended to account for textured objects and cast shadows.

6.3 Dual angular and frequency-space representation

In a sense, the practical implications discussed above simply formalize a reflection model

commonly used when rendering with environment maps. In that context, the BRDF is

assumed to be a combination of Lambertian diffuse and Phong specular reflection. The

reflected light is then the combination of a diffuse irradiance map due to the Lambertian

BRDF component and a specular reflection map due to the specular Phong lobe. Our the-

oretical analysis allows for two practical improvements to be made. Firstly, the irradiance

map can be represented using only 9 parameters in the frequency domain, which makes

computations more efficient and compact. Secondly, we may use a single angular-space

reflection map as a good approximation for the specular reflections, even for more com-

plex physically-based BRDFs like the microfacet model [84], provided we first separate

the lighting into slow and fast-varying components.

In this chapter, we will use a simplified Torrance-Sparrow [84] model, defined as fol-

lows. Please note that to simplify the notation, we use �ω′
i and �ω′

o to denote the (unit vector)

incident (θ′i, φ
′
i) and outgoing (θ′o, φ

′
o) directions,

ρ(�ω′
i, �ω

′
o) = Kd +Ks

FS

4 cos θ′i cos θ′o

�ω′
h =

�ω′
i + �ω′

o

‖ �ω′
i + �ω′

o ‖

F =
F (µ, θo)

F (µ, 0)

S =
1

πσ2
exp

[
− (θ′h/σ)

2
]
. (6.2)

Here, ρ is the BRDF, and σ is the surface roughness parameter. The subscript h stands for

the half-way vector. F (µ, θ′o) is the Fresnel term for refractive index µ; we normalize it

to be 1 at normal exitance. Actually, F depends on the angle with respect to the half-way
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vector; in practice, this angle is usually very close to θ′o. For simplicity in the analysis,

we have omitted the geometric attenuation factor G. In practice, this omission is not very

significant except for observations made at grazing angles, which are usually assigned low

confidence anyway in practical applications.

6.3.1 Model for reflected light field

Our model for the reflected light from the microfacet BRDF now includes three terms,

B = Bd +Bs,slow +Bs,fast. (6.3)

Here, B is the net reflected light field. The component because of the diffuse part in the

BRDF is denotedBd. Bs,slow represents specularities from the slowly-varying lighting, and

Bs,fast specular highlights from the fast varying lighting component.

We may represent and compute Bd in the frequency domain by using the irradiance

formula (which corresponds directly to the reflection from a Lambertian surface). We use

the 9 parameter representation, explicitly noting the frequency l ≤ 2,

Bd = KdE(α, β)

E(α, β) =
2∑

l=0


ρ̂l

+l∑
m=−l

LlmYlm(α, β)


 . (6.4)

Here, E is the irradiance, and Kd is the albedo or coefficient for diffuse reflection. The

surface is parameterized by its orientation or surface normal in spherical coordinates (α, β).

The spherical harmonics are denoted by Ylm, and the spherical harmonic coefficients of the

lighting by Llm. The numerical values of ρ̂l are given by

ρ̂0 = π ρ̂1 = 2π/3 ρ̂2 = π/4. (6.5)

For Bs,slow, we filter the lighting, and treat the BRDF as a mirror. With �R denoting the

reflected direction, and Lslow the filtered version of the lighting, we obtain

Bs,slow = KsF (µ, θ′o)Lslow(�R). (6.6)
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The filtered version of the illumination Lslow is obtained by multiplying the illumination

coefficients by those of a filter corresponding to the term S in the microfacet BRDF of

equation 6.2, i.e.

Lslow
lm = exp

[
− (σl)2

]
Llm. (6.7)

In the angular domain, this corresponds to convolving with a filter of angular width approx-

imately σ−1, or using a normalized Phong lobe with Phong exponent 1
2
σ−2.

For the fast varying portion of the lighting—corresponding to sources of angular width

� σ—we treat the total energy of the source, given by an integral over the (small) solid

angle subtended, as located at its center, so the lighting is a delta function. Bs,fast is given

by the standard equation for the specular highlight from a directional source. The extra

factor of 4 cos θ′o in the denominator as compared to equation 6.6 comes from the relation

between differential microfacet and global solid angles,

Bs,fast =
KsF (µ, θ′o)

4 cos θ′o

∑
j

Tj

Tj = exp
[
− (θ′h/σ)

2
] (
Lj,fast

πσ2

)
. (6.8)

The subscript j denotes a particular directional source; there could be several. Note that

Lj,fast is now the total energy of the source.

For BRDF estimation, it is convenient to expand out these equations, making depen-

dence on the BRDF parameters explicit,

B = Kd

2∑
l=0


ρ̂l

+l∑
m=−l

LlmYlm(α, β)


 +KsF (µ, θ′o)


Lslow(�R) +

1

4 cos θ′o

∑
j

Tj(σ)


 .
(6.9)

6.3.2 Textures and shadowing

We now show how to extend our representation to account for object textures and self-

shadowing on complex concave geometry. The representation can be extended to textured

surfaces simply by letting the BRDF parameters (such as Kd and Ks) be functions of sur-

face location. It would appear that concave regions, where one part of the surface may
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shadow another, are a more serious problem since our theory is developed for convex ob-

jects and assumes no self-shadowing. However, in the remainder of this section, we will see

that the extensions necessary mainly just involve checking for shadowing of the reflected

ray and directional sources, which are routine operations in a raytracer.

We consider each of the three terms in our model of the reflected light field. In the

presence of shadows, the 9 parameter model can no longer be used to directly computeBd.

Instead, the irradiance may be computed in the more conventional angular-space way by

integrating the scene lighting while considering visibility. Alternatively, we can continue

to use a spherical harmonic approximation, making use of the linearity of light transport.

Note that the irradiance can still be written as a linear combination of lighting coefficients.

Thus, we may replace equation 6.4 by

Bd = KdE(�x)

E(�x) =
lmax∑
l=0

+l∑
m=−l

LlmỸlm(�x). (6.10)

Here, we have increased the maximum frequency from 2 to lmax, where lmax can be larger

than 2. Further, we have replaced the spherical harmonics with Ỹlm. Ỹlm is the effect of

the illumination spherical harmonic Ylm. Since this effect now depends on the specific

shadowing patterns, we have replaced the surface normal (α, β) with the position �x. For

convex objects, as per equation 6.4, Ỹlm(�x) = ρ̂lYlm(α, β).

For the specular components of the reflected light field, we simply check if the reflected

ray (for the “slow” component) or the point sources (for the “fast” component) are shad-

owed. The main benefit is for slow specularities, where instead of a complex integration

including visibility, the effects of shadowing are approximated simply by checking the re-

flected ray. It should be emphasized that in all cases, the corrections for visibility depend

only on object geometry and viewing configuration (to determine the reflected direction),

and can be precomputed for each point on the object using a ray tracer. Thus, we may

replace equation 6.6 by

Bs,slow = KsF (µ, θ′o)Lslow(�R)V (�R). (6.11)
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where V is a binary value specifying if the reflected ray is unshadowed. Similarly, a vis-

ibility term needs to multiply Tj in equation 6.8. Putting it all together, and including the

effects of textures, by making the diffuse and specular reflectances function of position �x,

equation 6.9 becomes

B = Kd(�x)
lmax∑
l=0

+l∑
m=−l

LlmỸlm(�x)+Ks(�x)F (µ, θ′o)


V (�R)Lslow(�R) +

1

4 cos θ′o

∑
j

VjTj(σ)


 .

(6.12)

6.4 Algorithms

This section presents our practical algorithms for a broad range of inverse rendering prob-

lems under complex illumination, with simple illustrations using spheres of different ma-

terials. Our results using more complex geometric objects are presented in the next sec-

tion. We describe two types of methods—algorithms that recover coefficients of a purely

frequency-space description of the lighting or BRDF by representing these quantities as a

sum of spherical harmonic terms, and algorithms that estimate parameters corresponding

to our dual angular and frequency-space model of section 6.3. Section 6.4.2 on BRDF

estimation discusses direct recovery of spherical harmonic BRDF coefficients, as well as

estimation of parametric microfacet BRDFs using equations 6.9 and 6.12. Similarly, sec-

tion 6.4.3 demonstrates direct recovery of spherical harmonic lighting coefficients, as well

as estimation of a dual angular and frequency-space lighting description as per the model

of section 6.2. Finally, section 6.4.4 shows how to combine BRDF and lighting estimation

techniques to simultaneously recover the lighting and BRDF parameters, when both are

unknown. In this case, we do not show direct recovery of spherical harmonic coefficients,

as we have thus far found this to be impractical.
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6.4.1 Data Acquisition

To experimentally test our methods, we first used homogeneous spheres1 of different ma-

terials. Spheres are naturally parameterized with spherical coordinates, and therefore cor-

respond directly to our theory. Later, we also used complex objects—the next section

demonstrates results using a white cat sculpture, and a textured wooden doll—to show the

generality of our methods.

We used a mechanical gantry to position an inward-looking Toshiba IK-TU40A CCD(x3)

camera on an arc of radius 60cm. Calibration of intrinsics was done by the method of

Zhang [93]. Since the camera position was computer-controlled, extrinsics were known.

The mapping between pixel and radiance values was also calibrated. We acquired 60 im-

ages of the target sphere, taken at 3 degree intervals on a great-circle (or equatorial) arc.

A schematic and photograph of our setup are in figure 6.1. To map from image pixels to

OBJECT POINT SOURCE

CAMERA PATHAREA SOURCE

OBJECT
POINT
SOURCE

CAMERA

AREA
SOURCE

Figure 6.1: Left: Schematic of experimental setup Right: Photograph

angular coordinates (α, β, φ′o, φ
′
o), we used image silhouettes to find the geometric location

of the center of the sphere and its radius.

Our gantry also positioned a 150W white fiberoptic point source along an arc. Since

this arc radius (90 cm) was much larger than the sphere radii (between 1.25 and 2cm), we

treated the point source as a directional light. A large area source, with 99% of its energy in

low-frequency modes of order l ≤ 6, was obtained by projecting white light on a projection

screen. The lighting distribution was determined using a mirror sphere. This information

was used directly for experiments assuming known illumination, and as a reference solution

for experiments assuming unknown illumination.

We also used the same experimental setup, but with only the point source, to measure

1Ordered from the McMaster-Carr catalog http://www.mcmaster.com
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the BRDF of a white teflon sphere using the image-based method of Marschner et al. [55].

This independent measurement was used to verify the accuracy of our BRDF estimation

algorithms under complex illumination.

6.4.2 Inverse BRDF with known lighting

Estimation of Spherical Harmonic BRDF coefficients: Spherical harmonics and Zernike

polynomials have been fit [43] to measured BRDF data, but previous work has not tried to

estimate coefficients directly. Since the BRDF is linear in the coefficients ρ̂lpq, we simply

solve a linear system to determine ρ̂lpq, to minimize the RMS error with respect to image

observations2. It should be noted that in so doing, we are effectively interpolating (and

extrapolating) the reflected light field to the entire 4D space, from a limited number of

images.

Figure 6.2 compares the parametric BRDFs estimated under complex lighting to BRDFs

measured using a single point source with the method of Marschner et al. [55]. As ex-

pected [43], the recovered BRDFs exhibit ringing. One way to reduce ringing is to atten-

uate high-frequency coefficients. According to our theory, this is equivalent to using low

frequency lighting. Therefore, as seen in figure 6.2, images rendered with low-frequency

lighting do not exhibit ringing and closely match real photographs, since only the low-

frequency components of the BRDF are important. However, images rendered using direc-

tional sources show significant ringing.

For practical applications, it is usually more convenient to recover low-parameter BRDF

models since these are compact, can be estimated from relatively fewer observations, and

do not exhibit ringing. In the rest of this section, we will derive improved inverse rendering

algorithms, assuming a parametric microfacet BRDF model.

Estimation of parametric BRDF model: We estimate BRDF parameters under general

known lighting distributions using equation 6.9. The inputs are images that sample the

reflected light field B. We perform the estimation using nested procedures. In the outer

procedure, a simplex algorithm adjusts the nonlinear parameters µ and σ to minimize RMS

2Since the number of image pixels in a number of views can be very large, we randomly subsample the
data for computational simplicity. We have used 12000 randomly selected image pixels.
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Figure 6.2: Direct recovery of BRDF coefficients. Top: Slices of the BRDF transfer function
of a teflon sphere for fixed exitant angle of 63◦. φ′

o varies linearly from 0◦ to 90◦ from top to
bottom, and | φ′

o − φi | linearly from 0◦ to 360◦ from left to right. The central bright feature
is the specular highlight. Left is the BRDF slice independently measured using the approach of
Marschner et al. [55], middle is the recovered value using a maximum order 6, and right is the
recovered version for order 12. Ringing is apparent in both recovered BRDFs. The right version is
sharper, but exhibits more pronounced ringing. Bottom: Left is an actual photograph; the lighting
is low-frequency from a large area source. Middle is a rendering using the recovered BRDF for
order 6 and the same lighting. Since the lighting is low-frequency, only low-frequency components
of the BRDF are important, and the rendering appears very similar to the photograph even though
the recovered BRDF does not include frequencies higher than order 6. Right is a rendering with a
directional source at the viewpoint, and exhibits ringing.

error with respect to image pixels. In the inner procedure, a linear problem is solved for

Kd and Ks. For numerical work, we use the simplex method e04ccc and linear solvers

f01qcc and f01qdc in the NAG [25] C libraries. The main difference from previous

work is that equation 6.9 provides a principled way of accounting for all components of the

lighting and BRDF, allowing for the use of general illumination conditions.

We tested our algorithm on the spheres. Since the lighting includes high and low-

frequency components (a directional source and an area source), the theory predicts that

parameter estimation is well-conditioned. To validate our algorithm, we compared param-

eters recovered under complex lighting for one of the samples, a white teflon sphere, to

those obtained by fitting to the full BRDF separately measured by us using the method of
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Marschner et al. [55]. Unlike most previous work on BRDF estimation, we consider the

Fresnel term. It should be noted that accurate estimates for the refractive index µ require

correct noise-free measurements at grazing angles. Since these measurements tend to be

the most error-prone, there will be small errors in the estimated values of µ for some ma-

terials. Nevertheless, we find the Fresnel term important for reproducing accurate specular

highlights at oblique angles. It should also be noted that while the results are quite accurate,

there is still potential for future work on appropriate error metrics, especially for estimation

of the roughness σ; a linear RMS error may not always be optimal.

Parameter Our Method Fit to Data
Reflectance 0.86 0.87

Kd/(Kd +Ks) 0.89 0.91
Ks/(Kd +Ks) 0.11 0.09

µ 1.78 1.85
σ 0.12 0.13

RMS 9.3% 8.5%

Figure 6.3: Comparison of BRDF parameters recovered by our algorithm under complex lighting
to those fit to measurements made by the method of Marschner et al. [55].

The results in figure 6.3 show that the estimates of BRDF parameters from our method

are quite accurate, and there is only a small increase in the error-of-fit when using parame-

ters recovered by our algorithm to fit the measured BRDF. We also determined percentage

RMS errors between images rendered using recovered BRDFs and real photographs to be

between 5 and 10%. A visual comparison is shown in the first and third rows of figure 6.8.

All these results indicate that, as expected theoretically, we can accurately estimate BRDFs

even under complex lighting.

Textured objects with complex geometry: Handling concavities in complex geomet-

ric objects is not significantly more difficult, since we simply need to take visibility into

account, and use equation 6.12 instead of equation 6.9. Equation 6.12 can also be used

directly to estimate textured BRDFs. However, there are a number of subtle differences

from direct BRDF estimation, which are noted below.

In considering textured surfaces, we essentially wish to consider each point on the
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surface separately, estimating a BRDF for each point independently from observations of

that point alone. However, we now have only a few observations for each point (the number

of images used). If there were no image noise, and our simplified four parameter microfacet

model were a perfectly accurate description of the surface, this would still be sufficient.

However, in practice, we are not able to reliably estimate the nonlinear parameters from

such sparse data. This is true even for point source illumination, and has been observed

by many authors. In our case, since we have complex illumination, the problem is even

harder. Therefore, like much previous work, we assume the nonlinear parameters σ and

µ are constant across the surface. A weaker assumption would be to allow them to vary

slowly, or break the surface into regions of constant µ and σ.

Therefore, we will solve for the global nonlinear parameters σ and µ, as well as the

diffuse and specular textures, Kd(�x) and Ks(�x). The corresponding radiance values for

each image observation can be written as

B = Kd(�x)D +Ks(�x)S(µ, σ), (6.13)

whereD andS stand for the diffuse and specular components computed from equation 6.12.

These depend only on the lighting and viewing configuration, and S also depends on the

nonlinear parameters µ and σ. It should be noted that much previous work has assumed

constant values for the specular coefficient. The reason is that specularities are not usu-

ally observed over the whole object surface. By using complex illumination, we alleviate

this problem somewhat, since large regions of the object can exhibit specularity in a single

image. Nevertheless, there might be dimly lit regions or places where no specularities are

observed in a sequence of views, and we will not be able to estimate coefficients in these

regions. Therefore, we introduce confidence measures to enscapsulate the importance of

each observation,

Wd =
D cos θ′o
ε+ S

Ws = S cos θ′o. (6.14)



156 CHAPTER 6. INVERSE RENDERING UNDER COMPLEX ILLUMINATION

Here,Wd andWs are the confidence parameters for diffuse and specular reflection respec-

tively. The multiplication by cos θ′o is to give less weight to observations made at grazing

exitant angles. ε is a small constant to avoid divisions by 0. In the diffuse weight Wd, we

give greater importance to well illuminated pixels (high values of D) without too much

specularity. In the specular weight Ws, we give importance to pixels observing strong

specular reflections S.

Parameter estimation now proceeds much as BRDF estimation for untextured surfaces.

Initially, we solve for values of the nonlinear parameters µ and σ using a simplex algorithm

(outer loop). To account for regions where specularity is not strongly observed, in this

phase, we include Ks as a global parameter to be solved for. In the inner loop of the

procedure, we solve (at each point separately) for Kd(�x) to minimize the RMS error over

all views. The output from this stage are parameters Ks, µ and σ, as well as an initial

estimate of the diffuse texture Kd(�x). We use these global values of µ and σ. The global

estimated value of Ks will be used in regions where a better estimate is not possible, but

will in general be refined. In this first pass of the algorithm, we weight each observation

using the confidence weightWd.

We then use an iterative scheme to refine the estimates of Ks and Kd. While we could

simply solve a linear system, corresponding to equation 6.13, for each vertex on the object,

we have obtained better results using an iterative scheme, alternatively solving for Kd(�x)

and Ks(�x) while keeping the other fixed. Since we use the dielectric model, Ks has no

color, and we recover 4 linear texture parameters for each pixel (a diffuse RGB color and

a specular coefficient). It should be noted that different confidence weights (Wd or Ws)

are used in the iteration, depending on whether we are estimating the diffuse or specular

component of the texture. We start by using a constant value of Ks, and the corresponding

value of Kd(�x) recovered in the first phase, where we solved for µ and σ. We then hold

Kd(�x) fixed and solve for Ks(�x). Thereafter, we hold Ks(�x) fixed and solve for Kd(�x),

and repeat this process till convergence to the desired tolerance, which usually takes a few

iterations.

There can of course be cases where
∑
Ws or

∑
Wd (the summation is over all views of

that point) are too low (numerically zero) to accurately estimate specular or diffuse textures

respectively. This corresponds to not observing specularities (when
∑
Ws is close to 0), or
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having the point being so dimly lit that the texture isn’t discernible (when
∑
Wd is close

to 0). In the former case, we simply use the mean value of the specular texture, while in

the latter case, we mark the diffuse texture estimate as unreliable. It should be noted that

using complex illumination greatly reduces the number of points where this is an issue,

since much more of the object receives illumination and exhibits specularities than with a

point light source.

6.4.3 Inverse Lighting with Known BRDF

Previous methods for estimating the lighting have been developed only for the special cases

of mirror BRDFs (a gazing sphere), Lambertian BRDFs (Marschner and Greenberg [54]),

and when shadows are present (Sato et al. [75]). Previous methods [54, 75] have also re-

quired regularization using penalty terms with user-specified weights, and have been lim-

ited by the computational complexity of their formulations to a coarse discretization of the

sphere. We present two new algorithms for curved surfaces with general BRDFs. The

first method directly recovers spherical harmonic lighting coefficients Llm. The second

algorithm estimates parameters of the dual angular and frequency-space lighting model of

section 6.2. This method requires no explicit regularization, and yields high-resolution re-

sults that are sharper than those from the first algorithm, but is more difficult to extend to

concave surfaces.

The theory tells us that inverse lighting is ill-conditioned for high-frequencies. There-

fore, we will recover only low-frequency continuous lighting distributions, and will not

explicitly account for directional sources, i.e. we assume that Bs,fast = 0. The reflected

light field is essentially independent of the surface roughness σ under these conditions, so

our algorithms do not explicitly use σ. The theory predicts that the recovered illumination

will be a filtered version of the real lighting. Directional sources will appear as filtered into

continuous distributions of angular width approximately σ.

Estimation of Spherical Harmonic Lighting coefficients: We may represent the light-

ing entirely in frequency-space by coefficients Llm with l ≤ l∗, and solve a linear least-

squares system for Llm. The first term in parentheses below corresponds to Bd, and the
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second to Bs,slow. The cutoff l∗ is used for regularization, and should be of order l∗ ∼ σ−1.

Since most materials have σ ∼ .1, we use l∗ = 12,

B =
l∗∑

l=0

l∑
m=−l

Llm (Kdρ̂lYlm(α, β) +KsFYlm(θR, φR)) . (6.15)

To extend this to concave surfaces, we simply need to add terms corresponding to visi-

bility and shadowing, following equation 6.12, but the problem remains a linear system,

B =
l∗∑

l=0

l∑
m=−l

Llm

(
KdỸlm(�x) +KsFV (θR, φR)Ylm(θR, φR)

)
. (6.16)

Estimation of Parametric Dual Lighting Model: Another approach is to estimate the

dual angular and frequency-space lighting model of section 6.2. Our algorithm is based

on subtracting out the diffuse component Bd of the reflected light field. After this, we

treat the object as a mirror sphere, recovering a high-resolution angular-space version of

the illumination from the specular component alone. To determine Bd, we need only the

9 lowest frequency-space coefficients Llm with l ≤ 2. Our algorithm uses the following

methods to convert between angular and frequency-space:

1. 9 parameters to High-Resolution Lighting: The inputs to phase 1 are the coef-

ficients L1
lm. These suffice to find B1

d by equation 6.4. Since we assumed that

Bs,fast = 0,

Bs,slow = KsF (µ, θ′o)Lslow(�R) = B −B1
d(L

1
lm)

Lslow(�R) =
B −B1

d(L
1
lm)

KsF (µ, θ′o)
. (6.17)

We assume the BRDF parameters are known, and B is the input to the algorithm, so

the right-hand side can be evaluated.

In practice, we will have several observations corresponding to the reflected direc-

tion, and these will be weighted by the appropriate confidence and combined. For
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Figure 6.4: Estimation of dual lighting representation. In phase 1, we use frequency-space
parameters L1

lm to compute diffuse component B1
d . This is subtracted from the input image, leaving

the specular component, from which the angular-space lighting is found. In phase 2, we compute
coefficients L2

lm, which can be used to determine B2
d . The consistency condition is that B1

d = B2
d or

L1
lm = L2

lm. In this and all subsequent figures, the lighting is visualized by unwrapping the sphere
so θ ranges in equal increments from 0 to π from top to bottom, and φ ranges in equal increments
from 0 to 2π from left to right (so the image wraps around in the horizontal direction).

simplicity, the rest of the mathematical discussion will assume without loss of gen-

erality, that there is a single image observation for each reflected direction.

2. High-Resolution Lighting to 9 parameters: Using the angular space values L

found from the first phase, we can easily find the 9 frequency-space parameters of

the lighting L2
lm.

Now, assume we run phase 1 (with inputs L1
lm) and phase 2 (with outputs L2

lm) sequentially.

The consistency condition is that L1
lm = L2

lm—converting from frequency to angular to fre-

quency space must not change the result. Equivalently, the computed diffuse components

must match, i.e. B1
d(L

1
lm) = B2

d(L
2
lm). This is illustrated in figure 6.4. Since everything

is linear in terms of the lighting coefficients, the consistency condition reduces to a sys-

tem of 9 simultaneous equations. After solving for Llm, we run phase 1 to determine the

high-resolution lighting in angular space.

More formally, phase 1 can be written as a linear system in terms of constants U and

Wlm, with (α, β) the coordinates of the surface normal,
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Lslow(θR, φR) = U(θR, φR) −
2∑

l=0

l∑
m=−l

Wlm(θR, φR)L1
lm

U(θR, φR) =
B

KsF (µ, θ′o)

Wlm(θR, φR) =
Kdρ̂lYlm(α, β)

KsF (µ, θ′o)
. (6.18)

Phase 2 to compute the lighting coefficients can also be written as a linear expression

in terms of all the (discretized) reflected directions,

L2
lm =

2π2

N2

N∑
i=1

N∑
j=1

sin θiLslow(θi, φj)Y
∗
lm(θi, φj). (6.19)

Here, N is the angular resolution, with the summation being a discrete version of the inte-

gral to find lighting coefficients.

But, the summation on the right hand side can be written in terms of lighting coefficients

L1
lm, simply by plugging in the formula for Lslow. We now obtain

L2
lm =

2π2

N2

N∑
i=1

N∑
j=1

sin θi


U(θi, φj) −

2∑
l′=0

l′∑
m′=−l′

Wl′m′(θi, φj)L
1
l′m′


Y ∗

lm(θi, φj). (6.20)

Mathematically, the consistency condition allows us to drop the superscripts, reducing

the above to a linear system forLlm. This will involve a simple 9×9 linear system expressed

in terms of a matrix Ql′m′,lm,

2∑
l′=0

l′∑
m′=−l′

Qlm,l′m′Ll′m′ = Plm

Plm =
2π2

N2

N∑
i=1

N∑
j=1

sin θi U(θi, φj)Y
∗
lm(θi, φj) (6.21)

Qlm,l′,m′ = δlm,l′m′ +
2π2

N2

N∑
i=1

N∑
j=1

sin θiWl′m′(θi, φj)Y
∗
lm(θi, φj).
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The summations are just discrete versions of integrals that determine the appropriate

spherical harmonic coefficients. The above equation has a very intuitive explanation. It

may be derived direction from equation 6.9, considering the linear system that results for

the first 9 lighting terms. The key idea is that we have reparameterized by the reflection

vector, so we may simply take the first 9 coefficients of the reflected light field. The formula

for the irradiance becomes more complicated (because of the reparameterization) but can

still be expressed in terms of the first 9 lighting coefficients. Mathematically, we can rewrite

equation 6.9 for our purposes as

B(θR, φR) = Kd

2∑
l′=0

l′∑
m′=−l′

ρ̂l′Ll′m′Yl′m′(α, β) +KsF (µ, θ′o)Lslow(θR, φR). (6.22)

Here, we have simply parameterized the reflected light field by the reflected direction

(θR, φR). Remember that for simplicity, we’re assuming a single image, i.e. one value

of (α, β) corresponding to each (θR, φR), with (α, β) a function of (θR, φR). With multiple

images, we would have to weight contributions appropriately.

Now, it’s a simple enough matter to compute coefficients obtaining

Blm = Kd

∑
l′,m′

ρ̂l′Ll′m′ 〈Y ∗
lm(θR, φR), Yl′m′(α, β)〉 +KsF (µ, θ′o)Llm. (6.23)

Here, we have used the notation< ·, · > for the integral or inner product over the spherical

domain of integration. This is what is computed discretely in equation 6.22. It can now be

seen that equation 6.23 has the same form as equation 6.22. Note that in equation 6.23, we

have multiplied out the denominators, and we use Blm here instead of Plm.

This inverse lighting method is difficult to extend to concave surfaces, since the 9 pa-

rameter diffuse model is no longer entirely valid. It is a subject of future work to see if it

can be applied simply by increasing the number of parameters and the size of the matrix of

simultaneous equations to be solved.

Positive regularization: So far, we have not explicitly tried to ensure positivity of the

illumination. In practical applications, the methods above when applied naively will result

in negative values, especially where the illumination is dark, and there is uncertainty about



162 CHAPTER 6. INVERSE RENDERING UNDER COMPLEX ILLUMINATION

the precise value. Regularizing so the results are positive can also substantially improve

the quality of the results by reducing high-frequency noise centered close to the zero point

in dark regions.

We apply positive regularization to the unregularized solution from either of the previ-

ous two methods. For the first method (direct solution of linear system to determine lighting

coefficients), we simply add another term to the RMS error which penalizes negative re-

gions. While this method is a soft constraint and can still leave some negative regions,

we have observed that it works well in practice. We use a conjugate gradient method to

minimize

ν′ = ν + λ
(
ν0
κ0

)
κ. (6.24)

Here, ν is the RMS error corresponding to equation 6.15 or 6.16. κ is a new penalty term

added to penalize negative values of the lighting. ν0 and κ0 are initial values (for the unreg-

ularized solution), and λ weights the importance of the penalty term. λ is a dimensionless

quantity, and we have found experimentally that λ = 1 works well. The penalty term κ

is simply the sum of squares of all lighting pixels having negative values. Thus, negative

values are penalized, but no penalty is imposed for positive values.

For our second method (using a dual angular and frequency-space method to estimate

the lighting), regularization may be enforced (in step 1) simply by clamping Lslow to 0 if

the right hand side in the first line of equation 6.18 is negative. This must be taken into

account in the 9×9 simultaneous equations, and we solve the positivity enforced equations

with a conjugate gradient method, using as a starting guess the solution without enforced

positivity.

Comparison: Figure 6.5 compares the methods to each other, and to a reference solution

from a gazing sphere. Both algorithms give reasonably accurate results. As predicted by

the theory, high-frequency components are filtered by the roughness σ. In the first method,

involving direct recovery of Llm, there will still be some residual energy for l > l∗. Since

we regularize by not considering higher frequencies—we could increase l∗, but this makes

the result noisier—the recovered lighting is somewhat blurred compared to our dual angular

and frequency-space algorithm (second method). As expected, positive regularization in

algorithm 2 results in a smoother solution.
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Figure 6.5: Comparison of inverse lighting methods. From left to right, real lighting (from a
gazing sphere), recovered illumination by direct estimation of spherical harmonic coefficients with
l∗ = 12 and l∗ = 20, and estimation of dual angular and frequency-space lighting model. To make
the artifacts more apparent, we have set 0 to gray. The results from the dual algorithm are sharper,
but still somewhat blurred because of filtering by σ. A small amount of ringing occurs for direct
coefficient recovery, and can be seen for l∗ = 12. Using l∗ = 20 makes the solution very noisy.
Positive regularization (rightmost) gives a smoother solution.

6.4.4 Factorization—Unknown Lighting and BRDF

We can combine the inverse-BRDF and inverse-lighting methods to factor the reflected

light field, simultaneously recovering the lighting and BRDF when both are unknown.

Therefore, we are able to accurately recover BRDFs of curved surfaces under unknown

complex illumination, something which has not previously been demonstrated. There is

an unrecoverable global scale factor, so we set Kd + Ks = 1; we cannot find absolute

reflectance. Also, the theory predicts that for low-frequency lighting, estimation of the sur-

face roughness σ is ill-conditioned—blurring the lighting while sharpening the BRDF does

not significantly change the reflected light field. However, for high-frequency lighting, this

ambiguity can be removed. We will use a single manually specified directional source in

the recovered lighting distribution to estimate σ.

Algorithm: The algorithm consists of nested procedures. In the outer loop, we effec-

tively solve an inverse-BRDF problem—a nonlinear simplex algorithm adjusts the BRDF

parameters to minimize error with respect to image pixels. Since Kd +Ks = 1, and σ will

not be solved for till after the lighting and other BRDF parameters have been recovered,

there are only 2 free parameters, Ks and µ. In the inner procedure, a linear problem is

solved to estimate the lighting for a given set of BRDF parameters, using the methods of

the previous subsection. Pseudocode is given below.
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global Binput // Input images

globalKd,Ks,µ,σ // BRDF parameters

global L // Lighting

procedure Factor

Minimize(Ks,µ,ObjFun) // Simplex Method

σ = FindRoughness(L) // Figure 6.6, Equation 6.25

function ObjFun(Ks,µ)

Kd = 1 −Ks //Kd +Ks = 1

L = Lighting(Kd,Ks,µ) // Inverse Lighting

Bpred = Predict(L,Kd,Ks,µ) // Predicted Light Field

return RMS(Binput,Bpred) // RMS Error

Finding σ using a directional source: If a directional source is present—and manually

specified by us in the recovered lighting—we can estimate σ by equating specular com-

ponents predicted by equations 6.6 and 6.8 for the center, i.e. brightest point, of the light

source at normal exitance. An illustration is in figure 6.6,

Lcen ≈ Ltotal

4πσ2
. (6.25)

Color: We have so far ignored issues of color, assuming the three color channels are con-

sidered separately. However, in the case of BRDF recovery under unknown lighting, there

is a separate scale factor associated with each color channel. In order to obtain accurate

colors for the BRDF and lighting components, we need some way to relate these 3 scale

factors. For dielectrics, the specular component Ks is not spectrally sensitive, i.e. it is the

same for red,green, and blue channels. The recovered BRDFs are scaled in order to make

this hold. The issue is trickier for metals. There is a fundamental ambiguity between the

color of the BRDF and the color of the lighting. We resolve this by considering the average
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Figure 6.6: Determining surface roughness parameter σ. We manually specify (red box) the
region corresponding to the directional source in a visualization of the lighting. The algorithm then
determines Lcen, the intensity at the center (brightest point), Ltot, the total energy integrated over
the region specified by the red box, and computes σ using equation 6.25. The method does not
depend on the size of the red box—provided it encloses the entire (filtered) source—nor the precise
shape into which the source is filtered in the recovered lighting.

color of the metallic surface as corresponding to white light. The use of more sophisti-

cated color-space separation methods such as that of Klinker et al [42] might bring further

benefits.

Results: We used the method of this subsection—with the dual angular and frequency-

space algorithm for inverse lighting—to factor the light field for the spheres, simultane-

ously estimating the BRDF and lighting. The same setup and lighting were used for all the

spheres so we could compare the recovered illumination distributions.

We see from figure 6.7 that the BRDF estimates under unknown lighting are accurate.

Absolute errors are small, compared to parameters recovered under known lighting. The

only significant anomalies are the slightly low values for the refractive index µ—caused

because we cannot know the high-frequency lighting components, which are necessary for

more accurately estimating the Fresnel term. We are also able to estimate a filtered version

of the lighting. As shown in figure 6.8, the recovered lighting distributions from all the

samples are largely consistent. As predicted by the theory, the directional source is spread

out to different extents depending on how rough the surface is, i.e. the value of σ. Finally,

figure 6.8 shows that rendered images using the estimated lighting and BRDF are almost

indistinguishable from real photographs.
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Material Kd Ks µ σ
Known Unknown Known Unknown Known Unknown Known Unkn.

Teflon 0.89 0.87 0.11 0.13 1.78 1.48 0.12 0.14
Delrin 0.87 0.88 0.13 0.12 1.44 1.35 0.10 0.11
Neoprene Rubber 0.92 0.93 0.08 0.07 1.49 1.34 0.10 0.10
Sandblasted Steel 0.20 0.14 0.80 0.86 0.20 0.19
Bronze (.15,.08,.05) (.09,.07,.07) (.85,.68,.59) (.91,.69,.55) 0.12 0.10
Painted (.62,.71,.62) (.67,.75,.64) 0.29 0.25 1.38 1.15 0.15 0.15

Figure 6.7: BRDFs of various spheres, recovered under known (section 6.4.2) and unknown (sec-
tion 6.4.4) lighting. The reported values are normalized so Kd +Ks = 1. RGB values are reported
for colored objects. We see that Ks is much higher for the more specular metallic spheres, and
that σ is especially high for the rough sandblasted sphere. The Fresnel effect is very close to 1 for
metals, so we do not consider the Fresnel term for these spheres.

6.5 Results on Complex Geometric Objects

In the previous section, we presented our new algorithms for inverse rendering with com-

plex illumination, illustrating their performance using spheres of different materials. To

demonstrate the practical applicability of these methods, in this section, we report on two

experiments using complex geometric objects that include concavities and self-shadowing.

The previous section has already discussed, where appropriate, how the algorithms for

BRDF and lighting estimation can be extended to concave and textured surfaces.

Our first experiment uses a white cat sculpture of approximately uniform material prop-

erties to demonstrate BRDF estimation under known and unknown complex illumination.

This is the first demonstration of accurate BRDF estimation under complex unknown illu-

mination for geometrically complex objects. Geometry was acquired using a Cyberware

range scanner and aligned to the images by manually specifying correspondences. The

lighting was slightly more complex than that for the spheres experiment; we used a second

directional source in addition to the area source.

To show that we can recover BRDFs using a small number of images, we used only 3

input photographs. We recovered BRDFs under both known lighting, using the method of

section 6.4.2, and unknown lighting—using the factorization method of section 6.4.4, with

the inverse lighting component being direct recovery of spherical harmonic coefficients

using l∗ = 12. Comparisons of photographs and renderings are in figures 6.9 and 6.10.

BRDF and lighting parameters are tabulated in figure 6.11. This experiment indicates that

our methods for BRDF recovery under known and unknown lighting are consistent, and
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Lighting
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Figure 6.8: Spheres rendered using BRDFs estimated under known (section 6.4.2) and unknown
(section 6.4.4) lighting. The algorithm in section 6.4.4 also recovers the lighting. Since there is an
unknown global scale, we scale the recovered lighting distributions in order to compare them. The
recovered illumination is largely consistent between all samples, and is similar to a filtered version
of the real lighting. As predicted by the theory, the different roughnesses σ cause the directional
source to be spread out to different extents. The filtered source is slightly elongated or asymmetric
because the microfacet BRDF is not completely symmetric about the reflection vector.

are accurate even for complex lighting and geometry. The rendered images are very close

to the original photographs, even under viewing and lighting conditions not used for BRDF

recovery. The most prominent artifacts are because of imprecise geometric alignment and

insufficient geometric resolution. For instance, since our geometric model does not include

the eyelids of the cat, that feature is missing from the rendered images.
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Real Photograph Rendered Image

Figure 6.9: Comparison of photograph and rendered image for cat sculpture. Left: Photograph
Right: Rendered image. The BRDF used for the rendered image was estimated under complex
unknown illumination from 3 photographs of a cat sculpture with known geometry. Our algorithm
also recovered the lighting distribution, which consisted of two directional sources and an area
source. The images above show a new view not used in BRDF recovery; the lighting is also new,
being composed of a single directional source (with known direction) not used in BRDF estimation.
These images show that the recovered BRDF accurately predicts appearance even under novel
viewing and lighting conditions.

Textured BRDFs: Since the theory shows that factorization of lighting and texture is

ambiguous, we consider only recovery of textured BRDFs under known lighting, using the

method described at the end of section 6.4.2. As an experimental test, we used a wooden

doll. We compared the real input photographs with images rendered using the recovered

textured BRDF. We also took a photograph of the same object under a single directional

source—directional sources have all the high-frequency components, and therefore bring

out all the features of the BRDF filter—and compared this to a rendering using the textured

BRDF recovered under complex illumination. The results in figure 6.12 show that our ren-

derings closely resemble real photographs. The main artifact is blurring of texture because

of geometry-image misregistration. This is unrelated to the use of complex lighting, and is
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Figure 6.10: Comparison of photographs (middle column) to images rendered using BRDFs
recovered under known lighting (left column), and using BRDFs (and lighting) estimated under
unknown lighting (right column). The top row is one of the 3 input views. The bottom row is a
new view, not used for BRDF estimation. Note that in the top row, we have composited the left and
right renderings over the same background as the middle photograph in order to make a meaningful
comparison.

also noted by Sato et al. [77].

6.6 Conclusions and Future Work

This chapter has considered the problem of complex illumination in inverse rendering. The

use of realistic lighting and materials is likely to be of increasing importance in graphics

and vision, and inverse rendering to acquire real-world material properties is likely to be a

significant future direction. The use of natural lighting is becoming increasingly common
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Parameter Known Lighting Unknown Lighting
BRDF Parameters

Kd 0.88 0.90
Ks 0.12 0.10
µ 1.68 1.47
σ 0.12 0.14

Lighting Coefficients (l,m)
(l,m) = (0,0) 0.68 0.68

(1,-1) -0.06 -0.02
(1,0) -0.17 -0.15
(1,1) -0.02 -0.06

(2,-2) 0.10 0.04
(2,-1) 0.03 0.09
(2,0) -0.55 -0.51
(2,1) 0.30 0.28
(2,2) 0.84 0.88

Figure 6.11: BRDF and lighting parameters for the cat sculpture. We see good agreement between
BRDF parameter values recovered with known and unknown lighting, showing our methods are
consistent. Note that we normalize so Kd + Ks = 1. We may also check the accuracy of the
recovered lighting. Since there is an unknown global scale for the recovered values, we report
normalized lighting coefficient values for the first 9 spherical harmonic coefficients (in real form),
which are the most important, because they significantly affect the diffuse component of the BRDF.

in computer graphics and vision, and this chapter allows for inverse rendering techniques

to be applied in arbitrary uncontrolled conditions rather than a laboratory setting. Further-

more, in certain cases, complex illumination may help in solving inverse problems, such

as by allowing a much larger fraction of an image to exhibit specularity. Dror et al. [16]

have also shown that people perceive reflectance properties much more easily under natural

illumination.

This chapter first presents a taxonomy of inverse problems, identifying the many unex-

plored directions of work in solving inverse problems under complex illumination. We then

address some of these areas. The insights gained from our signal-processing framework for

reflection lead to a new practical representation. We can numerically represent quantities

in angular or frequency space, depending on where they are more local.

This leads to new algorithms which are often expressed in a combination of angular and
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Figure 6.12: Recovering textured BRDFs under complex lighting. The rendered images closely
resemble the real photographs, even under novel lighting.

frequency-space. We can determine which BRDF and lighting parameters are important,

and can handle the various components appropriately. For BRDF estimation, the paramet-

ric recovery algorithms of Yu and Malik [90], Sato and Ikeuchi [76], and Love [50]—which

are designed specifically for natural lighting—can be seen as special cases of this general

approach; they treat sunlight (high-frequency) and skylight (low-frequency) separately. We

provide a general framework for arbitrary illumination, and also determine conditions un-

der which parameter recovery is robust. For instance, our theory predicts that estimation

of σ is ill-conditioned on a cloudy day, with only low-frequency lighting. Our framework

can also be applied to developing new frequency-space algorithms to estimate the lighting

from objects with general BRDFs. The use of frequency-space naturally handles contin-

uous lighting distributions. Our dual angular and frequency-space algorithm effectively

reduces the problem for general BRDFs to that for a gazing sphere, requires no explicit

regularization, and allows much higher angular resolutions to be obtained than with previ-

ous purely angular-space methods [54, 75]. Finally, we demonstrate a method for factoring

the light field to simultaneously estimate the lighting and BRDF. This allows us to estimate

BRDFs of geometrically complex objects under unknown general lighting, which has not
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previously been demonstrated.

Our results presented here do contain a number of limitations. The examples presented

here, while intended to show the proof of concept, have relatively simple lighting config-

urations. In the future, we would like to apply the methods of this chapter under more

complex outdoor and indoor illumination conditions. The BRDF model used by us is also

a relatively simple microfacet model. As noted, we have observed a number of difficulties

using a more general model based on spherical harmonic coefficients. In terms of algorith-

mic issues, we do not currently handle interreflections. We believe that in the future, they

could be addressed by an iterative method in a manner similar to that of Yu et al. [89]. We

have also presented results using only a single object and relatively distant illumination.

In the future, we wish to extend our results to entire scenes and possibly near-field illumi-

nation, as in the work of Boivin and Gagalowicz [6] or Yu et al. [89], thereby extending

those methods to complex illumination conditions. Finally, it should be pointed out that the

results obtained by us are not completely faithful to the original objects, which indicates

that further work is required on relaxing many of the assumptions made by us.

Note that the techniques presented in this chapter are only the first step in solving in-

verse problems under complex illumination. A number of the open problems identified in

our taxonomy remain subjects for future work. There has been relatively little work on

BRDFs in between low-parameter models and full measured representations. It is not clear

what the best way to measure factored or separable BRDF representations is, or how to

estimate these or higher-dimensional representations under complex illumination. We have

not considered statistical properties of the illumination, that may allow us to simultane-

ously determine the lighting, BRDF and texture. All of our examples use a small number

of images, and an interesting future direction is whether a single image suffices. We also

believe there are more insights to be obtained from frequency space analysis and new fre-

quency domain algorithms to be explored for inverse problems. Another interesting future

direction is to preserve and extrapolate the original images to new conditions, using inverse

rendering only as a guide in this extrapolation, but without explicitly computing lighting

and reflectance parameters. This would have the potential to unify inverse and image-based

(interpolatory) rendering methods.
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Finally, the use of measured reflectance and illumination properties is of growing im-

portance in graphics and vision, and we have taken a step towards finding general inverse

methods to determine these from image observations.

In chapters 4 and 5 of this dissertation, we have applied the signal-processing frame-

work developed in chapters 2 and 3 to forward rendering problems. In this chapter, we

have demonstrated the applicability to inverse rendering. The next chapter concludes this

dissertation, presenting a unified discussion of forward and inverse rendering, and suggests

directions for future work.


