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Abstract
Image mosaics are useful for a variety of tasks in

vision and computer graphics. A particularly convenient
way to generate mosaics is by ‘stitching’  together many
ordinary photographs. Existing algorithms focus on
capturing static scenes. This paper presents a complete
system for creating visually pleasing mosaics in the
presence of moving objects. There are three primary
contributions. The first component of our system is a
registration method that remains unbiased by movement—
the Mellin transform is extended to register images related
by a projective transform. Second, an efficient method for
finding a globally consistent registration of all images is
developed. By solving a linear system of equations,
derived from many pairwise registration matrices, we find
an optimal global registration. Lastly, a new method of
compositing images is presented. Blurred areas due to
moving objects are avoided by segmenting the mosaic into
disjoint regions and sampling pixels in each region from a
single source image.

1 Introduction
Image mosaics are useful for a variety of tasks in vision

and computer graphics; applications include: virtual
environments, panoramic photography, and video
compression. Although a number of hardware devices
exist for creating panoramic images, software methods are
gaining popularity. Typical software algorithms register or
‘stitch’  a sequence of digital images, and then composite
all registered images into a final mosaic. Ideally, a user
takes a hand–held consumer camcorder, pans around a
scene capturing the region of interest, and obtains a
complete description of the surrounding environment. In
practice, several issues must be considered when designing
a system.

First, a method to register any pair of images is needed.
Some previous methods only register image pairs related
by simple transforms. For example [McMillan95, Chen95]
can only capture cylindrical panoramas, requiring the

camera to be carefully mounted on a tripod, and panned
around a single axis of rotation. A spherical environment
can be captured by relaxing the requirements on camera
orientation to allow pan/tilt freedom. In the case of a fixed
center of projection, pairs of photographs are related by a
two dimensional projection. Several methods for
registering deformations of this kind have been developed
[Szeliski96, Mann94]. If the camera center of projection is
translated in ℜ3, then changes in visibility due to parallax
preclude a mosaic consistent with all images.
Nevertheless, some researchers have attempted to create a
meaningful mosaic, by selectively including only certain
regions of each image in the final mosaic [Rousso98,
Wood97]. These methods have been demonstrated for
only restricted classes of motion. In our solution, we do
not attempt to address large changes in the center of
projection of the camera.

Figure 1: Accumulated errors cause poor
alignment near the end of an image sequence.

Second, registering a large set of images introduces
difficulties. Consider the sequence of images in Figure 1.
Because most registration methods operate on images in a
sequential, pairwise fashion, small errors in alignment
accumulate from one pair of images to the next. In Figure
1, we expect the final image to coincide exactly with the
first image. Although, each registration error is
individually minute, the cumulative effect produces
significant error in the position of the final image. This
problem is commonly addressed by aligning images to a
reference mosaic; after the first two images are registered,
a mosaic is created; the third image is registered with
respect to this mosaic, rather than the second image; Each



new image is registered to the mosaic containing all
previous images. A reference mosaic decreases the rate of
error accumulation, however degradation persists. In
addition to precise pairwise registration, a better method
for producing globally consistent alignment is needed.

A third issue arises in scenes with moving objects.
Estimation of image transform parameters can be biased
by moving objects because moving regions of the image
indicate a transformation different than the transformation
due to the camera. For example, direct minimization of
pixel intensity differences has been widely used to register
image mosaics [Szeliski96, Chen95]. However, moving
regions of high contrast contribute significant residual to
the minimization, producing biased results. Feature
tracking techniques are also widely used for image
registration. Unfortunately, features arise on the boundary
between foreground and background objects. These
features move unpredictably with respect to the rest of the
image, producing unreliable results. Motion analysis is an
active area of research. For example, Sawhney and Ayer
calculate the dominant motion of images, using an outlier
mask to avoid bias [Sawhney96]. However, most current
registration algorithms assume static scenes.

As a final issue, moving objects present challenges
when compositing image sequences. Since the moving
object translates with respect to the background, a mosaic
consistent with every image in the sequence is not
possible. Standard compositing techniques blend all
available information and produce a blurred image in
moving regions. Blurriness can occur to a lesser extent
even if the scene remains static. Image distortions can
arise due to the lens system, or inexact constraint of the
center of projection; these local nonlinearities result in
ambiguity and blurriness in the final mosaic. The addition
of a local nonlinear adjustment after initial image
registration substantially reduces minor artifacts
[Shum97]. However, local registration adjustment is of
limited use when the distortions are large or discontinuous,
as is the case with moving objects. Although a

theoretically correct mosaic is not possible when objects in
the scene are moving, a typical user is only interested in a
plausible reconstruction—a single copy of the moving
object is often preferable to an indistinguishable smudge.

The remainder of this paper presents a complete system
for creating mosaics in the presence of moving objects.
Image sequences were captured with a hand–held
consumer camcorder; no lens or camera calibration
procedures were used. First, we review the Mellin
transform, an existing technique that is unbiased by
moving objects. The Mellin transform applies only to a
limited class of image deformations, therefore a geometric
extension is proposed that provides projective
transformations. Next a new method for globally
registering many images efficiently is presented. Global
registration estimates are found by solving a system of
linear equations constructed from the independently
obtained pairwise projections. Finally, segmenting the
mosaic into disjoint regions leads to a compositing method
for scenes with moving objects.

2 Pairwise Registration
Mosaic creation requires that images be registered with

respect to one another. Existing image registration
techniques (see [Brown92] for a survey) are insufficient
for creating mosaics with moving objects. As mentioned in
section 1, many methods produce biased estimates of
image registration when moving objects are present. The
Mellin transform is a well known method for registering
images which is not biased by moving objects, but is
unfortunately restricted to aligning translation and rotation
in the image plane [Cassant76, Reddy96]. After reviewing
the Mellin transform, this limitation is addressed. A
method to derive the actual projective registration
parameters is presented.

2.1 Mellin Transform
The Mellin transform is based on phase correlation and

the properties of Fourier analysis. We can find the

(a) (b) (c) (d)

Figure 2: Image translation estimated with phase correlation is not biased by moving objects. Image (b) is a
translated version of image (a). A single strong correlation peak is present. Moving a foreground object in
image (c) degrades the amplitude of the background correlation peak, however the position of the peak is not
affected. Instead, a smaller foreground correlation peak is created. Additional motion of the foreground object
in image (d) changes the location of the foreground correlation peak.



translational motion (x0,y0) between a pair of images { I1,
I2}  with phase correlation [Kuglin75]. The Fourier
transform of each image {

�
1, � 2}  = { � [I1], � [I2]} can be

related using the phase shift theorem.
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where � *  is the complex conjugate of � . Applying an
inverse Fourier transform to the phase shift results in a
delta function offset by exactly the amount of translational
motion in the original image pair.
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The resulting delta function may fall between samples if
the actual translation is not a multiple of pixel width.
Subpixel registration can be obtained by fitting the
appropriate filter kernel to the pixels surrounding the
image peak [Zieglar90]. I have found it sufficient to
merely scan the resulting image for the greatest pixel
intensity, and accept this as the delta location. When some
region of the image is in motion, there are multiple
correlation vectors present. As shown in figure 2, some
energy from the primary delta function will be moved to a
secondary peak, but the primary peak will remain, and its
location will not be corrupted.

The Mellin transform extends phase correlation to
handle images related by rotation. [Casasent76, Reddy96]
According to the Fourier rotation and translation
properties, the transforms will be related by
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We can see that the magnitude of spectra � 2 is a rotated
replica of � 1. We can recover this rotation by representing
the spectra of � 1 and � 2 in polar coordinates.
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The Fourier magnitude images differ only by translation in
this polar representation. Phase correlation as described
above, can now be applied to the pair of polar Fourier
images to recover θ0. Using θ0, a rotation can be applied so
that " 1 and # 2 differ only by a phase shift. Now phase
correlation is applied a second time to recover the original
translation (x0, y0). At this point we have found all three
parameters relating I1 and I2. Although my implementation
assumes a fixed focal depth, the Mellin transform can
additionally recover a scale factor by utilizing a log–polar
transformation instead of a polar transformation in the
above procedure.

In my experience, the Mellin transform is capable of
robust registration with image translation up to one third
the image width/height and rotation up to 45°. Greater
image displacement or low quality source images causes
significant degradation of the delta function. In this case
the resulting peak is indistinguishable from surrounding
noise. Robustness can be improved by observing that a
poor estimate of rotation invalidates the second phase
correlation procedure; a translation result without a peak is
produced. The magnitude of the translation peak can be
used to quantify the quality of a rotation estimate. If the
translation peak is found to be below some threshold, the
estimate of rotation is repeated using the next highest
correlation peak.

2.2 Projection
Images photographed from a stationary center of

projection are related by a projective transform.
Registration obtained from the Mellin transform is limited
to translation and rotation. Although [Szeliski96] uses
phase correlation to initialize an iterative method, this
limitation has prevented the Mellin transform from  being
used for the direct construction of mosaics. We present a
derivation of the correct projective parameters using a few
assumptions about camera geometry and the Mellin
transform results.

Careful calibration of intrinsic camera parameters is
possible, however we prefer to make the following
standard assumptions which have proven adequate. Images
are centered on the optical axis, have square pixels, and
exhibit no skew. The following discussion assumes a
known focal depth, however in section 3 a method for
deriving this parameter is presented. The remaining
degrees of freedom in the desired projection can be
obtained as follows.

Image planes acquired from a stationary center of
projection are tangent to a sphere. Figure 3a illustrates the
camera geometry, drawn in two dimensions for clarity.
The spherical angular rotation (α,β) of the image plane I2

can be trigonometrically determined from the focal depth f,
and the lengths x and y. One additional parameter relates I1

and I2: image plane rotation θ. This accounts for twisting
the plane I2 about the vector f2.

The image plane translation and rotation (2x0,2y0,θ0),
estimated by the Mellin transform assumes coplanar
images. Figure 3b shows the assumed geometry. For small
(α,β) in the actual geometry, we can approximate (x,y,θ) ≈
(x0,y0,θ0). Assuming f is known, this approximation allows
(α,β,θ) to be determined.
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The intrinsic camera parameters define a matrix C that
maps a 3D point onto the image plane. Because of the
assumptions made above, C reduces to a scaling matrix



that accounts for the focal depth of the image plane.
Furthermore, the motion given by (α,β,θ) can be described
as a 3D rotation matrix R. Using these results, the desired
projection matrix relating points in I2 to points in I1 can be
written as A = C R C-1 .
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Figure 3: (a) Actual camera geometry. (b)
Geometry assumed by the Mellin transform.

3 Global Registration
Image mosaics are often constructed from a sequence

of many images. Registration errors accumulate over time
so that images near the end of a sequence have a large
cumulative error. Therefore, in addition to the previously
presented method for registering a pair of images, we need
to ensure that the final mosaic consisting of all images is
globally registered.

Other researchers have addressed global registration.
[Shum97] proposes a global registration strategy which
establishes point correspondences in a set of images.
Minimizing the projected difference of these points results
in global alignment. The search required to determine
many point correspondences can be quite slow, and as
previously noted, feature based algorithms are potentially
biased when working with moving objects. [Sawhney97]
presents a method for iteratively registering multiple
images while simultaneously correcting lens distortion.
Although complex deformations are correctly registered
with this technique, the large number of parameters makes
computation prohibitive for more than a few images. The
complexity of global alignment can be reduced by treating
local registration independently. The following method has
been used to globally align hundreds of images.

In the previous section we presented a method for
finding a registration matrix Aij that will project image I i
into the space of image I j. It is possible to project I i

directly into the space of Ik by first projecting I i into the
space of I j using Aij, and then projecting the result into Ik
using Ajk. As illustrated in figure 4, projections chained in
this fashion provide a method of mapping all images in the
sequence I1…IN into the space of I1.
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The global registration matrix Pi will project I i into the
space of I1. However, as noted previously, errors tend to
accumulate and a better method is needed.
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Figure 4: The global registration matrix of an
image can be expressed as the product of
many local registration matrices.

In order to improve the quality of global registration,
let us suppose we have locally registered all spatially
overlapping image pairs in addition to those that are
adjacent in the image sequence. Furthermore, note that we
can estimate the global projection Pi of image I i by first
projecting I i into any space I j and then using Pj to project
the result into the space of I1.

Aij Pj = Pi

By considering many such pairs, we can build a sparse
linear system of equations in which the Aij are known
quantities obtained by pairwise image registration, and the
matrix elements of Ps (1≤ ≤s N ) are unknowns to be
found. Equating Pi to the identity matrix will fix I i as the
reference space. If we have locally registered more image
pairs than the total number of images in the sequence, the
system of equations will be over constrained. Solving this
linear system of equations in a least squares sense will
produce a set of global registration matrices that minimally
deviate from the set of calculated pairwise projections.
Since projection matrices contain one unnecessary degree
of freedom it is useful to normalize the scale of Aij before
solving the above system.

Attempting to register all image pairs results in O(N2)
local image registrations. The number of registration
attempts can be dramatically reduced by estimating the
global image position of I i using Ai,i-1. Now Aij (j<i) is
only computed for those pairs of images which occupy
overlapping regions of space. In practice, even fewer
image pairs are necessary. Relating each image in the
sequence to one other image drawn from much earlier in
the sequence in addition to its immediate neighbors
produces results with no visible alignment errors.

The camera focal depth is needed to determine
pairwise projection in section 2.2. Rather than assume this
is known, we can be obtained it by treating the focal depth
f as another variable and solving the resulting set of
nonlinear equations. In our implementation, we iterate
over values of f, solve the linear system of equations
above, and then choose f to minimize the residual.
Although the coefficients of Aij must be computed for each
value of f, the Mellin transform is only evaluated once.



The necessity of global registration is illustrated by a
sequence of 72 images digitized at a resolution of
200x200. The sequence was captured with a hand–held
camcorder panning repeatedly across a building facade.
Figure 5 shows a mosaic created without using global
registration. Parts of the mosaic are visibly out of
alignment. In contrast, Figure 6 shows a 830x987 mosaic
created with global registration. The quality of the final
mosaic is significantly improved.

4 Compositing
After registering a sequence of images, the images are

composited into a complete mosaic. Typical systems for
building mosaics find all source images that map into a
given destination pixel and compute some weighted blend
of these source images. A weighting function that
decreases near the boundary of a source image will prevent
visible discontinuities due to gain adjustment between
frames. Although more sophisticated blending functions
exist [Burt83], any function sampling information from all
available images produces blurred results in the case of
moving objects. For some applications, blurred regions
may be desirable; however many applications (such as
virtual environments) prefer a single focused image.

When a focused image is desired, samples containing
contradictory information should not be blended. An
algorithm determining which source image contains the
‘correct’  imagery should be employed. The final mosaic
will be comprised of a set of regions; the pixels in each
region are sampled from a single ‘correct’  source image. If
a moving object falls on the boundary between regions, it
can be visibly truncated. Determining regions that do not
exhibit object truncation is desirable. Previous methods for
creating mosaics with moving objects have used a single
frame to define a ‘correct’  region; areas outside this frame
are blended with a temporal median filter. [Sawhney96]. A
method for picking ‘correct’  regions of more general shape
is presented below.

Consider the overlapping section in a pair of registered
images. A method for dividing this section into two
regions so that no discontinuities occur along the boundary
is desirable. The relative difference between two images,
abs(I i-I j)/max(I i-I j), provides a measure of similarity
between the source pair on a per pixel basis. Identical
samples have a difference of zero, whereas pixels with
samples drawn from different objects tend to have a larger
intensity difference. A dividing boundary falling along a
path of low intensity in the difference image will produce
minimum discontinuity between regions in the final
mosaic. The best path dividing the overlapping section can
be found by using Dijkstra's algorithm [Cormen90] with
weights drawn from the difference image. This path avoids
areas where the source pair is inconsistent, including
regions where objects are in motion. Inexact registration
due to lens distortion or unintentional parallax also causes
image discrepancy; segmenting mosaics is useful for this
class of errors as well. Furthermore, paths through broad
regions of image similarity are preferred because a low
intensity path may accidentally be found through some
moving object. Low pass filtering the difference image
before applying Dijkstra’s algorithm encourages desirable
behavior.

Compositing a sequence of images using the above
method is straightforward. Each source image is compared
to the mosaic created thus far. A difference image of the
overlapping section is created, and the shortest low

Figure 5: Mosaic created without global
registration. Errors accumulate causing poor
alignment of images near the end of the sequence.

Figure 6: Mosaic created with global
registration. Images in all parts of the
sequence are mutually aligned.



intensity path traversing this section is found. On one side
of this path we preserve pixels from the mosaic; on the
other, we discard previous information in favor of samples
from the current source image. Iterating over all source
images produces a final mosaic without blurred regions.
Figure 7 shows the final segmentation of the construction
scene in Figure 9. Note that the moving truck falls entirely
within one region since by design boundaries are not
drawn across areas with moving objects. This algorithm
relies upon the existence of at least one image containing a
complete view of the moving object. If a view containing
the whole object is unavailable the algorithm is forced to
choose a region boundary bisecting the object.

To illustrate the advantages of the compositing method
presented, a sequence of nine images was captured at a
construction site. Figure 8 shows a mosaic composited by
blending all images equally. The moving truck is almost
unrecognizable due to blurriness. In contrast, Figure 9
shows that the truck is clearly visible when the
compositing algorithm in this paper is used.

5 Discussion
A complete method for creating image mosaics in the

presence of moving objects has been presented. In order to
register images without bias the Mellin transform is used.
Although the Mellin transform can not directly register
projective transformations, a geometric derivation is
shown that obtains the projective matrix. In the case of
extremely short focal depth the approximations involved
will not be valid and future work should explore the range
over which acceptable results can be obtained. In addition,
the Mellin transform can recover an image scaling term
and inclusion of this parameter is an obvious avenue for
growth.

A method for locally registering images is not
sufficient. Accumulated registration errors can
substantially degrade the quality of a final mosaic;
therefore a new method of globally registering all images
is developed. By decoupling local image registration from
global alignment, mosaics with hundreds of images can be
efficiently registered. Solving a linear system of equations
which incorporates the local registration solutions
produces a set of global alignment estimates which

minimally deviate from the calculated pairwise
registrations.

Conventional blending methods produce a final mosaic
with blurred regions when moving objects are present.
Superior results can be obtained by segmenting the mosaic
into disjoint regions. Filling each region with pixels
sampled from a single source image ensures that a mosaic
without blurred regions is created. The segmentation
operator presented here attempts to minimize visible
discontinuities in the final mosaic. Although this work has
concentrated on moving objects, many other factors can
cause discontinuity. Future work might explore this. For
instance, images with significant motion parallax might be
combined into a single visually continuous mosaic.
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