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We present a mathematical framework for enforcing energy conservation in a BRDF by specifying

halfway vector distributions in simple two-dimensional domains. Energy-conserving BRDFs can

produce plausible rendered images with accurate reflectance behavior, especially near grazing

angles. Using our framework, we create an empirical BRDF that allows easy specification of

diffuse, specular, and retroreflective materials. We also present a second BRDF model that is

useful for data fitting; although it does not preserve energy, it uses the same halfway vector

domain as the first model. We show that this data-fitting BRDF can be used to match measured

data extremely well using only a small set of parameters. We believe that this is an improvement

over table-based lookups and factored versions of BRDF data.

Categories and Subject Descriptors: I.3.7 [Computing Methodologies]: Computer Graphics

General Terms: BRDF, Reflection models

Additional Key Words and Phrases: BRDF, global illumination, Monte Carlo

1. INTRODUCTION

In the absence of significant translucency and florescence, the directional and spectral
properties of surface reflection can be described by thebidirectional reflectance distri-
bution function(BRDF). An ideal physically-based BRDF is both reciprocal and energy-
conserving. Reciprocity is expressed formally using the equation (see Figure 1 for nota-
tion):

ρ(ω̂i , ω̂o) = ρ(ω̂o, ω̂i), (1)
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Symbol Meaning
ω̂i Direction from surface toward source of incident light
ω̂o Direction from surface toward sampler of outgoing light
N̂ Unit-length surface normal vector

û, v̂ Orthonormal basis for local surface orientation
~H Halfway vector (̂ωi + ω̂o)
Ĥ Unit-length halfway vector~H/‖~H‖
~h Halfway vector after transformation into another domain

Ω+ Unit hemisphere above the surface
dΩ(x̂) Differential solid angle in the ˆx direction
dµ(~h) Differential measure (e.g., area) on the~h domain

Fig. 1. Notation used in this paper.

and energy conservation is expressed as follows:

∀ω̂o,
∫

Ω+

ρ(ω̂i , ω̂o)(ω̂i · N̂)dΩ(ω̂i) ≤ 1, (2)

whereρ is the BRDF. Throughout this paper, we will use hats to denoteunit-length vectors,
and a dot to indicate the scalar product.

Reciprocity and energy conservation are discussed in detail by Lewis [1993]. In his
terminology, BRDFs that are both reciprocal and energy-conserving are calledphysically
plausible. It is difficult to create a mathematical expression for a BRDF that satisfies reci-
procity, energy conservation, and represents a general-purpose, realistic material. How-
ever, many BRDF models produce realistic images; such models arevisually plausible,
even though they violate reciprocity or energy conservation, or both.

Various BRDF models have been developed from first principles using height corre-
lation methods (e.g., [He et al. 1991; Stam 1995]), and microfacet models (e.g., [Cook
and Torrance 1982; Oren and Nayar 1994; Ashikhmin et al. 2000]). Other models are
phenomenological; high level features such as highlights are described by empirical ex-
pressions (e.g., [Phong 1975; Ward 1992; Schlick 1994; Ashikhmin and Shirley 2001]).
Some BRDF models use explicit microfacet geometry and simulation to generate BRDF
data [Westin et al. 1992].

Another approach is to directly measure the BRDF from samples of real materials us-
ing a device such as a gonioreflectometer (e.g., [Marschner et al. 1999; Matusik et al.
2004]). One problem with measured BRDF data is that it has significant statistical and
systematic error [Greenberg et al. 1997]. Therefore, it is common to fit measured data to
a BRDF model by projecting the data onto one or more smooth curves (e.g., [Lafortune
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Fig. 2. Reflective spheres in a constant environment using different BRDFs. Top row: Ward, Ashikhmin-Shirley,
Blinn-Phong. Bottom row: Our data-fitting BRDF, Cook-Torrance, our empirical BRDF.

et al. 1997]). Empirical models with intuitive parameters can also be used to fit measured
data (e.g., [Ward 1992]). Such models are convenient because they have few parameters,
but they may not include subtle features such as retroreflection.

General purpose, physically plausible BRDF models are difficult to formulate, because
the constraints imposed by reciprocity and energy conservation are not easily satisfied
by a simple mathematical expression. Most empirical BRDF models enforce reciprocity
at the cost of energy conservation (e.g., [Lafortune et al. 1997; Ashikhmin and Shirley
2001]). In such models, the lobes of the BRDF may extend belowthe surface. Therefore,
these models predict that some of the light reflected from a surface comes from below
the surface, a situation that is physically impossible. Renderers based on such models
will attempt to gather light coming from below the surface, which cannot contribute to
outgoing light. Visually, this phenomenon appears as “light leakage”: the loss of energy at
near-grazing viewing directions causes surfaces to appeardarker near silhouette edges.

Other BRDF models produce energy, which also violates energy conservation. For ex-
ample, any model with a constant diffuse component combinedwith a Fresnel-varying
specular component produces energy, because the specular term goes to unit volume at
grazing angles (e.g., [Schlick 1994]). Figure 2 shows spheres rendered using several
common BRDFs in a uniform radiance environment. A sphere using an ideal energy-
conserving BRDF would not be visible; it would reflect all thelight from the environment
at each point of the sphere, so every point on the sphere wouldbe the same color as the
environment.

For BRDF models in Monte Carlo rendering, it is useful to be able to importance sample
the BRDF. That is, for a given̂ωo, it should be practical to generate a directional sample
ω̂i with density functionQ(ω̂i) that has the following property:

Q(ω̂i) ∼ ρ(ω̂i , ω̂o)(ω̂i · N̂). (3)

Depending on the form of the BRDF model, this is not always possible (see [Ashikhmin
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and Shirley 2001]), but in some cases it is (e.g., [Lafortuneet al. 1997]). Ease of sampling
is usually achieved by making the cosine-weighted BRDF integrable, and making sure
that the resulting indefinite integral has certain inversion properties [Pharr and Humphreys
2004].

So far, no general-purpose empirical BRDF model enforces both energy conservation
and reciprocity while allowing efficient importance sampling. For this reason, different
models are used for different applications, depending on the priorities of the rendering
system. Although most BRDF models value reciprocity over energy conservation, both
components are important for physically accurate BRDF models. Our main goal in this
research is the creation of a framework for BRDF models that enforces energy conservation
at the cost of reciprocity. The framework uses simple probability density functions on a
bounded, planar domain to describe energy-conserving BRDFs. Using this framework,
we have developed a new empirical energy-conserving BRDF model. This model can
represent many different reflectance effects using a small number of parameters. We have
also developed a similar BRDF model that does not conserve energy but is useful for fitting
measured BRDF data. Both new BRDFs can be efficiently sampled.

In the next section, we describe a framework for specifying energy-conserving BRDFs.
Section 3 describes a bounded planar domain that can be used with the framework to de-
scribe BRDF properties. In Section 4, we describe an empirical energy-conserving BRDF
model that we designed using our framework. Section 5 describes another BRDF model
that is useful for fitting measured data.

2. A FRAMEWORK FOR ENERGY CONSERVING BRDFS

In this section, we describe a mathematical constraint thatwill force a BRDF to conserve
energy. Initially, we describe this constraint in terms of probability distributions on the set
of incident light directions. Ultimately, we show how we cantransform the set of incident
directionsω̂i into other domains while continuing to preserve the constraint.

An energy-conserving BRDF must follow the constraint imposed by Equation 2. For
our framework, we will assume the BRDF satisfies an equality instead of an inequality:

∀ω̂o,

∫

Ω+

ρ(ω̂i , ω̂o)(ω̂i · N̂)dΩ(ω̂i) = 1. (4)

This form of the equation allows us to represent a purely reflective surface, which perfectly
conserves all light energy. To represent more general materials, we can multiplyρ by a co-
efficient (i.e., the albedo of the surface) to account for absorption of different wavelengths
of light. This ensures that all energy lost is due to light absorption within the surface, a
phenomenon that has a physical basis. Therefore, if we can design BRDFs for which the
equation holds, we can guarantee that they will conserve energy.

A BRDF has two parameters: the direction toward the incidentlight ω̂i , and the direction
toward the viewer of outgoing light̂ωo. Both of these parameters are unit-length direction
vectors, and hence lie in a two-dimensional domain; namely,the hemisphereΩ+ above the
surface. For the rest of this discussion, we will assume thatω̂o is given (as it is in a Monte
Carlo renderer). In this case, the BRDF becomes a function ofonly ω̂i . This version of the
BRDF is a function defined on the two-dimensional domainΩ+.

Since the value of the integral in Equation 4 is 1, we can also view the function:

Q(ω̂i) = ρ(ω̂i , ω̂o)(ω̂i · N̂), (5)
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as a probability density function (PDF) over the set of incident directionsω̂i on the hemi-
sphere. Rearranging this equation gives us the following form of the BRDF:

ρ(ω̂i , ω̂o) =
Q(ω̂i)

(ω̂i · N̂)
. (6)

The key to our framework is that as long asQ(ω̂i) represents a PDF on the hemisphere
Ω+, the corresponding BRDFρ will be energy-conserving. This formulation allows a
great deal of freedom, since for a given directionω̂o, Q(ω̂i) can be any PDF.

However, it can be difficult to design a PDFQ(ω̂i) that corresponds to a visually plau-
sible BRDF. For example, phenomena like off-specular reflection cannot be easily formu-
lated in the space of incident directions [Blinn 1977; Ngan et al. 2004]. We now describe a
domain in which is it easier to create PDFs that correspond toenergy-conserving BRDFs.

Many BRDF models have used thehalfway vector:

Ĥ =
ω̂i + ω̂o

‖ω̂i + ω̂o‖
. (7)

In addition to having a long history of use (e.g., [Torrance and Sparrow 1967; Blinn
1977]), the halfway vector has been used in many recent BRDF models [Rusinkiewicz
1998; Ashikhmin et al. 2000; Ashikhmin and Shirley 2001; Stark et al. 2005]. Ngan et
al. [2004] have discussed some underlying reasons for this and have shown empirically
that BRDFs based on the halfway vector yield more visually plausible results than BRDFs
based on the incident direction̂ωi . Another advantage of the halfway vector is that in a
microfacet-based BRDF model, the vectorĤ equals the normal vector of the microfacets
responsible for reflection.

Torrance and Sparrow [1967] showed that the PDFQ(ω̂i) over incident directions is
related to a PDFq(Ĥ) over halfway vectors by the formula:

Q(ω̂i) =
q(Ĥ)

4(ω̂i · Ĥ)
. (8)

Combining Equations 6 and 8 gives us the following form of theBRDF:

ρ(ω̂i , ω̂o) =
q(Ĥ)

4(ω̂i · N̂)(ω̂i · Ĥ)
. (9)

Once again, as long asq(Ĥ) is a PDF on the set of allowable halfway vectors (i.e., those
vectors that for a given̂ωo correspond toω̂i in the hemisphere), the corresponding BRDF
ρ will conserve energy.

It is easier to describe visually plausible BRDFs using PDFson the set of halfway vectors
than it is using PDFs on the set of incident light directions.In effect, we are specifying
a virtual microfacet distribution for eacĥωo that corresponds to the reflectance properties
of the surface. For many surfaces, the distribution of microfacet normals is more intuitive
than the distribution ofω̂i for every ω̂o. An added benefit of the microfacet-based view
is that we can adjust the halfway vector PDFs to create the same visual phenomena as the
shadowing and masking terms in other microfacet-based BRDFmodels.

Although halfway vector PDFs are more convenient than PDFs over incident directions,
for a givenω̂o, the set of allowable halfway vectors is a subset of the hemisphere that
changes in a complicated way asω̂o approaches a grazing angle. Because of this complex-
ity, it is not easy to define PDFs on the domain of allowable halfway vectors.
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Fig. 3. The set of legal halfway vectors~H.

Ideally, we want to find a domain that allows us to easily definePDFs that correspond to
visually plausible, energy-conserving BRDFs. In the rest of this section, we assume that
such a domain exists and explain the relation of PDFs to BRDFson this domain. In the
next section, we give a specific example of such a domain.

We define an arbitrary domainD and a bijectionf (Ĥ) =~h between valid halfway vectors
on the hemisphere and points~h in D. We also define a PDFp(~h) over points inD. We
equate differential probabilities betweenD andΩ+ using the equation:

p(~h)dµ(~h) = q(Ĥ)dΩ(Ĥ), (10)

wheredµ is the differential measure overD. Combining Equations 9 and 10 gives:

ρ(ω̂i , ω̂o) =
p(~h)dµ(~h)

4(ω̂i · N̂)(ω̂i · Ĥ)dΩ(Ĥ)
. (11)

This equation shows that any PDFp(~h) defined onD corresponds to a unique energy-
conserving BRDFρ . This allows us to define an energy-conserving BRDF in terms of a
distribution onD. If we chooseD intelligently, it should be easier to describe physically
plausible BRDFs by reasoning about PDFs in that domain. Since we use halfway vectors
as an intermediate domain, a BRDF created using this framework should have the same
advantages as BRDFs based on halfway vector distributions.

We sample the BRDF (e.g., for path tracing) by generating a sample point~h∈ D accord-
ing to p(~h). Then we transform~h into its equivalent halfway vector̂H using the equation:

Ĥ = f−1(~h). (12)

The inverse off must exist becausef is a bijection. Finally, we transform̂H into its
equivalentω̂i using the equation:

ω̂i = 2(ω̂o · Ĥ)Ĥ − ω̂o. (13)

We then usêωi to sample the incident radiance.
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Fig. 4. The disk domain viewed in(u,v) space.

3. EXAMPLE TRANSFORMATIONS

In this section, we give an example of a new domain for halfwayvector distributions using
the framework described in the previous section. The new domain has properties that
make it a useful space for halfway vectors. We show two transformations between valid
halfway vectors and points in the new domain, and discuss some of the properties of the
transformations.

The unnormalized halfway vector~H can be expressed as:

~H = ω̂i + ω̂o. (14)

Assuming thatω̂o is given, we visualize the set of all such~H by translating the hemisphere
Ω+, corresponding to all possiblêωi , so that the center of its base lies at the tip ofω̂o

(see Figure 3). Every point on the translated hemisphere corresponds to an unnormalized
halfway vector.

We then transform halfway vectors~H on the hemisphere to points~h on the base of the
hemisphere, shaded in gray in Figure 3. This allows us to represent halfway vector distri-
butions on a unit-radius disk parallel to the surface. Neumann et al. [1999] also showed a
projection onto a disk to be useful for BRDF sampling. The disk is a useful domain be-
cause it is planar and bounded, and for intelligently chosentransformations, we can easily
define PDFs that correspond to visually plausible BRDFs.

Given orthogonal vectors ˆu andv̂ defining the local orientation of the surface, points on
the disk can be uniquely defined by theiru- andv-coordinates (see Figure 4). Although
points~h on the disk are three-dimensional, we can think of them as two-dimensional points
in (u,v) space by dropping their normal-direction component. This allows us to think of a
PDF p(~h) over points on the disk as a two-dimensional PDF in(u,v) space.

Below, we describe two useful transformations between the hemisphere of unnormalized
halfway vectors and the disk.

3.1 The scaling projection

The first transformation scales the halfway vector until itstip lies in the base of the hemi-
sphere (see Figure 5). Given an unnormalized halfway vector~H, the corresponding point
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Fig. 5. The scaling projection.

~h on the base of the hemisphere is:

~h =
(ω̂o · N̂)

(~H · N̂)
~H. (15)

We refer to this transformation as thescaling projection.
We now solve Equation 10 for the scaling projection. For thisdomain,dµ(~h) is simply

dAon the disk. Based on the geometry of the vectors, we find:

dΩ(Ĥ) =
cosθhdµ(~h)

‖~h‖
2 , (16)

whereθh is the angle between~h and the surface normal̂N. In the scaling projection,~h
points in the same direction as the unit halfway vectorĤ, so:

cosθh = (Ĥ · N̂) (17)

and using Equation 15:

‖~h‖
2
=

(ω̂o · N̂)2

(Ĥ · N̂)2
. (18)

Combining these equations, we find that:

dµ(~h)

dΩ(Ĥ)
=

(ω̂o · N̂)2

(Ĥ · N̂)3
. (19)

Therefore, a PDFp(~h) over the disk defines a corresponding energy-conserving BRDF:

ρ(ω̂i , ω̂o) =
p(~h)(ω̂o · N̂)2

4(ω̂i · N̂)(ω̂i · Ĥ)(Ĥ · N̂)3
. (20)

In the scaling projection,~h points in the same direction aŝH. To importance sample the
BRDF, we generate a point~h on the disk according to the PDFp(~h), and normalize to get
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Fig. 6. The orthogonal projection.

a unit halfway vector:

Ĥ =
~h

‖~h‖
. (21)

We then use Equation 13 to generate an incident directionω̂i to sample the incoming
radiance.

The scaling projection has two main benefits. In(u,v) space, the origin corresponds
to the surface normal̂N, which is the halfway vector yielding perfect specular reflection.
PDFsp(~h) with high values near the origin yield “shiny” BRDFs.

Furthermore, the center of the disk corresponds to a halfwayvector in the retroreflective
direction. Thus, we can create retroreflective materials bydefining PDFs that have high
values near the center of the disk.

3.2 The orthogonal projection

The second transformation maps the halfway vector to the disk along the direction of the
surface normal̂N (see Figure 6). Given~H, the corresponding point~h on the disk is:

~h = ~H − (ω̂i · N̂)N̂. (22)

We refer to this transformation as theorthogonal projection.
We now solve Equation 10 for the orthogonal projection. Onceagain,dµ(~h) is justdA

on the disk. In this case, we have:

dµ(~h)

dΩ(Ĥ)
=

‖ω̂i + ω̂o‖
2(ω̂i · N̂)

(ω̂i · Ĥ)
. (23)

The resulting BRDF is:

ρ(ω̂i , ω̂o) =
p(~h)‖ω̂i + ω̂o‖

2

4(ω̂i · Ĥ)2
. (24)

To importance sample the orthogonal projection, we generate a sample point~h on the disk
according top(~h). From~h we compute~H:

~H =~h+(ω̂i · N̂)N̂. (25)
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Fig. 7. Cross sections of BRDF lobes using different projections but the same underlying PDFp(~h). The left
image shows lobes using the scaling projection, the right image using the orthogonal projection. In each image,
lobes are shown for outgoing angles at 0, 20, 40, and 60 degrees. Lobes from the scaling projection are wide
and exhibit primarily off-specular reflection. Lobes from the orthogonal projection are narrow and centered on
the direction of perfect reflection. Lobes in both images become much larger as the outgoing angle approaches
grazing.

We then normalize~H to get the unit halfway vector̂H and proceed as when importance
sampling the scaling projection.

As in the scaling projection, the origin in(u,v) space corresponds to the normal direc-
tion. In general, we found the orthogonal projection more accurate for fitting measured
BRDF data than the scaling projection.

3.3 Differences between the projections

Although both projections map halfway vectors into the samedomain, the correspond-
ing BRDFs differ. Using the same PDFp(~h) on the disk, the BRDF produced by the
scaling projection will have wider, less intense lobes thanthe BRDF produced by the or-
thogonal projection. In addition, the lobes in the scaling projection BRDF will exhibit an
off-specular peak that has been shown to be beneficial in other models [Torrance and Spar-
row 1967]. See Figure 7 to see shape differences between BRDFlobes from the different
projections.

4. A NEW EMPIRICAL BRDF

To describe the distribution of projected halfway vectors on the disk, we define a PDF on
the disk in(u,v) coordinates. The PDF should allow distribution of points onthe disk in
a controlled way. Because the disk is finite, the PDF cannot have infinite support. There-
fore, we approximate a two-dimensional Gaussian distribution using the following “lump”
function:

p(~h) =
n+1
πR2

[

1−
‖~h−~c‖

2

R2

]n

. (26)

The equation describes a unit-volume lump centered at~c with radiusR. The exponentn
describes the tightness of the lump; ifn = 0 the function is a uniform distribution, asn
approaches infinity, the function approaches a delta function. Figure 8 shows variations in
the lump function for different values ofRandn.
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Fig. 8. Cross sections of the lump PDF. Curves on the left have aradiusR = 1, and curves on the right have
R= 0.5. In each graph, the black (lowest) curve has exponentn = 1, the red (middle) curve hasn = 5, and the
blue (highest) curve hasn = 10. Both graphs use the same scale. In general, the function becomes higher and
narrower asR decreases orn increases.

The lump function is a convenient PDF for several reasons. Bychanging~c, we center
the lump at that point on the disk. For a given~c, we setR to ensure that the entire lump
lies within the disk. Changingn controls the variance of the lump’s distribution. Since the
lump has unit volume, any distribution defined as a sum of suchlumps will be a PDF as
long as the sum of coefficients is equal to 1.

We make the lump anisotropic by allowing it to have differentradii in the~u and~v direc-
tions. This elliptical lump function is:

p(~h) =
n+1

πRuRv

[

1−
(~hu−~cu)

2

Ru
2 −

(~hv−~cv)
2

Rv
2

]n

, (27)

whereRu andRv are the radii of the elliptical lump in the~u and~v directions, respectively.
WhenRu = Rv, this form ofp(~h) is the same as the form in Equation 26.

Note thatRu andRv need to be set such that the lump stays completely on the disk.If this
is not done, the PDF will not have unit volume and the resulting BRDF will not conserve
energy.

For rendering purposes, it is useful to generate samples on the disk weighted according
to the lumpp(~h). This is easiest in polar coordinates; given uniform randomnumbers
(ξ1,ξ2), we find the polar point(r,θ) to be:

(r,θ) =

(

R
√

1− n+1
√

ξ1,2πξ2

)

. (28)

The resulting sample point~h in (u,v) space is:

~h =~c+(r cosθ , r sinθ) (29)

In practice, the easiest way to sample an anisotropic lump isto generate a sample on
an isotropic lump with radiusR = 1 and then scale the resulting sample byRu in the û
direction andRv in the v̂ direction to obtain an anisotropic sample.

We construct our empirical BRDF from a Lambertian diffuse component and an energy-
conserving specular component of the form in Equation 11. Weuse the scaling projection
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to transform halfway vectors into points on the(u,v) disk because it allows easy represen-
tation of retroreflection and off-specular reflection.

We use Schlick’s approximation of the Fresnel term [1994] toblend between the diffuse
and specular components:

F(θ) = F0 +(1−F0)(1−cosθ)5, (30)

whereF0 is the reflectance at normal incidence. For dielectrics withrefractive indexη :

F0 =

(

η −1
η +1

)2

, (31)

which ranges from about 0.02 to 0.07 for common dielectrics.Equation 31 works well in
practice even for non-dielectrics, such as metals [Cook andTorrance 1982].

For the specular component of our BRDF, we use a weighted sum of two unit-volume
lumps, one centered on the surface normal direction and one centered on the retroreflective
direction. This allows us to easily control the reflective properties of the surface. Our em-
pirical BRDF uses the scaling projection to easily specify retroreflection and off-specular
reflection. Therefore, the corresponding PDF on the disk is:

p(~h) = (1−k)
ns+1

πRs
2

[

1−
‖~h‖

2

Rs
2

]ns

+k
nr +1

πRr
2

[

1−
‖~h−ωouv‖

2

Rr
2

]nr

, (32)

wherek ∈ [0,1] is a weighting coefficient that blends between specular reflection and
retroreflection,Rs and ns are the radius and exponent of the specular lump andRr and
nr are the radius and exponent for the retroreflective lump. In order to constrain the lumps
to stay on the disk,Rr must be no greater than 1, andRs must be no greater than(1−sinθo),
whereθo is the angle between̂ωo andN̂.

Given p(~h), our empirical BRDF is:

ρ(ω̂i , ω̂o) = (1−F(θo))
Cd

π
+F(θo)

p(~h)(ω̂o · N̂)2

4(ω̂i · N̂)(ω̂i · Ĥ)(Ĥ · N̂)3
. (33)

The BRDF has seven parameters.Cd is the diffuse color,F0 is the specular color at normal
incidence, andk, Rs, ns, Rr , andnr are as explained above. An anisotropic BRDF requires
two additional radii parameters for the lumps: one for the specular lump and one for the
retroreflective lump. In practice, many of the parameters can be ignored for a given mate-
rial; for example, if a material does not have a retroreflective component,k can be set to 0
andRr andnr are not used. An isotropic material without retroreflectioncan be modeled
using 4 parameters: the colorsCd andF0, and the scalarsRs andns.

All BRDF parameters can vary with respect toω̂o because even thoughp(~h) changes, it
remains a PDF on the disk. In practice, we assume thatCd, F0, andk are constant over all
ω̂o. As ω̂o changes, we setRs andRr to their maximum allowable values explained above
and changens andnr to generate the material properties we desire. In general, if ns andnr

increase aŝωo approaches grazing, the material will appear shinier; if they decrease, the
specular- and retro-reflections will appear blurrier. Changing these parameters with respect
to ω̂o allows the model to generate some of the same visual effects as the shadowing and
masking terms in other halfway vector-based BRDF models.

Our empirical BRDF model allows a great deal of flexibility. It supports diffuse, specu-
lar, and retroreflective materials with a small number of parameters. Because of its formu-
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Fig. 9. Various anisotropic spheres rendered with our empirical BRDF using an HDR environment map for
illumination.

Fig. 10. Left: A road at night rendered using diffuse reflectors. Right: Using retroreflectors modeled by our
empirical BRDF.

lation, it is guaranteed to conserve energy: Figure 2 shows asphere in a constant environ-
ment rendered with our BRDF. As expected, the edges of the sphere are invisible because
each point on the sphere reflects all of the incident light.

We have rendered several scenes using our BRDF and found thatit produces visually
plausible results (see Figures 9, 10, and 11). We can also efficiently importance sample
our BRDF.

5. DATA FITTING

Our empirical BRDF is based on physical principles, so it should be able to mimic the
reflectance properties of real materials. To test this ability, we obtained data from the
MIT/MERL BRDF Database [Matusik et al. 2003] for three materials: metallic blue paint,
nickel, and plastic. This dataset contains some of the best available measured BRDF data
and has been used in several other recent papers. All materials in the dataset are isotropic.
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Fig. 11. Top left: Using Lawrence et al.’s factored BRDF at 1225 samples per pixel. Top right: Reference image
for the Princeton scene rendered using measured BRDF data at 99225 samples per pixel. Bottom left: Using
our data-fitting BRDF with two simple analytic basis functions at 1225 samples per pixel. Bottom right: Using
our empirical BRDF with one analytic lobe at 1225 samples per pixel. Insets show a difference between the
reference image and the rendered image, where darker portionsof the difference image indicate higher disparity.
All difference images in the figure are normalized using the samescale factor for improved visibility.

We further assumed that the retroreflective component of each material was negligible, and
we attempted to adjust the parameters of our empirical BRDF to fit the measured data.

We found that our empirical model could not fit the data well enough to produce a
visually identical rendering. Despite this fact, the output produced by our BRDF looks
visually plausible. Figure 11 shows the closest match between the measured data and
our BRDF. The figure is based on a similar image from Lawrence et al. [2004]; the only
difference is that we reused measured-data materials for the table and the vase (nickel and
plastic, respectively) instead of a Cook-Torrance BRDF. This change allowed us to see
more clearly how our BRDF fit measured data, especially on theflat tabletop where the
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Fig. 12. Comparison of sampling performance. Left: The scene rendered using Lawrence’s factored BRDF at
400 samples per pixel. Right: Using our data-fitting BRDF at 400 samples per pixel. Insets show a closeup of the
highlighted region for both models.

viewing vectors are near grazing angles.
After examining the data, we found that it was not consistentwith an energy-conserving

BRDF. This inconsistency is probably due to measurement noise, especially for angles
near grazing where measurement is difficult; this behavior has been noted before with this
data set [Lawrence et al. 2004]. It should also be noted that any direct measurement of real
reflectance will include effects such as subsurface scattering, which in general cannot be
represented by a BRDF model. For example, the material properties of the metallic blue
paint are very different from those of plastic and nickel. Weassume that the material is a
spray paint made from metal flakes suspended in a substrate. Snyder [1998] has noted that
when such materials are measured in laboratories, the measurements appear to violate the
reciprocity constraint for BRDFs due to subsurface effects.

Since we were unable to fit our empirical model closely to the data, we built a software
tool to examine the distributions of halfway vectors on the disk using either the scaling
projection or the orthogonal projection. The tool allows usto examine how the halfway
vector distribution changes aŝωo changes. To fit our BRDF to the measured data, we tried
both nonlinear optimization and hand fitting using our software tool mentioned above. In
general, we could fit the data much better by hand, and after practice with the fitting tool,
we were able to perform by-hand fits almost as fast as the optimization software.

We found the distribution for all three materials shows similar behavior: it is approxi-
mately constant aŝωo goes from normal incidence to the point whereθo is approximately
π
4 . From that point untilω̂o approaches grazing angles, the distribution tightens around
the normal direction. See Figure 13 for screenshots of our fitting software showing the
distribution of halfway vectors for a plastic material for different values ofω̂o.

Based on the behavior we saw in the halfway vector distributions, we developed a new
BRDF model to better fit the measured data. None of the measured materials show perfect
reflectance at grazing angles, so for our data-fitting BRDF, we changed the Fresnel term to
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Fig. 13. Screenshots of our BRDF-fitting software showing the distribution of halfway vectors of a plastic material
on the disk for different values of̂ωo. Data points from the measured data are shown in red and pointsfrom our
data-fitting model are in blue. From top to bottom, the angle between the surface normal and̂ωo is 0, 15, and 30
degrees for the left-hand images, and 45, 60, and 75 degrees for the right-hand images. Note that the disk shifts
from image to image because it is centered onω̂o in (u,v) space.

allow blending between a specular color and another color (not necessarily white):

Ff it (θo) = F0 +(Fπ
2
−F0)(1−cosθo)

5 (34)

We also found that using the orthogonal projection made it easier to fit the measured
data. Instead of fitting a specular lump and a retroreflectivelump, we used a PDF based
on two specular lumps with different exponents. Summing twosuch basis functions gave
us additional flexibility in fitting and is consistent with the approach found in other data-
fitting methods [Lafortune et al. 1997; Lawrence et al. 2004]. Ngan et al. [2004] has shown
that using a second such term in a BRDF model can reduce fittingerror by more than 20%.
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To fit the measured data, we used the following PDF on the disk:

p(~h) = (1−k)
n1 +1

πR1
2

[

1−
‖~h‖

2

R1
2

]n1

+k
n2 +1

πR2
2

[

1−
‖~h‖

2

R2
2

]n2

. (35)

As in the empirical model,k ∈ [0,1] is a weighting coefficient; it blends between the two
specular lumps.R1 andn1 are the radius and exponent of the first specular lump andR2

andn2 are the radius and exponent for the second specular lump. We no longer constrain
the values ofR1 andR2 to keep the lumps on the disk. This leads to energy loss in our
BRDF, but similar energy loss is apparent in the data.

Given p(~h), the BRDF we used to fit measured data is:

ρ(ω̂i , ω̂o) = (1−Ff it (θo))
Cd

π
+Ff it (θo)

p(~h)‖ω̂i + ω̂o‖
2

4(ω̂i · Ĥ)2
. (36)

As with our empirical model, the parameters can vary with respect toω̂o. We left most
parameters constant; however, we achieved the best resultsby increasing the larger ofn1

and n2 as ω̂o approaches grazing, and by changingk to increase the importance of the
corresponding lump. Although this BRDF model does not conserve energy, in practice it
still loses less energy than many other empirical models. Figure 2 shows an example of
our data-fitting BRDF in a constant environment.

Figure 11 shows the results of fitting this BRDF to the measured data. We compare our
results to an image using the measured data directly and an image using a factored BRDF
representation. Although our method uses only a few parameters, our image is as good as
the table-based factored representation and requires lessstorage.

Overall, we found that fitting distributions in halfway vector space was simple. Despite
their different properties at normal incidence, all three materials showed similar behavior
toward grazing angles, which is consistent with optical theory. Furthermore, using a sum-
of-basis-functions approach allowed us to better fit the measured data. Theoretically, we
could improve our fit by adding more lumps to sample the disk; however, results with only
two lumps are excellent.

6. CONCLUSION AND FUTURE WORK

We have presented a framework for transforming halfway vectors into different domains
such that the corresponding BRDF will conserve energy. We have shown that a unit-
radius disk is one such domain that allows us to easily specify certain BRDF properties
such as specular- and retro-reflection. Using our framework, we have created an empirical
energy-preserving BRDF that exhibits visually plausible behavior. Because of the energy
conservation constraint, our model works especially well near grazing angles, where other
models exhibit artefacts due to energy loss. Our empirical BRDF allows the user to specify
diffuse, specular, and retroreflective materials with a small number of intuitive parameters.

We also presented a BRDF model useful for data fitting; although it does not preserve
energy, it uses the same halfway vector distribution domains as the first model. This data-
fitting BRDF can be used to match measured data extremely wellusing a small number of
parameters. Although the space required by our model is a small fraction of that required
by measured data or factored representations, we can still produce images that closely
match measured BRDFs for a variety of materials.
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Fig. 14. Left: Scene rendered using our data-fitting BRDF (also shown in Figure 11). Right: The scene rendered
using our data-fitting BRDF witĥωi andω̂o exchanged.

While producing our mathematical framework, we realized that the ability to examine
halfway vector distributions in different domains is a powerful tool. In the future, we plan
to investigate domains other than the disk. It would be interesting to find a single domain
or a small set of domains that allow us to describe halfway vector distributions for all types
of materials.

We will also investigate different distribution functions(i.e., other than our lump func-
tion) to see if new functions can better approximate more complex materials such as fab-
rics. Of course, different functions might work better in different domains: for example, if
we transform halfway vectors into an infinite two-dimensional domain, we should investi-
gate distribution functions with infinite support.

Our current empirical BRDF does not enforce reciprocity. Wehave found that although
this gives noticeable differences near grazing angles whenthe incident and outgoing direc-
tions are swapped, the final results of our model are still visually plausible (see Figure 14).
Nonetheless, it would be useful to develop a framework for enforcing reciprocity as we
have done with energy conservation.

Finally, we removed the energy conservation constraint from our BRDF in order to
fit measured data. Our data-fitting BRDF exhibits energy lossbecause our distribution
functions stray outside the domain of legal halfway vectorsfor certain outgoing directions
ω̂o. One way to compensate for this would be to scale the distribution functions to make
up for the lost volume over the disk. We hope to find a simple wayto approximate this lost
volume so that we can enforce energy conservation with our data-fitting BRDF.
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