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We present a mathematical framework for enforcing energy conservation in a BRDF by specifying
halfway vector distributions in simple two-dimensional domains. Energy-conserving BRDF's can
produce plausible rendered images with accurate reflectance behavior, especially near grazing
angles. Using our framework, we create an empirical BRDF that allows easy specification of
diffuse, specular, and retroreflective materials. We also present a second BRDF model that is
useful for data fitting; although it does not preserve energy, it uses the same halfway vector
domain as the first model. We show that this data-fitting BRDF can be used to match measured
data extremely well using only a small set of parameters. We believe that this is an improvement
over table-based lookups and factored versions of BRDF data.

Categories and Subject Descriptors: 1.3Chinputing M ethodologies]: Computer Graphics
General Terms: BRDF, Reflection models
Additional Key Words and Phrases: BRDF, global illumination, Monte Carlo

1. INTRODUCTION

In the absence of significant translucency and floresceheedirectional and spectral
properties of surface reflection can be described bybibleectional reflectance distri-
bution function(BRDF). An ideal physically-based BRDF is both reciprocad @nergy-

conserving. Reciprocity is expressed formally using thaagign (see Figure 1 for nota-
tion):

P(Q, @) = PG, @), 1)
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2 . Dave Edwards et al.

Symbol | Meaning
A Direction from surface toward source of incident light
A% Direction from surface toward sampler of outgoing ligit
N Unit-length surface normal vector
a,v Orthonormal basis for local surface orientation
A Halfway vector ) + Gy)
H Unit-length halfway vectoH /||H |
h Halfway vector after transformation into another domain
Q. Unit hemisphere above the surface
dQ(X) | Differential solid angle in the direction
du(h) | Differential measure (e.g., area) on thdomain

Fig. 1. Notation used in this paper.

and energy conservation is expressed as follows:
van, [ pl(@.ax)(@-N)d0(@) < 1 @
+

wherep is the BRDF. Throughout this paper, we will use hats to denotelength vectors,
and a dot to indicate the scalar product.

Reciprocity and energy conservation are discussed inldstdiewis [1993]. In his
terminology, BRDFs that are both reciprocal and energyseoring are calleghysically
plausible It is difficult to create a mathematical expression for a BRBat satisfies reci-
procity, energy conservation, and represents a generpbpe, realistic material. How-
ever, many BRDF models produce realistic images; such matelisually plausible
even though they violate reciprocity or energy conservatio both.

Various BRDF models have been developed from first prinsipiging height corre-
lation methods (e.g., [He et al. 1991; Stam 1995]), and rfacet models (e.g., [Cook
and Torrance 1982; Oren and Nayar 1994; Ashikhmin et al. PO0Dther models are
phenomenological; high level features such as highlightsdascribed by empirical ex-
pressions (e.g., [Phong 1975; Ward 1992; Schlick 1994; kkshin and Shirley 2001]).
Some BRDF models use explicit microfacet geometry and sitimr to generate BRDF
data [Westin et al. 1992].

Another approach is to directly measure the BRDF from saspfeeal materials us-
ing a device such as a gonioreflectometer (e.g., [Marschnal. 4999; Matusik et al.
2004]). One problem with measured BRDF data is that it hasifiignt statistical and
systematic error [Greenberg et al. 1997]. Therefore, ibimmon to fit measured data to
a BRDF model by projecting the data onto one or more smoothesufe.g., [Lafortune
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The Halfway Vector Disk for BRDF Modeling . 3

Fig. 2. Reflective spheres in a constant environment usirfigrdift BRDFs. Top row: Ward, Ashikhmin-Shirley,
Blinn-Phong. Bottom row: Our data-fitting BRDF, Cook-Tawce, our empirical BRDF.

et al. 1997]). Empirical models with intuitive parameteam @lso be used to fit measured
data (e.g., [Ward 1992]). Such models are convenient bedhey have few parameters,
but they may not include subtle features such as retrorifiect

General purpose, physically plausible BRDF models arecdiffto formulate, because
the constraints imposed by reciprocity and energy consiervare not easily satisfied
by a simple mathematical expression. Most empirical BRDE@®enforce reciprocity
at the cost of energy conservation (e.g., [Lafortune et @971 Ashikhmin and Shirley
2001]). In such models, the lobes of the BRDF may extend bétevsurface. Therefore,
these models predict that some of the light reflected fromrfasel comes from below
the surface, a situation that is physically impossible. d@ears based on such models
will attempt to gather light coming from below the surfacejigh cannot contribute to
outgoing light. Visually, this phenomenon appears as tlighkage”: the loss of energy at
near-grazing viewing directions causes surfaces to apjaeker near silhouette edges.

Other BRDF models produce energy, which also violates gnswgservation. For ex-
ample, any model with a constant diffuse component combimiéld a Fresnel-varying
specular component produces energy, because the spesufagoes to unit volume at
grazing angles (e.g., [Schlick 1994]). Figure 2 shows spheendered using several
common BRDFs in a uniform radiance environment. A spheraguan ideal energy-
conserving BRDF would not be visible; it would reflect all fight from the environment
at each point of the sphere, so every point on the sphere vibmuttle same color as the
environment.

For BRDF models in Monte Carlo rendering, it is useful to bleadimportance sample
the BRDF. That is, for a given, it should be practical to generate a directional sample
@ with density functionQ(d&y ) that has the following property:

Q&) ~ p(&, ) (@ -N). (3)
Depending on the form of the BRDF model, this is not alwayssjiide (see [Ashikhmin
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4 . Dave Edwards et al.

and Shirley 2001]), but in some cases it is (e.g., [Laforteinal. 1997]). Ease of sampling
is usually achieved by making the cosine-weighted BRDFgiratiele, and making sure
that the resulting indefinite integral has certain invargicoperties [Pharr and Humphreys
2004].

So far, no general-purpose empirical BRDF model enforcdis boergy conservation
and reciprocity while allowing efficient importance sampgli For this reason, different
models are used for different applications, depending enpttiorities of the rendering
system. Although most BRDF models value reciprocity ovegrgy conservation, both
components are important for physically accurate BRDF nsod@ur main goal in this
research is the creation of a framework for BRDF models thfatrees energy conservation
at the cost of reciprocity. The framework uses simple prditallensity functions on a
bounded, planar domain to describe energy-conserving BRIFsing this framework,
we have developed a new empirical energy-conserving BRD&emoThis model can
represent many different reflectance effects using a sraatber of parameters. We have
also developed a similar BRDF model that does not conseesmeiut is useful for fitting
measured BRDF data. Both new BRDFs can be efficiently sampled

In the next section, we describe a framework for specifyingrgy-conserving BRDFs.
Section 3 describes a bounded planar domain that can be utethe/framework to de-
scribe BRDF properties. In Section 4, we describe an engbieisergy-conserving BRDF
model that we designed using our framework. Section 5 dest@mnother BRDF model
that is useful for fitting measured data.

2. A FRAMEWORK FOR ENERGY CONSERVING BRDFS

In this section, we describe a mathematical constraintwfibforce a BRDF to conserve
energy. Initially, we describe this constraint in terms adlgability distributions on the set
of incident light directions. Ultimately, we show how we daansform the set of incident
directionsd into other domains while continuing to preserve the coirstra

An energy-conserving BRDF must follow the constraint imgub$y Equation 2. For
our framework, we will assume the BRDF satisfies an equaiiyeiad of an inequality:

v, [ p(@,@)(@-R)da(@) - 1 (@)

This form of the equation allows us to represent a purelyctile surface, which perfectly
conserves all light energy. To represent more general rabge can multiply by a co-
efficient (i.e., the albedo of the surface) to account foogttson of different wavelengths
of light. This ensures that all energy lost is due to lightapton within the surface, a
phenomenon that has a physical basis. Therefore, if we csigrdBRDFs for which the
equation holds, we can guarantee that they will conserveygne

A BRDF has two parameters: the direction toward the incitight &, and the direction
toward the viewer of outgoing lighfy,. Both of these parameters are unit-length direction
vectors, and hence lie in a two-dimensional domain; nantefyhemispher®, above the
surface. For the rest of this discussion, we will assumedfas given (as it is in a Monte
Carlo renderer). In this case, the BRDF becomes a functiomlgféy. This version of the
BRDF is a function defined on the two-dimensional dom@in

Since the value of the integral in Equation 4 is 1, we can aiew the function:

Q(@) = p(&, @) (@ -N), (5)
ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.



The Halfway Vector Disk for BRDF Modeling . 5

as a probability density function (PDF) over the set of iecitidirectionsy on the hemi-
sphere. Rearranging this equation gives us the following fof the BRDF:
~ A Q&)
P&, a) @ N)
The key to our framework is that as long @scy) represents a PDF on the hemisphere
Q. , the corresponding BRDP will be energy-conserving. This formulation allows a
great deal of freedom, since for a given directioy) Q(&) can be any PDF.

However, it can be difficult to design a PO &) that corresponds to a visually plau-
sible BRDF. For example, phenomena like off-specular réflecannot be easily formu-
lated in the space of incident directions [Blinn 1977; Ngaale2004]. We now describe a
domain in which is it easier to create PDFs that correspomrahéngy-conserving BRDFs.

Many BRDF models have used thalfway vector
AT )

16 + G|

In addition to having a long history of use (e.g., [Torrancel &parrow 1967; Blinn
1977]), the halfway vector has been used in many recent BRDé&eta [Rusinkiewicz
1998; Ashikhmin et al. 2000; Ashikhmin and Shirley 2001;rktet al. 2005]. Ngan et
al. [2004] have discussed some underlying reasons for tidshave shown empirically
that BRDFs based on the halfway vector yield more visuabyipible results than BRDFs
based on the incident directiaiy. Another advantage of the halfway vector is that in a
microfacet-based BRDF model, the veckbrequals the normal vector of the microfacets
responsible for reflection.

Torrance and Sparrow [1967] showed that the RQ(l&y) over incident directions is
related to a PDla(I:I) over halfway vectors by the formula:

(6)

|:|:

~_dH)
A@) =z ®)
Combining Equations 6 and 8 gives us the following form of BRDF:
- q(H)
W, o) = —F—= A A - 9
P = 2 @) ©)

Once again, as long agH) is a PDF on the set of allowable halfway vectors (i.e., those
vectors that for a givedy, correspond tay in the hemisphere), the corresponding BRDF
p will conserve energy.

Itis easier to describe visually plausible BRDFs using P&the set of halfway vectors
than it is using PDFs on the set of incident light directiois effect, we are specifying
a virtual microfacet distribution for eaaky, that corresponds to the reflectance properties
of the surface. For many surfaces, the distribution of nfg@et normals is more intuitive
than the distribution ofy for every ay. An added benefit of the microfacet-based view
is that we can adjust the halfway vector PDFs to create the sésunal phenomena as the
shadowing and masking terms in other microfacet-based BRbDdels.

Although halfway vector PDFs are more convenient than PEsiacident directions,
for a given &y, the set of allowable halfway vectors is a subset of the heineie that
changes in a complicated way @s approaches a grazing angle. Because of this complex-
ity, it is not easy to define PDFs on the domain of allowablé#tea} vectors.

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.
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Fig. 3. The set of legal halfway vectork

Ideally, we want to find a domain that allows us to easily deflbé-s that correspond to
visually plausible, energy-conserving BRDFs. In the rdghis section, we assume that
such a domain exists and explain the relation of PDFs to BRFthis domain. In the
next section, we give a specific example of such a domain.

We define an arbitrary domaihand a bijectiorf (I3|) = h between valid halfway vectors
on the hemisphere and poirﬁs’n D. We also define a PDE(F}) over points inD. We
equate differential probabilities betweBrandQ.. using the equation:

p(h)du(h) = a(H)dQ(H), (10)
wheredy is the differential measure over. Combining Equations 9 and 10 gives:
. nydu(h
p(@, ) = -~ MAH) an

4(@-N)(@ -H)dQ(H)

This equation shows that any P[H{ﬁ) defined onD corresponds to a unigue energy-
conserving BRDFp. This allows us to define an energy-conserving BRDF in terfres o
distribution onD. If we chooseD intelligently, it should be easier to describe physically
plausible BRDFs by reasoning about PDFs in that domain.eSiveuse halfway vectors
as an intermediate domain, a BRDF created using this framkeglwuld have the same
advantages as BRDFs based on halfway vector distributions.

We sample the BRDF (e.g., for path tracing) by generatlngrapwpomth € D accord-
ing to p( ). Then we transfornh into its equivalent halfway vectdf using the equation:

H=f1(h). (12)

The inverse off must exist becausé is a bijection. Finally, we transforrdl into its
equivalentdy using the equation:

@ =2(Gp-H)H — . (13)

We then uséy to sample the incident radiance.

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.



The Halfway Vector Disk for BRDF Modeling . 7

Yes

Fig. 4. The disk domain viewed ifu,v) space.

3. EXAMPLE TRANSFORMATIONS

In this section, we give an example of a new domain for halfwegtor distributions using
the framework described in the previous section. The newadlorhas properties that
make it a useful space for halfway vectors. We show two trangdtions between valid
halfway vectors and points in the new domain, and discusesufrthe properties of the
transformations.

The unnormalized halfway vectét can be expressed as:

H=a& + . (14)

Assuming thaty, is given, we visualize the set of all suthby translating the hemisphere
Q., corresponding to all possibl&, so that the center of its base lies at the tipagf
(see Figure 3). Every point on the translated hemispheresponds to an unnormalized
halfway vector.

We then transform halfway vectoks on the hemisphere to poinEson the base of the
hemisphere, shaded in gray in Figure 3. This allows us teessmt halfway vector distri-
butions on a unit-radius disk parallel to the surface. Neumet al. [1999] also showed a
projection onto a disk to be useful for BRDF sampling. Thekdésa useful domain be-
cause it is planar and bounded, and for intelligently chassrsformations, we can easily
define PDFs that correspond to visually plausible BRDFs.

Given orthogonal vectons andv'defining the local orientation of the surface, points on
the disk can be uniquely defined by theirandv-coordinates (see Figure 4). Although
pointsh on the disk are three-dimensional, we can think of them asdiwensional points
in (u,v) space by dropping their normal-direction component. Théme us to think of a
PDF p(h) over points on the disk as a two-dimensional PDFurv) space.

Below, we describe two useful transformations between ¢émei$phere of unnormalized
halfway vectors and the disk.

3.1 The scaling projection

The first transformation scales the halfway vector untitifidies in the base of the hemi-
sphere (see Figure 5). Given an unnormalized halfway vétidhe corresponding point
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Fig. 5. The scaling projection.

hon the base of the hemisphere is:

=

fo (@ Ny (15)
(H-N)
We refer to this transformation as teealing projection .
We now solve Equation 10 for the scaling projection. For tlisain,du(h) is simply
dAon the disk. Based on the geometry of the vectors, we find:

do(f) = cos@idél(h)
il

—~

(16)

where 6, is the angle betweeh and the surface no[mél. In the scaling projectiorﬁ
points in the same direction as the unit halfway vettoso:

costh = (H -N) 17)
and using Equation 15:

22 (Qp-N)?

h| =-5—+=. 18

IRl = Ry (18)

Combining these equations, we find that:

du(f) (@R

dQH)  (H-N)3’

(19)

Therefore, a PDE)(F]) over the disk defines a corresponding energy-conservingBBRD
~ A p(h) (- N)2

W, W) = — =& o3

PO B = 2 Ry@-A)A R)?

In the scaling projectiorﬁ points in the same direction &b To importance sample the
BRDF, we generate a poihton the disk according to the PDgth), and normalize to get

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.
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The Halfway Vector Disk for BRDF Modeling . 9

a unit halfway vector:

We then use Equation 13 to generate an incident diredafioto sample the incoming
radiance.

The scaling projection has two main benefits. (inv) space, the origin corresponds
to the surface normdll, which is the halfway vector yielding perfect specular resften.
PDFsp(ﬁ) with high values near the origin yield “shiny” BRDFs.

Furthermore, the center of the disk corresponds to a halfwetor in the retroreflective
direction. Thus, we can create retroreflective materialsldfining PDFs that have high
values near the center of the disk.

3.2 The orthogonal projection

The second transformation maps the halfway vector to tHealeng the direction of the
surface normaN (see Figure 6). GiveHl, the corresponding poititon the disk is:

h=H-(&-N)N. (22)

We refer to this transformation as tbhethogonal projection B
We now solve Equation 10 for the orthogonal projection. OCagain,du(h) is justdA
on the disk. In this case, we have:

du(h) _ &+ (@ -N)

L = . . (23)
dQ(H) (@-H)
The resulting BRDF is:
o p(h)|@ + G
p(&, ) = W (24)

To importanceﬁsample Ehe orthogonal projection, we geaeraample poirﬁ on the disk
according top(h). Fromh we computeH:

H=h+(a-N)N. (25)

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.
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Fig. 7. Cross sections of BRDF lobes using different pragest but the same underlying PO#th). The left
image shows lobes using the scaling projection, the right @neing the orthogonal projection. In each image,
lobes are shown for outgoing angles at 0, 20, 40, and 60 degtexbes from the scaling projection are wide
and exhibit primarily off-specular reflection. Lobes fronethrthogonal projection are narrow and centered on
the direction of perfect reflection. Lobes in both images bezonuch larger as the outgoing angle approaches
grazing.

We then normalizéd to get the unit halfway vectdfl and proceed as when importance
sampling the scaling projection.

As in the scaling projection, the origin ifu,v) space corresponds to the normal direc-
tion. In general, we found the orthogonal projection moreusate for fitting measured
BRDF data than the scaling projection.

3.3 Differences between the projections

Although both projections map halfway vectors into the satomain, the correspond-
ing BRDFs differ. Using the same PQF(E) on the disk, the BRDF produced by the
scaling projection will have wider, less intense lobes tttenBRDF produced by the or-
thogonal projection. In addition, the lobes in the scalingjgction BRDF will exhibit an
off-specular peak that has been shown to be beneficial im otbdels [Torrance and Spar-
row 1967]. See Figure 7 to see shape differences between Bétiak from the different
projections.

4. A NEW EMPIRICAL BRDF

To describe the distribution of projected halfway vectangtee disk, we define a PDF on
the disk in(u,v) coordinates. The PDF should allow distribution of pointstie disk in
a controlled way. Because the disk is finite, the PDF canneg Irdinite support. There-
fore, we approximate a two-dimensional Gaussian disiobuising the following “lump”
function:

n+1
TR2

- 2
_|lh=¢]
R2

p(h) = 1 : (26)

The equation describes a unit-volume lump centerddlveith radiusR. The exponenh
describes the tightness of the lumpnif= 0 the function is a uniform distribution, as
approaches infinity, the function approaches a delta fanctrigure 8 shows variations in
the lump function for different values &t andn.

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.



The Halfway Vector Disk for BRDF Modeling . 11

Fig. 8. Cross sections of the lump PDF. Curves on the left hawgliasR = 1, and curves on the right have
R=0.5. In each graph, the black (lowest) curve has exponestl, the red (middle) curve has= 5, and the
blue (highest) curve has= 10. Both graphs use the same scale. In general, the functmmiss higher and
narrower afR decreases arincreases.

The lump function is a convenient PDF for several reasonschangingt, we center
the lump at that point on the disk. For a givérnwe setR to ensure that the entire lump
lies within the disk. Changing controls the variance of the lump’s distribution. Since the
lump has unit volume, any distribution defined as a sum of swietps will be a PDF as
long as the sum of coefficients is equal to 1.

We make the lump anisotropic by allowing it to have differeadii in thet andv direc-
tions. This elliptical lump function is:

¢+l (hi—cu)?  (h—¢))? "
M) = e |- R~ R
v RU RV
whereR, andR, are the radii of the elliptical lump in théandV directions, respectively.
WhenR, = R, this form of p(h) is the same as the form in Equation 26.

Note thatR, andR, need to be set such that the lump stays completely on thelélthis
is not done, the PDF will not have unit volume and the resglBRDF will not conserve
energy.

For rendering purposes, it is useful to generate samplelsendisk weighted according
to the lump p(ﬁ). This is easiest in polar coordinates; given uniform randammbers
(é1,&2), we find the polar poinr, 8) to be:

(r.0)= (R\/l—”i*\l/a 2rr<$z> . (28)

The resulting sample poifitin (u,v) space is:

h =&+ (rcos@,rsing) (29)

; (27)

In practice, the easiest way to sample an anisotropic luntp generate a sample on
an isotropic lump with radiu® = 1 and then scale the resulting sampleRyin the U
direction andR, in theV direction to obtain an anisotropic sample.

We construct our empirical BRDF from a Lambertian diffusenponent and an energy-
conserving specular component of the form in Equation 11 ug¢ethe scaling projection

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.
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to transform halfway vectors into points on thev) disk because it allows easy represen-
tation of retroreflection and off-specular reflection.

We use Schlick’s approximation of the Fresnel term [1994jlemd between the diffuse
and specular components:

F(8) =Fo+ (1—Fo)(1—cosh)>®, (30)
whereFy is the reflectance at normal incidence. For dielectrics véfractive index:
2
n-1
=|— 31
= (1) @)

which ranges from about 0.02 to 0.07 for common dielectifitcpuation 31 works well in
practice even for non-dielectrics, such as metals [CooKTanchnce 1982].

For the specular component of our BRDF, we use a weighted $uwoaunit-volume
lumps, one centered on the surface normal direction andemtered on the retroreflective
direction. This allows us to easily control the reflectivepperties of the surface. Our em-
pirical BRDF uses the scaling projection to easily spedflyareflection and off-specular
reflection. Therefore, the corresponding PDF on the disk is:

Ns

- 2
L

R2

R [ W
T[Rr2 - er
wherek € [0,1] is a weighting coefficient that blends between specular atifle and
retroreflection,Rs and ng are the radius and exponent of the specular lump Rndnd
n, are the radius and exponent for the retroreflective lumprdemto constrain the lumps
to stay on the disk}- must be no greater than 1, aRgdmust be no greater thgt—sin6;),
whereb, is the angle betweed, andN.

Given p(h), our empirical BRDF is:

Cq

m

plf) = (1-K =27

S

1 1

] : (32)

p(f) (@ R)2
4@ -N)(@-H)(H-N)®
The BRDF has seven parametéts.is the diffuse colorfy is the specular color at normal
incidence, and, R, ns, Ry, andn; are as explained above. An anisotropic BRDF requires
two additional radii parameters for the lumps: one for thecsgar lump and one for the
retroreflective lump. In practice, many of the parameterstmignored for a given mate-
rial; for example, if a material does not have a retroreflectiomponentk can be set to 0
andR; andn; are not used. An isotropic material without retroreflectiam be modeled
using 4 parameters: the cold@g andFy, and the scala®s andns.

All BRDF parameters can vary with respectdg because even thoughjﬁ) changes, it
remains a PDF on the disk. In practice, we assumeQhafy, andk are constant over all
Gx. As &y, changes, we s&s andR: to their maximum allowable values explained above
and chang@s andn, to generate the material properties we desire. In genéralandn,
increase asy, approaches grazing, the material will appear shinier;df/tHecrease, the
specular- and retro-reflections will appear blurrier. QGiiag these parameters with respect
to Gy, allows the model to generate some of the same visual effedtseashadowing and
masking terms in other halfway vector-based BRDF models.

Our empirical BRDF model allows a great deal of flexibilitysupports diffuse, specu-
lar, and retroreflective materials with a small number obpagters. Because of its formu-

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.
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The Halfway Vector Disk for BRDF Modeling : 13

Fig. 9. Various anisotropic spheres rendered with our ecgliBRDF using an HDR environment map for
illumination.

Fig. 10. Left: A road at night rendered using diffuse reflestoRight: Using retroreflectors modeled by our
empirical BRDF.

lation, it is guaranteed to conserve energy: Figure 2 shosghare in a constant environ-
ment rendered with our BRDF. As expected, the edges of therspre invisible because
each point on the sphere reflects all of the incident light.

We have rendered several scenes using our BRDF and found pratiuces visually
plausible results (see Figures 9, 10, and 11). We can alsieetly importance sample
our BRDF.

5. DATA FITTING

Our empirical BRDF is based on physical principles, so itutidoe able to mimic the
reflectance properties of real materials. To test this tgbilve obtained data from the
MIT/MERL BRDF Database [Matusik et al. 2003] for three méitx: metallic blue paint,
nickel, and plastic. This dataset contains some of the vasibhle measured BRDF data
and has been used in several other recent papers. All niaterthe dataset are isotropic.

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.
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Fig. 11. Top left: Using Lawrence et al.’'s factored BRDF a232amples per pixel. Top right: Reference image
for the Princeton scene rendered using measured BRDF dag225 $amples per pixel. Bottom left: Using
our data-fitting BRDF with two simple analytic basis funcscet 1225 samples per pixel. Bottom right: Using
our empirical BRDF with one analytic lobe at 1225 samples peelpilnsets show a difference between the
reference image and the rendered image, where darker poofitins difference image indicate higher disparity.
All difference images in the figure are normalized using the sscae factor for improved visibility.

We further assumed that the retroreflective component &f meaterial was negligible, and
we attempted to adjust the parameters of our empirical BRI the measured data.

We found that our empirical model could not fit the data welbwyh to produce a
visually identical rendering. Despite this fact, the odatptoduced by our BRDF looks
visually plausible. Figure 11 shows the closest match betwtbe measured data and
our BRDF. The figure is based on a similar image from Lawrenad.2004]; the only
difference is that we reused measured-data materialsddatiie and the vase (nickel and
plastic, respectively) instead of a Cook-Torrance BRDHsTdinange allowed us to see
more clearly how our BRDF fit measured data, especially orfl#tgabletop where the
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¥y

Fig. 12. Comparison of sampling performance. Left: The scendered using Lawrence’s factored BRDF at
400 samples per pixel. Right: Using our data-fitting BRDF & d@mples per pixel. Insets show a closeup of the
highlighted region for both models.

viewing vectors are near grazing angles.

After examining the data, we found that it was not consisiétit an energy-conserving
BRDF. This inconsistency is probably due to measuremergenaspecially for angles
near grazing where measurement is difficult; this behavéasriieen noted before with this
data set [Lawrence et al. 2004]. It should also be noted thatisect measurement of real
reflectance will include effects such as subsurface saagtewhich in general cannot be
represented by a BRDF model. For example, the material piepef the metallic blue
paint are very different from those of plastic and nickel. #8sume that the material is a
spray paint made from metal flakes suspended in a substratde§1998] has noted that
when such materials are measured in laboratories, the mesasats appear to violate the
reciprocity constraint for BRDFs due to subsurface effects

Since we were unable to fit our empirical model closely to taggdwe built a software
tool to examine the distributions of halfway vectors on tlekdising either the scaling
projection or the orthogonal projection. The tool allowstagxamine how the halfway
vector distribution changes &g, changes. To fit our BRDF to the measured data, we tried
both nonlinear optimization and hand fitting using our saftwtool mentioned above. In
general, we could fit the data much better by hand, and aféstipe with the fitting tool,
we were able to perform by-hand fits almost as fast as the @atiiton software.

We found the distribution for all three materials shows &ambehavior: it is approxi-
mately constant ady, goes from normal incidence to the point whégds approximately
2. From that point untiliy, approaches grazing angles, the distribution tightensrafou
the normal direction. See Figure 13 for screenshots of aimdisoftware showing the
distribution of halfway vectors for a plastic material fofferent values of,.

Based on the behavior we saw in the halfway vector distidimsti we developed a new
BRDF model to better fit the measured data. None of the mecdsuagerials show perfect
reflectance at grazing angles, so for our data-fitting BRD¥changed the Fresnel term to
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Fig. 13. Screenshots of our BRDF-fitting software showiregdistribution of halfway vectors of a plastic material
on the disk for different values a@h,. Data points from the measured data are shown in red and gimntsour
data-fitting model are in blue. From top to bottom, the anglevben the surface normal ang is 0, 15, and 30
degrees for the left-hand images, and 45, 60, and 75 degretreefaght-hand images. Note that the disk shifts
from image to image because it is centeredigrin (u,v) space.

allow blending between a specular color and another colmri{acessarily white):
Frit (60) = Fo+ (Fy — Fo)(1— coso)® (34)

We also found that using the orthogonal projection madestegdo fit the measured
data. Instead of fitting a specular lump and a retrorefledtivgp, we used a PDF based
on two specular lumps with different exponents. Summing sweh basis functions gave
us additional flexibility in fitting and is consistent withegtapproach found in other data-
fitting methods [Lafortune et al. 1997; Lawrence et al. 200&Jan et al. [2004] has shown
that using a second such term in a BRDF model can reduce fitiog by more than 20%.
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To fit the measured data, we used the following PDF on the disk:
- 29 M2
1 h
ny + IRy ] . (35)

o) = (-

- 29M
IR et
nR,?

R2 R,2

As in the empirical modek € [0, 1] is a weighting coefficient; it blends between the two
specular lumpsR; andn; are the radius and exponent of the first specular lumpRand
andn; are the radius and exponent for the second specular lump.oWwenger constrain
the values oR; andR; to keep the lumps on the disk. This leads to energy loss in our
BRDF, but similar energy loss is apparent in the data.

Given p(h), the BRDF we used to fit measured data is:

()@ + >

P(@, @) = (1~ Fre(60)) o + Fre(60) 2 1

(36)
As with our empirical model, the parameters can vary witlpees tod,. We left most
parameters constant; however, we achieved the best resultsreasing the larger of;
andn, as Gy approaches grazing, and by changktp increase the importance of the
corresponding lump. Although this BRDF model does not comesenergy, in practice it
still loses less energy than many other empirical modelgurei 2 shows an example of
our data-fitting BRDF in a constant environment.

Figure 11 shows the results of fitting this BRDF to the measdaga. \We compare our
results to an image using the measured data directly and ageimnsing a factored BRDF
representation. Although our method uses only a few paensietur image is as good as
the table-based factored representation and requiresttasge.

Overall, we found that fitting distributions in halfway vecspace was simple. Despite
their different properties at normal incidence, all threatenials showed similar behavior
toward grazing angles, which is consistent with opticabtlye Furthermore, using a sum-
of-basis-functions approach allowed us to better fit thesuesd data. Theoretically, we
could improve our fit by adding more lumps to sample the diskydver, results with only
two lumps are excellent.

6. CONCLUSION AND FUTURE WORK

We have presented a framework for transforming halfwayarsdnto different domains
such that the corresponding BRDF will conserve energy. We tshown that a unit-
radius disk is one such domain that allows us to easily speeiftain BRDF properties
such as specular- and retro-reflection. Using our frameweekhave created an empirical
energy-preserving BRDF that exhibits visually plausibédévior. Because of the energy
conservation constraint, our model works especially wedirrgrazing angles, where other
models exhibit artefacts due to energy loss. Our empiri€dDB allows the user to specify
diffuse, specular, and retroreflective materials with alsmanber of intuitive parameters.

We also presented a BRDF model useful for data fitting; aljhatidoes not preserve
energy, it uses the same halfway vector distribution domathe first model. This data-
fitting BRDF can be used to match measured data extremelyusield) a small number of
parameters. Although the space required by our model is 8 Baxtion of that required
by measured data or factored representations, we can tdupe images that closely
match measured BRDFs for a variety of materials.
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Fig. 14. Left: Scene rendered using our data-fiting BRDEgqahown in Figure 11). Right: The scene rendered
using our data-fitting BRDF witldy andéy, exchanged.

While producing our mathematical framework, we realized tha ability to examine
halfway vector distributions in different domains is a pofuétool. In the future, we plan
to investigate domains other than the disk. It would be &ggng to find a single domain
or a small set of domains that allow us to describe halfwayoretistributions for all types
of materials.

We will also investigate different distribution functiofise., other than our lump func-
tion) to see if new functions can better approximate moreperimaterials such as fab-
rics. Of course, different functions might work better iffelient domains: for example, if
we transform halfway vectors into an infinite two-dimensibdomain, we should investi-
gate distribution functions with infinite support.

Our current empirical BRDF does not enforce reciprocity. Walge found that although
this gives noticeable differences near grazing angles wheeimcident and outgoing direc-
tions are swapped, the final results of our model are stillallg plausible (see Figure 14).
Nonetheless, it would be useful to develop a framework fdormg reciprocity as we
have done with energy conservation.

Finally, we removed the energy conservation constrainhfaur BRDF in order to
fit measured data. Our data-fitting BRDF exhibits energy lmssause our distribution
functions stray outside the domain of legal halfway vectorsertain outgoing directions
Gx. One way to compensate for this would be to scale the digimibdunctions to make
up for the lost volume over the disk. We hope to find a simple t@agpproximate this lost
volume so that we can enforce energy conservation with diarfitting BRDF.
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