
Interactive Editing and Modeling of Bidirectional Texture Functions

Jan Kautz
University College London

Solomon Boulos
University of Utah

Frédo Durand
MIT – CSAIL

Abstract
While measured Bidirectional Texture Functions (BTF) enable im-
pressive realism in material appearance, they offer little control,
which limits their use for content creation. In this work, we inter-
actively manipulate BTFs and create new BTFs from flat textures.
We present an out-of-core approach to manage the size of BTFs
and introduce new editing operations that modify the appearance of
a material. These tools achieve their full potential when selectively
applied to subsets of the BTF through the use of new selection op-
erators. We further analyze the use of our editing operators for the
modification of important visual characteristics such as highlights,
roughness, and fuzziness. Results compare favorably to the direct
alteration of micro-geometry and reflectances of synthetic reference
data.

Keywords: BTFs, editing, material appearance

1 Introduction
Manipulating material appearance remains challenging for content
creators. For complex materials, Dana et al. [1999] introduced
thebidirectional texture function(BTF), a sampled 6D data struc-
ture parameterized by position (x,y) as well as light (ωi) and view
(ωo) direction: b(x,y;ωi ,ωo). Essentially, BTFs are textures that
vary with view and light direction and are acquired by taking pho-
tographs of a material under many view/light configurations (ide-
ally an orthographic view and directional white light). BTFs can
represent a rich class of appearances: from simple materials like
plastic to complex ones, such as cloth, that have important meso-
structures and exhibit complex lighting effects such as shadowing
and masking. This usually makes a BTF slice unlike any analytical
BRDF model. Renderings done with acquired BTFs are extremely
realistic since they contain all the subtleties of real materials.

A current major limitation of BTFs is that the user is limited to
the measured data and cannot easily modify the material appear-
ance. BTF editing is vital to make BTFs a practical appearance
model and to offer better return on investment from BTF acqui-
sition by enabling different appearances from the same measure-
ment. However, editing BTFs is challenging since the input data is
high-dimensional and does not directly encode information about
the material, such as geometry or reflectance.

We introduce a set ofediting operatorsthat enable the manipula-
tion of view- and light-dependent BTF effects (Fig. 1). For effective
editing, these operators can be restricted to work on subsets of the
BTF, e.g., shadow areas, usingselections. Operators and selections
work directly on the raw BTF data without reverting to an approx-
imate representation, but may leverage material-specific informa-

Original Wool Stripe Golden Wool

Red Stripe Lint Logo

Figure 1: Successive edits applied to knitwear using our system.

tion. Furthermore, we propose an out-of-core editing architecture
that enables interactive BTF manipulation despite large data sizes
and computation times, calledBTFShop. The combination of these
three components allows for effective and interactive BTF editing
as well as modeling from simple 2D textures.

Our approach is inspired by photo-editing tools such as Adobe
Photoshop. We focus on visually plausible, albeit not necessar-
ily physically correct editing. We exploit inverse algorithms such
as shape from shadow when possible but often fall back to much
simpler heuristics to modify an aspect of a material. This focus
on simple phenomenological manipulation is both the strength and
the limitation of our technique. On one hand, we preserve the
material’s richness because we directly manipulate the BTF data.
Furthermore, the parameters of our operators usually have a direct
mapping to visual characteristics such as tone distribution. On the
other hand, we cannot expect to precisely modify the full range of
physical effects, as we do not model the physics of the underlying
material. Our results show that despite such limitations, we enable
a wide range of material modifications.

1.1 Related Work

BTFs were introduced by Dana et al. [1999] and a good overview
is given by M̈uller et al. [2005]. Our work is orthogonal and com-
plementary to the acquisition [Dana et al. 1999; Sattler et al. 2003;
Koudelka et al. 2003; Neubeck et al. 2005; Ngan and Durand 2006],
compression [Sattler et al. 2003; Koudelka et al. 2003; Vasilescu
and Terzopoulos 2004], rendering [Sattler et al. 2003; Suykens et al.
2003; Meseth et al. 2004] and synthesis [Tong et al. 2002; Koudelka



et al. 2003; Haindl and Hatka 2005] of BTFs. Our system takes ac-
quired BTF data as its input and allows a user to modify the data.
Any BTF rendering or synthesis technique can then be used.

BTFs are traditionally encoded as raw data, but material-specific
parametric representations exist [Dana and Nayar 1998; Ginneken
et al. 1999; Cula and Dana 2001; Haindl et al. 2005; Magda and
Kriegman 2006]. We focus on general BTFs and do not use an
approximate representation of BTFs.

Little attention has been paid to BTF editing. Zhou et al. [2005]
“paint” BTF patches onto surfaces with seamless blending between
different BTF samples. Editing of the BTFs themselves is not sup-
ported. Dong et al. [2005] proposed self-similarity based editing for
bump maps and BTFs (encoding only light variation), and Dischler
et al. [1999] introduced a system where a user interactively edits
the 3D meso-structure of a surface. Our approach is different; we
enable the user to edit all major visual phenomena that are encoded
in a BTF and are not limited to BRDFs or other subsets of BTFs.

Editing BRDF parameters is very common and most 3D content
creation applications (like Maya or 3D Studio Max) have a mate-
rial editor. Interactive editing of BRDFs is possible [Colbert et al.
2006], even for measured spatially-varying BRDFs [Lawrence et al.
2006]. The latter technique also avoids fitting a parametric model
and instead works with acquired data. However, these material edi-
tors do not allow users to create or modify complex materials, such
as wool, which cannot be represented through a BRDF.

Part of our work is inspired by studies that relate material prop-
erties with simple image characteristics such as contrast, [Pont and
Koenderink 2002], pixel histogram [Dana and Nayar 1998; Gin-
neken et al. 1999; Leung and Malik 1997], and sharpness [Fleming
et al. 2004]. Recent work has also shown that the appearance of
a material in a photograph can be significantly altered with simple
editing [Adelson 2001; Khan et al. 2006]. We use these observa-
tions and enable the user to change a BTF’s appearance through
operators and selections that act on such image characteristics and
evaluate their effect with synthetic reference data.

1.2 Overview

A BTF can represent visually rich materials because it encapsulates
the result of the complex interaction of lighting, normals, surface
reflectance, shadowing and masking, parallax, and inter-reflections.
Essentially, each spatial 2D slice of a BTF corresponds to the im-
age of a 3D scene (the material’s micro-geometry and local BRDF)
rendered with the full rendering equation for a given directional
lighting ωi and a given view directionωo. A BTF texel with spatial
coordinatep and directionsωi andωo corresponds to

b(p;ωi ,ωo) = fr (p
′,Rnp′

(ωi),Rnp′
(ωo))(np′ ·ωi) ·V(p′,ωi) +

∫

b(q′;ωi ,−ωs)dωs
(1)

wherep′ = ray(p,ωo) is the intersection point closest to the viewer
(which incorporates masking effects) in directionωo (which ac-
counts for parallax),fr is the BRDF,R rotates the global directions
ωi/o into the local coordinate system atp′ with normalnp′ , V is
the visibility (corresponding to shadowing), andq′ = ray(p′,ωs) is
the closest visible point fromp′ in directionωs. This accounts for
direct as well as indirect illumination and corresponds to the ren-
dering equation for a white directional light source in directionωi .
In fact, measured BTFs also implicitly include effects such as sub-
surface scattering.

The equation illustrates why BTF editing is challenging and why
we do not try to invert it. The individual components are not directly
accessible in the data, and depend heavily on each other, e.g., the
BRDF interacts with the local normal, which in turn depends on the
geometry. Reconstructing these components is a very challenging
inverse rendering task. Furthermore, we do not think that it is easy

Reference Reference Reference BTFShop BTFShop

Original Blue Dull Diff.
Painting

Angular
Blur Tool

Figure 2: A synthetic wallpaper BTF (computed using PBRT) is
changed to be more bluish and less glossy by re-creating the BTF
(again using PBRT) as well as using our editing tools: more bluish
with the differential painting tool (hue shift by150◦; Sec. 2.1.1);
reduced gloss with the angular filter (35◦ blur; Sec. 2.1.2). The
differences between our approach and reference BTFs are minor.

for a user to manipulate such micro-scene properties to obtain a
desired material appearance.

Our approach to BTF editing is influenced by previous work on
material appearance and relies on simple manipulations that modify
the raw data directly. As such, our editing tools are often approx-
imate and not necessarily physically correct. Yet, we demonstrate
that visually meaningful modifications that correspond to common
BTF effects are possible. For validation, we compare our results
with synthetic reference BTFs, which we generate by directly ren-
dering micro-geometry within PBRT [Pharr and Humphreys 2004]
(thousands of renderings each with a different view and light con-
figuration). We aim to enable editing of all major components
of a BTF: local shading(reflectance, roughness, shading),geom-
etry (geometric structure, overall height, parallax),shadowing and
masking(removal, modification, creation), andglobal effects(inter-
reflections, translucency, fuzziness).

We introduce our BTF editing operators in Section 2. The full
potential of these operators is achieved, when applied to subsets of
the BTF through the use of selection operators, which we detail in
Section 3. In Section 4, we present the system challenges that inter-
active BTF editing poses and our own solution:BTFShop. Finally,
we show a variety of editing examples and demonstrate that this
approach can also be used to interactively create new BTFs from
simple texture maps (see Sec. 5).

2 BTF Editing Operators
We introduce editing operators that address three major types of
BTF effects: shading, shadowing, and parallax. These operators
are designed to enable effective modification and creation of BTFs,
yet are simple enough to allow interactive editing. We also provide
simpler editing tools inspired by traditional photo editing, and show
that they are surprisingly effective at modifying material properties
such as roughness and fuzziness, especially when applied to subsets
of the BTF.

2.1 Shading

Shading modification is challenging due to interplay with other ef-
fects, such as shadowing and inter-reflections. Care must be taken
not to remove important subtleties that come from this interplay.
We therefore perform modificationsrelative to existing data. We
first present the extension of simple image editing tools to the 6D
BTF domain and assess their effectiveness at modifying material
appearance, before introducing new BTF-specific operators.

2.1.1 Tone and Color Manipulation for Editing Shading

We propose a differential painting tool, which is similar to texture
painting, with the notable difference that changes performed in a
certain view/light configuration (usually top view and fully lit) must
be propagated to all other spatial slices of the BTF while respecting
effects such as shading and shadowing. We use a differential up-
date strategy, where thechangefrom the old value to the new value
(taken from the original and the modified slice) is applied to all tex-



(a) Original (b) Smoother (Reference)

0 1
0

1

(c) Smoother (Curve Tool) (d) Smoother (L./V. Stretch)

Figure 3: Roughness Change. A synthetic stone BTF computed
using PBRT is applied to the Stanford bunny (a). It is changed
in (b) to be less rough by re-creating the BTF with PBRT using a
smoother height field. The same effect is achieved (c) with the curve
tool (Sec. 2.1.1). Qualitatively, the curve brightens dark values, and
darkens bright values, reducing contrast. The light/view stretch tool
(Sec. 2.2) also allows for roughness changes (si/o = 0.4), as seen
in (d). Both tools achieve results similar to the reference.

els at the same spatial location. In particular, we transform the data
into the HSV color space and propagate the difference of the hue
component and the ratio of the saturation and value component to
all the other texels. This ensures that shading and shadowing in-
formation is preserved; highlight pixels can be left untouched with
the appropriate selection. The fourth image of Figure 2 shows that
this differential albedo painting is virtually indistinguishable from
a synthetic reference BTF (second image), which was obtained by
modifying the reflectance of the 3D model used to generate the orig-
inal BTF. Additionally, we provide a hue/saturation/lightness oper-
ator, where the user directly sets the changes that are to be propa-
gated, instead of computing them from a modified BTF slice.

We now adapt tools that modify the distribution of intensities
(tone manipulators) to enable material changes. In particular, we
adapt the ubiquitous “curve” tool used in photo editing to finely
control contrast and brightness distribution. Our curve tool changes
the color distribution (per channel or simultaneously on all), by
remapping each texel of the BTF according to a smooth curve
(Catmull-Rom spline). We build on work by Pont and Koenderink
[2002] who showed that the distribution of shadow pixels and the
contrast of a texture as a function of view angle indicates therough-
nessof a material. We demonstrate that applying tone manipula-
tion to a BTF effectively modifies roughness and hardness without
knowledge of the BTF’s geometry or shading. We use a virtual
stone BTF example generated from synthetic micro-geometry and
a texture map (Fig. 3), whose roughness is decreased by reducing
the height of the synthetic height field. The same perceived change
in roughness can be achieved by applying the curve tool to the orig-
inal stone BTF (Fig. 3c). A major advantage of the curve tool is that
it does not require the solution of inverse problems, such as shape
from shading, which is prone to errors when applied to complex
materials. Yet, it enables the modification of material appearance
that looks like a modification of the micro-geometry. We also pro-
vide a brightness/contrast tool, which is easier to use for brightness-

Less Specular Original More Specular
Figure 4: The specularity was changed using the angular blur (45◦,
applied twice) and angular sharpen filter (45◦, applied twice).

only changes.
Appropriate manipulation of intensity distribution in combina-

tion with selections will also be demonstrated to yield changes in
translucency, fuzziness, inter-reflections, and highlights (Sec. 3).
Discussion Differential painting assumes that there are no strong
inter-reflections. If this is not the case, inter-reflections will be mod-
ified along with the local shading, instead of only the local shad-
ing. Roughness can only be modified with the curve tool when it is
caused by small bumps; the geometric detail of bigger bumps is too
obvious for the curve tool to work. Furthermore, the material needs
to have a certain roughness to begin with, otherwise the curve tool
cannot change the distribution of light vs. dark pixels.

2.1.2 Angular Blur and Sharpen for Editing Specularity

We introduce BTF-specific versions of the traditional blur/sharpen
operations that yield very different effects from their spatial coun-
terparts and alter the specularity of materials. Ourangular blurand
angular sharpenapply a spherical kernelH to the light-directional
samples for each spatial location:

bx,y,ωo(ωi) := (bx,y,ωo ⊗H)(ωi).

We build on theoretical results showing that the specularity of
a material corresponds to its light-angular sharpness [Ramamoor-
thi and Hanrahan 2001]. More specular materials exhibit higher
frequencies in this domain than less specular materials. This is in-
dependent of underlying normals and enables modification of high-
lights using blur and sharpen operations in the angular domain with-
out extracting BRDF and normal information (Fig. 4).

The synthetic wallpaper BTF from Figure 2 is used to compare
this operator with reference data. The greenish leaves are made less
glossy in the third image using PBRT. The rightmost image demon-
strates the same modification using the angular blur operation (us-
ing an additional reduction in brightness with the tone manipulator
as well). There are virtually no differences between the reference
BTF and our modification.
Discussion Ideally, this operator would only modify the under-
lying BRDF. However, visibility as well as indirect illumination is
filtered as well (see Eq. 1). In practice, this makes the material
appear softer, as shadow boundaries are blurred.

2.1.3 Local Frame Rotation

The underlying micro- and meso-structure of a material influences
the shadingdue to variations in local surface frame. OurLocal
Frame Rotationoperator rotates the local frame at each spatial lo-
cation according to a user-specified height/normal map. Looking
up BTF data relative to the new local frame changes the shading in
a manner similar to normal mapping:

bx,y(ωi ,ωo) := bx,y(Rn(x,y)(ωi),Rn(x,y)(ωo)),

whereRn(x,y) is the rotation matrix that rotates the light or view di-
rection into the new local coordinate frame given by the new user-
supplied normaln(x,y). Note that the true normals or reflectances
of the material are not needed since this is a relative operator. Fig-
ure 5 middle shows an example, where we have added a bump to
the wool BTF using this operator.



Original Local Frame
Modification

Adding Shadows
& Parallax

Figure 5: Small bumps are added to the original wool BTF (ren-
dered on a curved object) using the local frame tool and a user-
supplied bump map (Sec. 2.1.3). Then, appropriate shadows are
added (Sec. 2.2) and the underlying structure is changed to account
for the bump (Sec. 2.3).

Discussion Local frame rotation does not modify inter-
reflections, shadowing, and masking accordingly. If these effects
cannot be assumed minor, explicit modification by the user is re-
quired (Fig. 5).

2.2 Shadowing and Masking

Shadows are an integral part of BTFs, caused by the BTF’s geome-
try. Desired editing operations comprise the removal, modification
and creation of shadows.

Shadow Removal Shadow removal is an important, yet diffi-
cult operation. For instance, when modifying BTF geometry it is
needed to fix newly unoccluded areas. Shadow areas need to be
filled in a seamless manner, blending in with the surrounding area,
but efficiently enough to allow for interactive editing. We provide
an automaticShadow Fillerthat leverages information from other
illumination directions to fill shadow regions, without requiring re-
construction of the material’s geometry.

The operator works in two stages. It first fills selected shadow re-
gions (see Sec. 3 for the shadow selection operator) with data from
corresponding top-lit BTF slices:bx,y,ωo(ωi) := bx,y,ωo((0,0,1)T).
By construction, this data does not contain any shadows, which ef-
fectively removes shadows from the selected areas. However, shad-
ing differences appear due to the difference in lighting directions,
see Figure 6. In a second step, the operator adjusts the average
brightness and saturation of the shadowed regions to be equal to the
average brightness and saturation of the unshadowed regions (sep-
arately for each spatial BTF slice), removing any shading differ-
ences; see again Figure 6. It is possible to restrict the unshadowed
region further, such that the adjustment is performed with respect
to similar regions and not overall averages.

Shadow Modification and Creation The manipulation and cre-
ation of shadows does not require a separate operator. Instead, a
special selection operation in combination with tone manipulation
or the shadow filler is used, see Section 3.

Light/View Stretch for Editing Thickness Shadowing and
masking are critical effects of micro-geometry and are a major com-
ponent that makes BTFs different from spatially-varying BRDFs.
The precise geometric factors involved are complex but we propose
simple heuristic tools that enable convincing modifications. Our
Light/View Stretchvirtually modifies the shadowing and/or mask-
ing by stretching the light- and/or view-dependent directional hemi-
sphere of BTF values:

bx,y(ωi ,ωo) := bx,y (Si(ωi),So(ωo)) ,

with Si/o(ω) = (ωx,ωy,ωz + si/o)
T andsi/o being the stretch pa-

rameter. This is similar to the local frame rotation, but the

original

filled in

adjusted

Original Shadows Removed Closeup

Figure 6: The shadows in the BTF are removed with our automated
shadow filler (after shadow selection). The automatic process pro-
ceeds by filling in shadow areas from fully-lit slices, which are then
adjusted in brightness and saturation (see right column).

stretch

originalhemisphere of BTF values is
stretched instead of tilted. This
operator is used to modify
the perceived “thickness” of a
BTF (view-dependent stretch),
which is independent of the un-
derlying geometric structure or
complexity. See adjacent figure,
where we show the view-dependent BTF values for a fixed light di-
rection and how stretch reduces the apparent depth.

Figure 7 shows an example. A grass BTF made of little bent
cylinders is created using PBRT. The thickness of the BTF is halved
using the stretch tool, which compares favorably to re-creating the
BTF with scaled cylinders.

When using the stretch operator, the light- and view-dependent
distribution of shadow pixels changes accordingly, making a sur-
face appear rougher or softer. We confirm this in Figure 3d, where
we stretched the view and light directions, which compares favor-
ably to the reference BTF.
Discussion The shadow removal tool only adjusts average
brightness and saturation of the copied samples, which is not al-
ways sufficient to replicate the shading of the surrounding area.
E.g., materials with strong color bleeding are difficult to handle due
to color changes. Furthermore, the original data is assumed to be
accurate, but in practice there can be noticeable lighting variations
within a spatial BTF slice due to an imperfect acquisition setup.
Figure 8 demonstrates this with the Lego BTF; strong lighting vari-
ations within texture slices prevent accurate adjustments. Yet, we
have found the shadow removal tool to work well if its underlying
assumptions are met. However, it is important to precisely select the
shadow areas — shadows that are not selected cannot be removed.

The stretch operator is effective but inherently modifies the re-
sulting shading, as the light and/or view direction is altered when
looking up BTF values. Said differently, our tool cannot transform
geometry and normals consistently because we do not have such
information. For typical modifications this change in shading is
minor, see Fig. 7 and 3d. It is most noticeable with glossy materi-
als, where the highlight shifts position, see Fig. 8. While the stretch
operator can also be used for modifying roughness (Fig. 3d), the
curve tool allows for better fine-scale manipulation of roughness.

2.3 Geometric Modification and Parallax

The appearance of many materials depends on their meso-structure,
especially for materials that are not very thin. These materials may
then exhibit strong parallax, i.e., texels that share a givenx,y spatial
location in a BTF do not necessarily correspond to the same geo-
metric point on the micro-geometry. This discrepancy needs to be
compensated for during spatial editing. Our approach is to provide



(a) Original (b) Halved Height
(Reference)

(c) Halved Height
(BTFShop)

Figure 7: The original grass BTF (a) is created with PBRT. The
grass is scaled vertically by 1/2 and the BTF is re-created with
PBRT (b). The same effect is achieved using the stretch tool
(so = 0.4), see (c).

a pair of operators that can be used for geometric modification as
well as parallax compensation.
Height Field Extraction For these operators to work, we first
need to extract a height field approximation of the underlying meso-
structure. We exploit the fact that BTFs with significant parallax
exhibit strong shadowing effects and use the method by Daum and
Dudek [1998] to compute a height field from shadows. This algo-
rithm proceeds as follows. The light-varying texture slices from the
BTF (top view) need to be segmented into shadowed/unshadowed
regions, which is assisted by the user using the shadow selection
tool (see next section). An initial, planar surface estimate is then
iteratively refined by “carving” the shadow regions of each seg-
mented texture along the corresponding light direction into the esti-
mate. This results in an approximation of the underlying geometry.
The resulting height field is also useful for several selection opera-
tors, see next section.
Parallax Operators The Parallax Unwarpoperator remaps the
BTF data according to this height field in a fashion similar to

rh

ωo

rd

view warping. Each stored BTF
sample is offset by∆d accord-
ing to the height∆h, which
aligns the resulting BTF slices
spatially, allowing for safe spa-
tial editing. Note that dis-
occlusion issues are not critical
here, as BTFs commonly repre-
sent thin materials and because
the data is intended to be warped back. TheParallax Warpmanipu-
lator maps the BTF data back according to its original height field.
BTF samples are offset back by−∆d, which re-introduces parallax.
Geometric Modification The parallax operators allow a user to
impose a new geometric structure by providing a different height
field during the warping step, see Figure 5 right. This also intro-
duces the correctmasking(occlusion from viewpoint) in the modi-
fied BTF.
Parallax Compensation For very thin or fuzzy materials, paral-
lax is not a critical factor and spatial editing can be performed based
on the top view. Other materials such as the Lego BTF exhibit more
significant relief and parallax must be compensated for. In Figure 9,
we show an example of editing the Lego BTF with warping. As ex-
pected, parallax compensation is necessary here. Even though par-
allax compensation assumes heightfield-like BTFs, it works well
even when the geometry is more complex. See Figure 14, where it
is applied to wool.
Discussion Inspecting commonly available BTFs (see through-
out the paper) shows that the underlying meso-structure of a BTF
is usually thin and heightfield-like, which makes the heightfield-
assumption valid. In fact, most examples shown in this paper were
done without parallax compensation, as the difference is barely no-
ticeable in most cases. However, even with parallax compensation

Original Shadow Removed Original Reduced Height

Figure 8: Left: filling in the shadow of the Lego BTF exhibits small
artifacts, due to shading variations in the BTF data.Right: the
stretch tool effectively changes the height of the Lego (so = 0.8),
but also modifies shading.

(a) Original (b) Unwarp (c) Edit (d) Rewarp
Figure 9: Coloring one dot of the Lego. Parallax effects, see spatial
BTF slice in (a), require the BTF to be unwarped according to its
height field, yielding (b). A spatial selection can now be used to
color the dot consistently for all views (c). Parallax is reintroduced
according to the height field producing the final result (d).

it is difficult to manipulate steep areas, such as the sides of the little
bumps on the Lego, as they cover only a small area in the parallax-
corrected BTF slices, see Fig. 9b and c. Furthmore, modifying the
geometry does not modify any dependent effects, such as shading or
inter-reflections, and needs to be dealt with separately by the user.

2.4 Miscellaneous

Our Copy & Pasteoperator is similar to image editing. In the case
of BTFs, a spatial region is copied and pasted for all view/light
combination. Attention must be paid to parallax and shadowing,
as described above. Figure 1 shows an example, where we have
copied over parts of one BTF to create a different material.

3 Selections
The operators described in the previous section achieve their full
potential when they are selectively applied to subsets of the BTF
throughselections, which are central to our approach. Similar to
image editing, a selection is a per-pixel value between 0 and 1 that
determines how much subsequent operations affect each sample:

bnew(·) := (1−s(·))bold(·)+s(·) f (bold (·)) ,

wheres is the value of the selection,f is the operator, and “·” stands
for the positions and directions. The use of continuous values is
important to enable feathering and smooth gradation of the effect
of an operation in either space and/or angle.

We define two types of basic selection operators: domain-
driven and data-driven. Domain-driven selections choose subsetsof
the spatial or directional domain, while the data-driven selections
choose samples based on their values. Combining and extending
simple selections using Boolean and morphological operations in
the form of aselection treecan greatly increase selection flexibility.

3.1 Selection Tree

We organize selections into selection trees in order to facilitate the
combination of selections.
Boolean Combination Selections can be combined usingunions
and intersections, as well as besubtractedfrom each other. Fur-
thermore, selections can beinverted.
Morphological Operation Morphological operations work on a
single selection and modify its content.Featheringsmoothes a se-
lection by convolving it with a Gaussian kernel. We provide both
angular and spatial feathering.



Original Fuzzy (Reference) Fuzzy (BTFShop)

Figure 10: A bedspread BTF (computed using PBRT) is changed
to include asperity scattering (fine fibers are added). We make
the same change using our angular range selection (Sec. 3.2) and
brightness tool (select view&light elevation angles90◦→ 0◦, in-
crease brightness by.3; select view&light elevation angles90◦→
60◦, increase brightness by.6). The results are very similar.

ErosionandDilation allows a user to shrink or grow a selection
spatially. We extend erosion and dilation, such that it can be per-
formed in light- or view-dependent way: a selection will be eroded
or dilated only along the light- or view-direction for a given BTF
slice, which is achieved using oriented structuring elements (similar
to filter kernels). Light-dependent dilation of a shadow selection in
combination with brightness reduction permits the enlargement of a
shadow region. Similarly, light-dependent erosion and the shadow
removal tool enable shrinking of a shadow region.

3.2 Domain-Driven Selections

Spatial Mask A Spatial Maskcan be used to make detailed spatial
selections. It selects the same region for all view and light direc-
tions. Combining it with the warp/unwarp operators accounts for
parallax. The mask can be painted by the user, or selected based on
color-similarity (using a spatial BTF slice, e.g., the top view). It is
commonly used when editing patterns (Fig. 2).
Angular Range An Angular Rangeselection enables the user to
select certain light- or view-angles. This can either be a cone of
directions (with a smooth falloff) or intervals along azimuth and
elevation (Fig. 12 upper right).

The angular range selection is especially useful for editingfuzzy
materials. Fuzzy materials attenuate rather than mask or shadow
parts of a material, due to light scattering. An effect that is most
notable at grazing angle, where it can introduce a “glow”, called
asperity scattering [Koenderink and Pont 2003]. It is correlated
with brightness and low contrast at grazing view and light angles.
Figure 10 shows a comparison with reference data, where we have
changed a bedspread to be more fuzzy by adding small fibers using
PBRT. Our operators allow us to add fuzziness by first selecting the
intersection of light and view grazing angles (with a smooth fall-
off) and then increasing brightness. The results are very similar,
even though our operators are not physically based.
BRDF TheBRDFselection selects all pixels according to a user-
specified BRDFfr , which can also be relative to a normal map,
i.e., sx,y(ωi ,ωo) = π fr(Rn(x,y)(ωi),Rn(x,y)(ωo))cosθi . Intuitively
speaking, we evaluate the user-defined BRDF at each texel and use
its result as the selection value. This operation is particularly useful
in creating a BTF from a single photograph. Such a BTF has ini-
tially no view- or light-dependence and this selection can be used
to introduce the BRDF to the data. For example, a user would se-
lect all pixels according to the specular component of a BRDF and
then increase brightness, effectively creating a specular highlight
(see Section 5).

3.3 Data-Driven Selections

Thresholding The Thresholdingselection permits the selection
of all pixels with intensity values above or below a certain threshold
(with smooth falloff). This is commonly used to select highlight or
diffuse texels. No information about the underlying geometry or re-

Original Solid (Reference) Solid (BTFShop)

Figure 11: A translucent sponge material (computed using PBRT)
is modified to be solid (subsurface scattering turned off). We make
the same change using our editing operators (right). After selecting
shadows (smooth threshold t= .8 → .85), we decrease brightness
by .2, shift the hue by−6◦ and decrease saturation by .15, which
reduces brightness and undoes the color shift.

flectance is needed. However, this operator assumes high-dynamic
range BTF data; otherwise, highlights cannot be clearly separated.
This operator was used for Figure 2, where we selected highlight
vs. diffuse pixels before modifying them. The selection process,
i.e., finding the right threshold, only takes a few seconds.
Shadow Area TheShadow Areaselection finds shadow areas by
looking at the ratio of the frontal, fully lit spatial slice and each of
the other spatial slices:

sωi ,ωo(x,y) =

{

0 if bωf ,ωf (x,y)/(S(ωi ,ωo) ·bωi ,ωo(x,y)) ≥ t,
1 if bωf ,ωf (x,y)/(S(ωi ,ωo) ·bωi ,ωo(x,y)) < t.

Each spatial slice is scaled by the factorS(ωi ,ωo) such that its
brightness is equal to the frontal, fully-lit slice. This factor is differ-
ent for each texture slice, hence the dependency onωi andωo. The
thresholdt is used to determine shadow/non-shadow areas. Frac-
tional shadow selection is enabled using a smooth step function in-
stead of a binary decision. This selection assumes that shadows
darken an area more than pure shading would. In case of strong
inter-reflections or subsurface scattering this assumption may be vi-
olated and accurate shadow selection becomes difficult.

This is an important selection operator and is mainly used for
shadow removal and translucency manipulation. In order to per-
form shadow removal, the output of this selection operator serves
as input to the filler, as has already been shown in Fig. 6 (with a
smooth thresholdt = .7→ .95).

The translucency of a material is related to the lightness of
the shadow areas [Fleming et al. 2004]. Lighter shadows occur
in more translucent materials, as light travels inside the material
into the shadow regions, whereas darker shadows appear in solid
materials. Additionally, translucency influences the hardness of
shadow boundaries. We demonstrate translucency modification in
Figure 11. An original translucent sponge is made more solid by
selecting shadow areas and decreasing brightness. It compares well
to re-generating the sponge without subsurface scattering in PBRT.
Minor differences are noticeable on the left side of the bunny, where
strong subsurface scattering violates the shadow selection assump-
tion and hence not all shadow regions are selected accurately.
Height Field TheHeight Fieldoperator selects all areas that are
above or below a certain height threshold. This operator can be
used to change the amount of inter-reflections in a material, as the
most noticeable change due to inter-reflections is the increase in
brightness in concavities. We use this observation in Figure 17,
where we selected concavities based on the height threshold and
increased brightness to make the wool look softer. Despite visually
pleasing results, this is of course only a crude approximation to
reality, as no light-dependency is introduced.
Directional Height Field TheDirectional Height Fieldselection
is used to select shadow- and masking-areas based on a given height



Figure 12: Screenshot of the user interface. An object is rendered
with the BTF and the selected part (grazing angle here) are shown
in orange. A transparent hemispherical view-dependent slice is
shown, depicting that grazing angles are selected (rim around
hemisphere). The hue/saturation UI is shown as well. On the right,
some more of our tools are shown: angular selection, selection
mask, and curve tool.

field, which can be derived with our height field extraction opera-
tor. To this end, rays are traced from each point on the BTF along
the light- (for shadowing) or view-directions (for masking). Points
become part of the selection when a self-intersection (occlusion)
along the ray occurs. Adding shadows due to structural changes is
enabled with this selection. Figure 5 illustrates this: a new shadow
was added (due to a bump) using the heightfield-based selection
and decreasing brightness in those areas (rightmost image).

3.4 Discussion

The selection tools are user-driven. Parameters need to be cho-
sen for the specific BTF that is currently edited. For instance, the
shadow selection requires the user to set a threshold parameter, as
shadow intensity varies from BTF to BTF. We provide previews of
the selections, such that the user can quickly adjust the parameters.

Selections are essential for editing global effects, such as inter-
reflections, translucency, and scattering. The results depend on the
appropriate choice of parameters and therefore on the user. In our
experience, global effects are rather easy to modify, which is facil-
itated by the immediate visual feedback.

4 Architecture for Out-of-Core BTF Editing
The large size of BTFs makes memory management critical. We
need an architecture that enables the manipulation of data that does
not fit in main memory. On-demand lazy evaluation is mandatory
because we must provide the user with rapid feedback. We first
present the interaction offered to the user to make the architecture
challenges concrete and then present our tile-based on-demand out-
of-core architecture.

4.1 Interface and Visualization

In order to provide visual feedback about arbitrary parts of the BTF,
we map it on an object and render it under user-specified lighting
(Figure 12). Immediate feedback is provided after an editing opera-
tion is applied and the rendering is continually updated. A complete
history is kept for undo.

Selections are critical in editing and we visualize them on the
rendered models as a color mask, which is effective for spatial se-
lections. Complex selections that involve light and view depen-
dencies need to visualize different slices of the 6D selection. We
provide a tool that displays the hemispherical light- or view-slice
directly on the model for the current view or light direction and a
user-selected spatial location (Figure 12 upper left).

4.2 Architecture

The 6D nature of BTFs makes memory and computation critical is-
sues. For instance, current BTFs from the Bonn database use 1.6GB
each (high-dynamic range data stored as RGBE [Ward 1992]). An-
ticipating a further increase in BTF resolution and due to the wish
to run our editing approach on non-high-end machines, we require
a scalable system design that can work with limited memory. Com-
putation times for applying an editing operation to the whole BTF
range from tens of seconds to several minutes and, in order to en-
able an interactive work flow, it is crucial to design an architecture
that provides immediate feedback even for costly operations.

We achieve scalability and interactivity using a multi-threaded,
tile-based architecture with a cache system. Internally, the BTF is
split into smaller tiles and stored in a hierarchical cache (memory
and disk), where only the most recently used tiles are in memory.
Responsiveness of the system is ensured by processing BTF data
in separate worker threads, which allows a user to continue editing.
The worker threads process individual tiles, and schedule visible
tiles of the BTF first. In order to provide fast visual feedback, the
current rendering is continually updated with newly processed tiles,
as soon as they are finished computing. A deep frame buffer stores
affected BTF tiles, locations, and weights for each pixel, which
makes re-rendering efficient. The system ensures that dependencies
on previous editing operations are clear before succeeding opera-
tions are scheduled (e.g., the spatial blur operation on tileK is de-
pendent on all spatially neighboring tiles). The sheer size of BTFs
prevents the explicit storage of 6D selection masks like for image
editing. Instead, selections are computed per tile on-the-fly, with
a cache of recently used ones. This architecture ensures that our
editing system can make efficient use of new multi-core systems.

We use the 32-bit RGBE format [Ward 1992] to store high-
dynamic range BTF data, as it reduces data size by a factor of four
compared to full floating point. We considered using further com-
pression such as PCA to reduce tile storage costs, but then compres-
sion/decompression would increase computational load. Further-
more, performance analysis revealed that memory costs are domi-
nated by access time, not by transfer rates.

5 Results
All our BTFs have 81× 81 view and light directions and a spa-
tial resolution of 256×256. Stored in high-dynamic range RGBE
format, this amounts to 1.6GB of data per BTF. Through exper-
imentation, we found that a good compromise between interactive
feedback and processing time is achieved using tile sizes of 322×32

(spatial× directional), i.e., there are 46656 unique tiles.
It is important to give fast visual feedback to editing operations

and selections. For a simple hue manipulation, our system provides
comprehensive feedback in only 2.1 seconds (dual-core 2.6Ghz
AMD Opteron) for Figure 13, meaning that every visible tile is up-
dated. This amounts to processing 80MB of data, as there are about
5% of all tiles visible. An angular Gaussian blur (25◦ variance)
takes about 9.7 seconds for the same configuration, which is due to
the increased complexity of the operator, but is still fast enough for
interactive feedback.

The time it takes to process a full BTF is heavily dependent on
the chosen operation. For a simple operator it takes about half a
minute to finish the full BTF; for more complex manipulations (like
angular blur) processing times can go up to several minutes. How-
ever, our system always provides immediate feedback and lets the
user continue to interact with our system, making the timings for
finishing the full BTF less crucial.

5.1 Interactive BTF Modification

Figure 13 shows a variety of operations applied to a wool BTF.
The tone and color manipulation tools, such as hue/saturation and
brightness/contrast, in combination with selections prove to be very



(a) Original (b) Hue Changes (c) Fuzziness (d) More Nylon
Figure 13: The original blue wool blouse (a) is changed to a patterned wool blouse using the hue operation and spatial selection (b). We
then select grazing-angle texels and, using the brightness/contrast tool,we increase their brightness (c). Finally, we make the knitwear look
more specular by increasing the brightness of highlight pixels with the curve tool (d).

Figure 14: A stripe of the wool BTF is colored differently. The
BTF on the left was done without warping, whereas the BTF in the
middle was done with the unwarp/warp operator. The height field
and selection is shown on the right.

Figure 15: Stripes of the original sweater BTF (left) are colored
green and made more specular (middle). The top right shows the
automatically deduced height field [Daum and Dudek 1998] and
the bottom right shows the user-painted selection mask.

effective. The wool’s appearance can be changed considerably in a
matter of minutes. The fast feedback provided by our system allows
users to judge results quickly.

As discussed earlier, BTF slices contain parallax effects due to
the underlying micro-geometry of a BTF. Figure 14 shows the effect
of the parallax compensation operation on the wool BTF. Not using
it incorrectly shifts the colored stripe a bit to the left. This shift is
quite small for typical BTFs such as wool, and is often not needed.
However, it is large enough for BTFs like the Lego (Figure 9) to be
important.

Figure 15 shows an example, where we first needed to use par-
allax compensation to align all texture slices. The automatically
deduced height field (computed in about 15 seconds) is only an ap-
proximation to the underlying micro-geometry but faithful enough
to align the texture slices. We then color every other stripe of the
sweater greenish and make them more specular. At the end, we
re-warp the BTF again according to the height field.

The same input model was used for the teaser image (Figure 1).
We use the Copy&Paste tool to add a wool stripe, which we then
make more golden by increasing the brightness of highlight pixels
and modifying them to be more gold colored with the curve tool.
After changing the hue of the middle stripe, we add a layer of lint

Figure 16: The original wallpaper (left) is modified with the
Copy&Paste tool to show a different logo (middle). The middle
part is made more golden with the angular sharpen tool.

Figure 17: The wool BTF is made “softer” by brightening concav-
ities and blurring out the shadows.

by selecting diffuse areas (BRDF selection) for grazing light angles
and reducing contrast in those areas. Finally, we add a colored logo.

The Copy&Paste tool is an effective tool to change patterns in a
BTF. In Figure 16, we remove the original white pattern by copy-
ing parts of the gold over it. After making a spatial selection using
the SIGGRAPH logo, we replicate a small square of the original
white area and repeatedly paste it onto the BTF. The spatial selec-
tion ensures that the paste operation only overwrites the inside of
the logo. We then select the golden area (spatial selection) and use
the angular sharpen tool and the curve tool to make it more glossy.

Finally, Figure 17 shows how the original wool BTF is made
“softer” by increasing brightness in concavities, as well as blurring
out shadow boundaries.

5.2 Interactive BTF Creation

The flexibility of our editing tools enables the creation of a full BTF
starting from a single texture image. In Figure 18, we start with a
2D photograph of cloth, which corresponds to a flat BTF that is
constant with respect to light and view direction. We first paint
a crude height field based on the grey-scale version of the image.
Lambertian shading is then applied using the BRDF selection and
a brightness decrease (using the height field for local normal direc-
tions). Similarly, a small specular term is added using the BRDF
selection (Ashikhmin-Shirley model) and an increase in brightness.
Shadow areas are introduced with the directional height field tool.
After their selection, they are darkened by reducing brightness. A
small amount of asperity scattering is added by selecting the inter-
section between grazing view and light directions. Brightness is



Texture Only Cloth Material (BTFShop)

Figure 18: An example of creating a red cloth. The original tex-
ture is edited to include BRDF, shadowing, scattering, and parallax
effects.

Original Texture Only Recreated

Figure 19: The original BTF shown on the left is recreated from a
single texture only (applied in the middle, shown at the bottom). Al-
though there are minor differences between the original and the re-
created version, it shows the effectiveness of our editing approach.

then increased and the contrast is lowered. Finally, we perform a
height field warp according to our crude height field to add “depth”
to the material.

As a proof of concept, we recreated the corduroy BTF from the
Bonn database (Figure 19) starting from a single texture slice (the
frontal, fully lit; see bottom of figure). First, we introduce Lamber-
tian shading and add a small glossy component (specular exponent
of 5) using the BRDF selection. Shadows are created by selecting
the tops of the ridges (painted with the selection mask tool) and
applying the light-directional dilation, which selects shadow areas
(after subtracting the original selection mask). Shadow areas are
darkened using the brightness/contrast tool. We enhance the bright-
ness at grazing angles by selecting the intersection of view and light
grazing angles. The contrast at grazing views is decreased slightly.
The local frame rotation tool is used to create the impression of
ridges. The complete editing process, including trying different pa-
rameters for the various tools, takes about 10–15 minutes. More
examples of a similar creation process can be found in Figure 20.

6 Discussion and Limitations
In our experience, the proposed approach works best for tweaking
the appearance of a material as well as for the creation of a BTF
from a flat texture. The user can change albedos and specularities
of a particular part of the BTF, change the underlying geometry,

Figure 20: Left: a Chinese blouse created from a single texture.
Right: a flannel shirt from a single texture.

remove a bump, modify shadows, and so forth. The approach is
not meant to turn a wool BTF into bark, but manipulations, such as
modifying the wool’s fuzziness, are easily accomplished and intu-
itive due to interactive feedback. In fact, the operators are in our ex-
perience usually much easier to control than modifying a material
in a physically-based ray-tracer (which we needed for generating
comparisons for Figure 2, 3, 7, 10, and 11).

However, there are limitations to our approach. The modified
BTFs may not be physically correct. For instance, the reflections
of fuzz may not be fully accurate or reciprocal. Fortunately, for
a wide range of contexts, physical accuracy is secondary to visual
appearance. Our operators usually change one specific aspect of
a BTF but not necessarily others that are connected. For instance,
changing the meso-structure does not automatically change shad-
ows accordingly. However, our operators provide the possibility to
edit the major attributes of a material under the specific assumptions
made by each operator.

Our approach is a first step towards intuitive editing of BTFs. It
is based on a collection of operators that can modify specific parts
of a BTF but it lacks “unified” tools. Ideally, a BTF editing system
would enable the user to modify high-level properties of a material,
such as “fuzziness” or “softness,” but our current understanding of
the perception of material appearance is too limited for such an
approach and remains future work.

7 Conclusions
In this paper, we have presented a new approach for editing re-
alistic BTFs. We have derived BTF-specific editing operations and
have verified their expressiveness using comparisons with reference
BTFs. Our proposed editing operations in combination with selec-
tions provide a flexible approach to editing BTFs. We have shown
that this approach also allows for the creation of a full BTF starting
from a single texture. Our editing system, BTFShop, overcomes
difficult system issues that arise from the six-dimensional nature of
BTF data. The system can handle large amounts of data and long
computation times, yet provide interactive feedback.

Acknowledgements We would like to thank the University of
Bonn [Sattler et al. 2003] and UCSD [Koudelka et al. 2003]
for making their BTF data available. We are grateful to Mary
Williamson and Omari Dennis for their PBRT tools. We fur-
ther thank the internal MIT reviewers, the anonymous reviewers,
and the referees for their very helpful comments and suggestions.
This work was supported by a National Science Foundation CA-
REER award 0447561 “Transient Signal Processing for Realistic
Imagery.” Fŕedo Durand acknowledges a Microsoft Research New



Faculty Fellowship and a Sloan fellowship. Solomon Boulos ac-
knowledges support from the University of Utah Brown Fellow-
ship. Jan Kautz acknowledges support from an Emmy-Noether fel-
lowship from the German Research Foundation.

References
ADELSON, E. H. 2001. On Seeing Stuff: the Perception of Mate-

rials by Humans and Machines. InHuman Vision and Electronic
Imaging VI, B. Rogowitz and T. Pappas, Eds., vol. 4299 ofPro-
ceedings of SPIE, 1–12.

COLBERT, M., PATTANAIK , S.,AND KRIVANEK , J. 2006. BRDF-
Shop: Creating Physically Correct Bidirectional Reflectance
Distribution Functions. IEEE Computer Graphics and Appli-
cations 26, 1 (Jan.), 30–36.

CULA , O., AND DANA , K. 2001. Compact Representation of Bidi-
rectional Texture Functions. InConference on Computer Vision
and Pattern Recognition (CVPR 2001), vol. 1, 1041–1047.

DANA , K., AND NAYAR , S. 1998. Histogram Model for 3D Tex-
tures. InConference on Computer Vision and Pattern Recogni-
tion (CVPR’98), 618–633.

DANA , K. J., VAN GINNEKEN, B., NAYAR , S. K., AND KOEN-
DERINK, J. J. 1999. Reflectance and Texture of Real-World
Surfaces.ACM Transactions on Graphics 18, 1 (Jan.), 1–34.

DAUM , M., AND DUDEK, G. 1998. On 3-D Surface Reconstruc-
tion Using Shape from Shadows. InConference on Computer
Vision and Pattern Recognition (CVPR’98), 461–468.

DISCHLER, J.-M., AND GHAZANFARPOUR, D. 1999. Interac-
tive Image-based Modeling of Macrostructured Textures.IEEE
Computer Graphics & Applications 19, 1 (Jan.), 66–74.

DONG, J., QI , L., REN, J., AND CHANTLER, M. 2005. Self-
Similarity Based Editing of 3D Surface Textures. InProceed-
ings of the 4th International Workshop on Texture Analysis and
Synthesis, 71–76.

FLEMING , R., JENSEN, H. W., AND BÜLTHOFF, H. 2004. Per-
ceiving Translucent Materials. InSymposium on Applied Per-
ception in Graphics and Visualization 2004, 127–134.

GINNEKEN, B. V., KOENDERINK, J., AND DANA , K. J. 1999.
Texture Histograms as a Function of Irradiation and Viewing Di-
rection.International Journal of Computer Vision 31, 2-3 (Apr.),
169–184.

HAINDL , M., AND HATKA , M. 2005. BTF Roller. InProceed-
ings of the 4th International Workshop on Texture Analysis and
Synthesis, 89–94.

HAINDL , M., GRIM , J., PUDIL , P., AND KUDO, M. 2005. A
Hybrid BTF Model Based on Gaussian Mixtures. InProceed-
ings of the 4th International Workshop on Texture Analysis and
Synthesis, 95–100.

KHAN , E. A., REINHARD, E., FLEMING , R., AND BÜLTHOFF,
H. 2006. Image-Based Material Editing.ACM Transaction on
Graphics (Proc. SIGGRAPH) 25, 3 (July), 654–663.

KOENDERINK, J., AND PONT, S. 2003. The Secret of Velvety
Skin. Machine Vision and Applications 14, 4, 260–268.

KOUDELKA , M., MAGDA , S., BELHUMEUR, P., AND KRIEG-
MAN , D. 2003. Acquisition, Compression and Synthesis of
Bidirectional Texture Functions. InProceedings of the 3rd In-
ternational Workshop on Texture Analysis and Synthesis, 59–64.

LAWRENCE, J., BEN-ARTZI, A., DECORO, C., MATUSIK , W.,
PFISTER, H., RAMAMOORTHI , R., AND RUSINKIEWICZ, S.
2006. Inverse shade trees for non-parametric material represen-
tation and editing.ACM Transactions on Graphics (Proc. SIG-
GRAPH) 25, 3 (July), 735–745.

LEUNG, T., AND MALIK , J. 1997. On Perpendicular Texture:
Why do we see more flowers in the distance? InConference on
Computer Vision and Pattern Recognition (CVPR ’97), 807–813.

MAGDA , S., AND KRIEGMAN, D. 2006. Reconstruction of Volu-
metric Surface Textures for Real-Time Rendering. In17th Euro-
graphics Symposium on Rendering, 19–30.

MESETH, J., MÜLLER, G., AND KLEIN , R. 2004. Reflectance
Field Based Real-Time, High-Quality Rendering of Bidirec-
tional Texture Functions.Computers & Graphics 28, 1 (Feb.),
105–112.

M ÜLLER, G., MESETH, J., SATTLER, M., SARLETTE, R., AND
KLEIN , R. 2005. Acquisition, Synthesis, and Rendering of Bidi-
rectional Texture Functions.Computer Graphics Forum 24, 1
(Mar.), 83–110.

NEUBECK, A., ZALESNY, A., AND GOOL, L. V. 2005. 3D Tex-
ture Reconstruction from Extensive BTF Data. InProceedings
of the 4th International Workshop on Texture Analysis and Syn-
thesis, 13–18.

NGAN, A., AND DURAND, F. 2006. Statistical Acquisition of
Texture Appearance. In17th Eurographics Symposium on Ren-
dering, 31–40.

PHARR, M., AND HUMPHREYS, G. 2004.Physically Based Ren-
dering: From Theory to Implementation. Morgan-Kaufmann.

PONT, S.,AND KOENDERINK, J. 2002. Bidirectional Texture Con-
trast Function. InECCV ’02: Proceedings of the 7th European
Conference on Computer Vision, 808–822.

RAMAMOORTHI , R., AND HANRAHAN , P. 2001. A Signal-
Processing Framework for Inverse Rendering. InProceedings
of ACM SIGGRAPH 2001, 117–128.

SATTLER, M., SARLETTE, R., AND KLEIN , R. 2003. Efficient
and Realistic Visualization of Cloth. In14th Eurographics Sym-
posium on Rendering, 167–178.

SUYKENS, F.,VOM , K. B., LAGAE, A., AND DUTRÉ, P. 2003. In-
teractive Rendering with Bidirectional Texture Functions.Com-
puter Graphics Forum 22, 3 (Sept.), 463–472.

TONG, X., ZHANG, J., LIU , L., WANG, X., GUO, B., AND
SHUM , H.-Y. 2002. Synthesis of Bidirectional Texture Func-
tions on Arbitrary Surfaces.ACM Transactions on Graphics
(Proc. SIGGRAPH) 21, 3 (July), 665–672.

VASILESCU, M. A. O., AND TERZOPOULOS, D. 2004. Tensor-
Textures: Multilinear Image-Based Rendering.ACM Transac-
tions on Graphics (Proc. SIGGRAPH) 23, 3 (Aug.), 336–342.

WARD, G. 1992. Real Pixels. InGraphics Gems II, J. Arvo, Ed.
Academic Press.

ZHOU, K., DU, P., WANG, L., MATSUSHITA, Y., SHI , J., GUO,
B., AND SHUM , H.-Y. 2005. Decorating Surfaces with Bidi-
rectional Texture Functions.IEEE Transactions on Visualization
and Computer Graphics 11, 5 (Sept.), 519–528.


