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Figure 1: Left: ray casting with shadows (RCS). Middle: Whitted-style ray tracing (WRT). Right: distribution ray tracing (DRT) with 64
samples per pixel. This paper investigates interactive WRT on current hardware and the prospects for interactive DRT on future hardware.

ABSTRACT

Much progress has been made toward interactive ray tracing, but
most research has focused specifically on ray casting. A common
approach is to use “packets” of rays to amortize cost across sets of
rays. Whether “packets” can be used to speed up the cost of reflec-
tion and refraction rays is unclear. The issue is complicated since
such rays do not share common origins and often have less direc-
tional coherence than viewing and shadow rays. Since the primary
advantage of ray tracing over rasterization is the computation of
global effects, such as accurate reflection and refraction, this lack
of knowledge should be corrected. We are also interested in explor-
ing whether distribution ray tracing, due to its stochastic properties,
further erodes the effectiveness of techniques used to accelerate ray
casting. This paper addresses the question of whether packet-based
ray tracing algorithms can be effectively used for more than visi-
bility computation. We show that by choosing an appropriate data
structure and a suitable packet assembly algorithm we can extend
the idea of “packets” from ray casting to Whitted-style and distri-
bution ray tracing, while maintaining efficiency.

1 INTRODUCTION

Some predict that ray tracing will soon replace rasterization as the
underlying algorithm for desktop graphics. Others believe this will
not happen in our lifetime [1]. Ray tracing has a number of ad-
vantages over rasterization, including automatic visibility culling,
time complexity sub-linear in the number of objects, and ability to
take advantage of multi-core architectures. But the key advantage
of ray tracing over rasterization is that it offers higher-quality im-
ages when “secondary” rays (e.g., for reflection and refraction) are
used. The main drawback of ray tracing is that it is currently slower
than hardware-based rasterization for most scenes. In this work, we
investigate the practicality of interactive ray tracing with secondary
rays, such as reflection and refraction. We also explore the future
practicality of interactive distribution ray tracing.

One problem with discussing interactive ray tracing is that ray trac-
ing is an overloaded term. In this paper, we use the term ray cast-
ing to refer to the use of ray tracing for visibility computations only
(RCS, Figure 1, left). By adding reflection and refraction to ray
casting, we can implement Whitted’s [34] well-known algorithm;
hence we refer to such a method as Whitted-style ray tracing (WRT,
Figure 1, middle). The next step beyond WRT is distribution ray
tracing (DRT, Figure 1, right) [6]. A DRT renderer uses multiple
primary rays per pixel to render non-singular effects such as depth
of field, glossy reflection, motion blur, and soft shadows.

Recently, interactive ray tracing has been a popular topic for re-
search. There are several current systems that can perform interac-
tive ray casting; some of these implement simple shading by com-
puting direct lighting from point sources. However, very few of
these programs implement full WRT. One reason for this limitation
is that most interactive ray casters trace packets of rays with shared
ray origins, and reflection and refraction rays cannot be placed in
such packets. The little evidence that exists about the performance
of secondary ray packets is not encouraging [26], so WRT may not
be able to take advantage of the techniques that have proven so ef-
fective for ray casting.

Despite the uncertain outlook for interactive WRT performance, we
believe that rendering with WRT rather than simple ray casting is
an important goal. Although ray casting is faster than WRT, it is
inferior to current GPU graphics in both performance and image
quality. To get out of this “worst of both worlds” situation, we need
to develop methods that allow for interactive reflections and refrac-
tions. In this paper, we propose a new method for interactive WRT
using a combination of generalized ray packets and a bounding vol-
ume hierarchy for improved efficiency, and we show that our sys-
tem can run at interactive rates on current high-end computers. We
also examine the overall impact of reflection and refraction rays on
rendering performance, and extend these measurements to the types
of secondary rays associated with full DRT. Our findings show that
an interactive WRT-based renderer is currently viable on a high-
end desktop system. We also believe that interactive DRT-based
renderer, using general purpose hardware, will be possible within
a decade. That would happen much sooner if special-purpose ray
tracing hardware becomes available.

2 BACKGROUND

Ray Casting. Different ray casting projects have targeted shared
memory computers [3, 21, 22], clusters [7, 29], traditional GPUs [9,
24], and Cell processors [2]. FPGA and ASIC designs for ray cast-
ing hardware have been presented [8, 28, 35, 36]. One common
technique for accelerating ray casting is grouping rays into pack-
ets to take advantage of coherence. Ray packets allow further effi-
ciency through the use of SIMD instructions as well as packet-based
culling [4, 20, 27, 31–33].

Dynamic Scenes. Most of this work is intimately tied to the type of
spatial acceleration structure used. For grids, both incremental [25]
and complete [12] rebuilding strategies have been proposed. Mo-
tion decomposition may be used to build good kd trees for dynamic
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Figure 2: RCS with shadow rays from a point light source (left) and
WRT adding reflection and refraction rays (right). In WRT, reflec-
tion and refraction rays form “general” packets that lack a common
origin. Combining these two sets of rays into a single packet would
have an extreme angular spread.

models if the full space of poses is known in advance [10]. Bound-
ing volume hierarchies have been improved using incremental re-
building schemes borrowed from collision detection [19, 20, 31].

Shadow Rays. Simple shading is often added to ray casting by
computing direct lighting from point lights. This is a simple ex-
tension of ray casting: determining direct lighting from a point
source is analogous to computing visibility from a pinhole camera.
Shadow rays can therefore be traced from the light source using
exactly the same techniques as primary rays from the camera [31].
A similar argument applies to computing soft shadows at a single
point, for example, by sending 16 shadow rays per primary ray [22].

Whitted-style Ray Tracing. As with ray casters, most interac-
tive Whitted-style ray tracers use ray packets to improve perfor-
mance of visibility rays. When reflection and refraction rays are
added to a packet-based ray tracer, it is not clear how packets of
secondary rays should be constructed, nor whether such packets
will even provide performance benefits. While some interactive ray
tracers support reflection [20, 22, 26, 29] and a few have added re-
fraction [3, 22, 30], there is little detail in the literature about the
impact of adding such secondary rays on rendering performance.
Most of these systems also abandon the use of packets for such sec-
ondary rays, presumably because secondary rays lack a shared ori-
gin. There are three exceptions to this in the literature. The special
purpose hardware from the University of Saarland [28, 35, 36] uses
packets of four rays for both primary and secondary rays, but statis-
tics are not provided for the the performance of secondary rays.
Bigler et al. [3] use packets for all secondary rays, but they provide
no results on the performance of such packets. Reshetov [26] uses
packets for reflection rays, and concludes that when using kd trees,
packets may not help performance.

Distribution Ray Tracing. While DRT is currently a batch algo-
rithm, reducing the number of samples per pixel has been a focus
since its invention [6]. Low sampling rates can be achieved using
interleaved sampling, which tries to replace low-frequency artifacts
with dithering-like structured error in screen space [15, 17]. Al-
though interactive DRT is a worthy goal, it is inherently slower than
WRT for two reasons. First, to render non-singular effects, DRT
requires more samples per pixel than WRT. Second, the rays gen-
erated in a DRT renderer are less coherent (i.e., they have a greater
range in both ray origin and direction) than WRT rays, again due
to non-singular effects such as depth of field and glossy reflection.
This reduced ray coherence could imply DRT rays are intrinsically
more expensive than coherent WRT rays.

Summary. Most research indicates that packets are very useful

for interactive ray casting, but there is little quantitative evidence
to support the usefulness of secondary ray packets for reflection
and refraction rays. The overhead cost of replacing ray casting with
WRT is also unclear. Finally, even if packets can be useful for WRT,
it is not known whether the same will be true for the less coherent
rays in DRT. These unknowns are the main topic of this paper.

3 INTERACTIVE WHITTED-STYLE RAY TRACING

In this section, we describe the problems that arise when extending
a packet-based RCS program to allow WRT. The first hurdle is that
while viewing rays and shadow rays from a point light source have
a common origin, reflection and refraction rays do not (Figure 2).
The second problem arises due to the lack of an obvious way in
which rays can be grouped under WRT. We now examine possible
ways to address these issues. First, we explore the advantages of
packets, then, we look into suitable options for assembly of sec-
ondary rays into packets, and finally, we describe an acceleration
structure that is appropriate for this type of computation.

3.1 The Problem of General Packets

A natural way to create packets of rays in RCS is to group them ac-
cording to their shared common origin. This is possible due to the
pinhole camera model (Figure 2, left). However, reflection and re-
fraction rays necessary for WRT do not share such common origin
(Figure 2, right).

When using 4-wide SIMD, a program may be able to perform a sin-
gle SIMD operation instead of 4 scalar operations per set of 4 rays.
This is very useful if all 4 rays would perform the same computa-
tion, such as being tested against the scene bounding box. If the 4
rays are not identical, however, they may not follow the same path
through the acceleration structure; this leads to a SIMD utilization
between 25% and 100% at each step depending on how many of the
rays would have performed the operation if traced independently.

Programs using ray packets can also benefit from algorithmic amor-
tization. For example, the MLRT system [27] attempts to find a
starting point for sets of rays that is deeper down the kd-tree than
the root node. This allows for amortization across packets with
more than 4 rays. Similarly, in a bounding volume hierarchy, all
rays in a packet can descend on a hit because false positives do not
generate incorrect final results. This allows for the use of larger
ray packets. In the case of the simple root node example, the entire
packet could be processed for the cost of one ray if all the rays in
the packet would have hit the first node anyway. Alternatively, if
the first ray in a packet misses a node, the algorithm then resorts
to a conservative interval arithmetic culling test that may quickly
determine that all rays miss the bounding volume.

Both SIMD and algorithmic amortization across packets of rays
work well when rays are “similar enough”. However, dissimi-
lar rays can reduce, eliminate, or even reverse speed improve-
ments. The reversal is possible because some algorithmic overhead
is added to allow amortization. To maintain increased performance
over single rays while using packets we must decide how to group
rays into packets so they are “similar”. If we are able to group rays
such that our amortization schemes perform well, we can expect an
increase in system performance. Of course if the grouping method
has significant overhead, any gain in tracing amortization may be
lost. We examine this issue in the next section.



3.2 Assembling General Packets for Secondary Rays

In a packet of primary rays, some or all of the viewing rays will hit
surfaces that may or may not share object ID, material properties,
geometric proximity, or surface orientation. Any of these proper-
ties may be used in deciding how to create packets of secondary
rays. Figure 3 illustrates the complexity of assembling secondary
rays into packets. For the 16 primary rays shown, 6 shadow rays are
generated, 12 specular reflection rays are generated, and 6 specular
refraction rays are generated. Among the many options for gener-
ating secondary ray packets, we have singled out the following as
examples of particular families of approaches for how one incident
ray packet generates secondary ray packets:

NO PACKETS. Each of the secondary rays is sent separately.

RUNS. Secondary rays are traced in the same packet if they have
some property in common (e.g., intersected material type), and their
corresponding primary rays are numerically adjacent to each other.

GROUPS. All secondary rays with some common property (e.g.,
intersected material type) are grouped in a packet.

RAY TYPES. Three packets are generated: one containing all
shadow rays, one containing all reflection rays, and the third con-
taining all refraction rays.

BLIND. One packet is generated, containing all secondary rays.

3.2.1 Packet Assembly Example

For the example in Figure 3, the following secondary packets are
sent for the runs, groups and ray types method. We assume that
intersected material type is the common property used to group rays
in the runs and groups methods.

RUNS. Two packets of shadow rays are generated, contain-
ing rays (1,2,3,4) and (5,6), respectively. Five packets of
reflection rays are traced: (5,6), (7,8), (9,10), (11,12), and
(13,14,15,16). Finally, two refraction packets are generated:
(9,10) and (13,14,15,16).

GROUPS. The packets are similar to the Runs method, except
rays in the same packet need not be adjacent. Once again, two
shadow ray packets are traced: (1,2,3,4) and (5,6). However,
only three reflection packets are generated: (5,6), (7,8,11,12),
and (9,10,13,14,15,16), along with a single refraction packet:
(9,10,13,14,15,16).

RAY TYPES. Three packets are traced, one containing all shadow
rays (1,2, . . . ,6), one containing all reflection rays: (5,6, . . . ,16),
and one containing all refraction rays: (9,10,13,14,15,16).

3.2.2 Analysis of Assembly Methods

RUNS requires only one packet to be worked with at a time because
a packet can be scheduled as soon as its run is interrupted. The RAY

TYPES method requires no more than three packets to be worked
with at a time, so its implementation is also straightforward.

GROUPS is problematic for several reasons. First, the number of
groups is bounded only by the number of outgoing rays. For exam-
ple, if we group outgoing rays into packets such that rays within a
small angle θ of each other are assembled into a single packet, it is
possible to choose θ small enough so that all outgoing rays end up
in different groups. However, it is possible to bound the total num-
ber of groups (and hence outgoing packets) allowed. For example,
directional binning could generate 8 packets corresponding to the
8 possible direction octants. In fact, the ray type method described
above is a particular form of grouping that generates at most three

Figure 3: Sixteen packeted rays hit various objects and materials.
Rays 1, 2, 3, and 4 hit diffuse surfaces and only generate shadow
rays. Rays 5 and 6 hit the floor and generate both specular reflection
and shadow rays. Rays 7, 8, 11, and 12 hit the metal teapot and
generate only specular reflection rays. All other rays hit glass objects
and generate both specular reflection and refraction rays.

outgoing packets: one for shadow rays, one for reflection and one
for refraction. We prefer the ray type grouping method, as it has low
overhead and is less sensitive to ray ordering than the runs method.
We also tested the octant-based directional grouping method, but it
suffers from large space requirements; up to 16 groups are required,
8 for shadow rays and 8 for rays requiring recursive shading.

BLIND is a poor choice because grouping secondary rays of all
types will yield packets with poor coherence. This case is made
worse by transparent objects, since reflection and refraction rays are
placed in the same packet, although the two types of rays will tend
to go in very different directions. Furthermore, it is often more ef-
ficient to trace shadow rays separately from recursive shading rays;
shadow rays only require occlusion tests, which may be more ef-
ficient than the full intersection tests needed for other ray types.
Unfortunately, the blind method does not allow even this simple
separation.

Due to the disadvantages of general grouping and blind assembly,
only ray types and runs are likely viable options. An empirical
comparison of these two methods can be found Section 5.

3.3 Choice of Acceleration Structure

When implementing an interactive ray tracing system to support
RCS there are three popular choices for the acceleration structure:
kd-trees, grids, and BVHs. Each of them has proven to be a vi-
able option for RCS. However, the general packed of WRT have
a greater angular spread than those of RCS due to reflection and
refraction rays. This greater spread influences the different acceler-
ation structures differently.

The kd-tree can be implemented to handle general packets of
rays [26]. However, the performance of that implementation sug-
gests that when the reflection rays diverge there is no amortization
benefit over single rays. Besides this point, kd-trees currently do
not easily support deformable models without predictable deforma-
tion. This suggests that kd-trees as currently implemented are not
an attractive option for full WRT with packets.

The coherent grid traversal has proven to work well for RCS [32].
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Figure 4: Distribution Ray Tracing.

However, the performance of the grid traversal scheme is intricately
tied to the expanse of the frustum surrounding all the rays. The grid
method tests all rays in the frustum against all triangles touched by
the frustum yielding a high number of primitive intersections. In
the original paper [32], this is mitigated by use of mailboxing and
primitive frustum culling. While mailboxing helps avoid retesting
a particular ray with a particular primitive, it does not remove the
penalty of testing rays against primitives they would not have tested
in a single ray implementation. However, it is clear that if the frus-
tum is wide, frustum culling will only help for triangles outside the
frustum which will only be in a small number of cells. For this rea-
son, we believe that the wider frusta of WRT will quickly destroy
the performance of the grid traversal (this result is hinted at by the
test of wider 32 pixel by 32 pixel packets in the original paper).

The BVH is not very sensitive to “false negatives” in ray-box in-
tersections [31]. In addition to making that structure well-suited
to deformable primitives, it is also robust against some “spread” in
ray packets. In addition, the BVH is the fastest structure for many
models on current hardware. For these reasons we adopt the BVH
for our tests. We use the basic intersection methods from Wald et
al. [31] with the interval arithmetic culling described in detail in
Boulos et al. [4].

4 DISTRIBUTION RAY TRACING

Distribution ray tracing differs from single-sample WRT in several
important ways. The major difference between WRT and DRT is
the ability of DRT to handle non-singular effects such as depth of
field, motion blur, soft shadows, and glossy reflections (see Fig-
ure 4). In DRT, multiple primary rays are traced through each pixel,
and each primary ray originates from a different position on the
camera lens, at a different time. Rays that intersect a surface send
shadow rays to different positions on area light sources. Rays that
hit glossy surfaces send reflection rays that are perturbed from the
ideal reflection direction.

The main concern for interactive DRT is that the rays will not ex-
hibit enough coherence to make ray packets worthwhile. In Sec-
tion 5, we quantitatively examine the cost of ray packets in DRT.
In the remainder of this section, we describe the main differences
between our WRT and DRT implementations.

In single-sample WRT implementations, rays that hit a dielectric
surface must branch into a reflection and a refraction ray. One ben-
efit of the multisampling in DRT is that ray branching is not as vital
as it is in single-sample renderers. For example, if a packet of 64
rays hits a surface that it 25% reflective and 75% refractive, instead

of tracing N reflection and N refraction rays, we would trace only
N rays total, 25% of which are reflection rays, and 75% of which
are refraction rays. This cuts down on the branching factor in the
ray tree and uses multisampling to average the combined effects of
reflection and refraction.

The only aspect of primitive intersection not already handled by
our WRT renderer is motion blur. Each frame in a WRT renderer
occurs at one exact point in time, and all triangles have a fixed,
well-defined position, even in an animated scene. In DRT, how-
ever, each frame corresponds to a continuous interval of time, so a
moving primitive actually has an entire range of possible locations.
As each ray has a fixed time stamp, different rays may potentially
see the same triangle at different positions. Therefore, we cannot
use the projective triangle test proposed by Wald et al. [33], since
this depends on precomputing data for static triangles. Instead, we
use a barycentric triangle test similar to one optimized for general
packets of rays by Kensler and Shirley [16].

To make DRT interactive, it is imperative to use few samples per
pixel. For the amount of computational power that will be avail-
able in the foreseeable future, this implies that the number of sam-
ples will be smaller than that needed for convergence, and visible
error will be present. A sampling method such as Keller and Hei-
drich’s [15] interleaved sampling can be used to decrease the per-
ceptible error for a given sampling rate. Although this makes the
sampling code somewhat more complicated than a simple jittering-
based DRT implementation, it does not negatively impact perfor-
mance. Another benefit of using a static sample set such as the
one presented in Keller and Heidrich is that it removes the tem-
poral scintillation artifacts that arise when using different random
samples in each frame.

We have tried a number of Monte Carlo and quasi-Monte Carlo
sampling schemes. Although different sampling methods lead to
varying amounts of visible noise (for a given number of samples
per pixel), rendering performance is not highly dependent on the
sample set used. The one exception is that the mapping from ran-
dom samples to scene space must be done carefully. For example,
when sampling a Phong lobe for glossy reflection, certain mappings
transform the origin in sample space to a reflected ray that is per-
fectly tangent to the object’s surface. These tangent rays generate
many false positives when performing the BVH traversal, and ad-
versely affect performance.

5 RESULTS

In this section, we compare the performance of our system for both
WRT and DRT. We have found that WRT is interactive now on
high-end desktop systems and benefits from packets of both pri-
mary and secondary rays. For WRT, we also demonstrate that not
only do we get a benefit from SIMD packet tracing, but also still
achieve an algorithmic improvement beyond SIMD.

We also demonstrate that while DRT is much slower than WRT,
this is mainly due to the higher number of rays traced. In terms of
raw numbers of rays traced per second, we still achieve algorithmic
amortization above that afforded by SIMD. This is enabled by the
appropriate choice of data structure and packet assembly algorithm.

Finally, we show that as the number of samples per pixel increases
for DRT, the rendering cost is not always exactly equal to a direct
scaling. For example, going from 4 samples per pixel to 16 samples
per pixel can result in less than a 4x increase in rendering time.



Figure 5: Our three test scenes. Left: pool hall (305,314 triangles). Middle: conference (282,664 triangles). Right: rtrt (83,844 triangles).

5.1 Methodology

To determine the performance of our system, we report both archi-
tecture independent metrics as well as absolute render time met-
rics. The architecture-independent metrics that we report here in-
clude the number of box and primitive intersection tests per ray.
As the cost of tracing rays is highly dependent on these two sim-
ple statistics, we feel it is a good metric for comparing algorithmic
differences without requiring implementation details such as use of
SIMD, processor clock frequency, cache size, etc. To ensure that
the architecture independent improvements are not associated with
large hidden costs, we also report the total number of rays cast per
second. We also report all numbers for a single core of a 2.4 GHz
Opteron 880, despite having a 16 core system. While our system
scales linearly with the number of cores, we believe that single core
timings allow readers to scale the results to the size of their system.

Our system is implemented in C++ with SIMD extensions, and for
ray casting with shadows our performance is similarly to the system
demonstrated by Wald et al. [31]. The most important differences
to that system included adding support for general packets, reflec-
tion, refraction, and interleaved sampling. As noted by Reshetov
et al. [27], just adding support for normalized viewing rays, local
shading, and display significantly slows down ray casting. We have
noted the same phenomenon in our code, and it is similar to the
factor of two noted by Reshetov et al. All of our shading models in-
clude computation of Fresnel reflectance and other more advanced
shading techniques. We believe this is a more accurate depiction of
the desired shading models used in high quality rendering.

We ran our system on three scenes (see Figure 5) using camera
paths for each scene (the path for the conference scene was origi-
nally used by Reshetov [26]). The maximum ray depth allowed was
set to 50, but ray tree attenuation keeps the trees much shallower.

5.2 Whitted Ray Tracing

As mentioned from the outset, one concern with extending packet
tracing algorithms to WRT is that there might not be enough co-
herence available to gain anything beyond a single ray implemen-
tation. We compared for each of our three scenes, the performance
of our system for varying packet sizes and found that our algorithm
is able to extract enough coherence to not only gain a benefit from
SIMD, but also from the first hit and interval arithmetic test used by
our BVH. Table 1 demonstrates how our system performance varies
with packet size compared to single ray across our test scenes.

The reason our system increases in performance over single ray is
fairly simple. Despite being less coherent than primary visibility
rays, our system still amortizes a significant amount of box and

primitive tests. The first row in each table compares 2x2 packets of
primary rays, with single ray tracing for reflections and shadows.
By comparison, the ray type grouping produces around a 2-2.5x
speedup even for such small packets.

For the conference scene test, we disabled ray tree pruning for a
more direct comparison to Reshetov [26]. Ray type grouping with
2x2 packets is then identical to SIMD packet tracing. If the only
benefit our system could expose was due to SIMD, we would not
see further increases in performance for increases in packet size. It
should be noted that despite a programmer visible SIMD width of 4,
that realistically implementation achieve between 1.8-2.5x instead
of a theoretical 4x [33].

Increasing packet size allows the BVH to take advantage of algo-
rithmic amortization beyond the natural SIMD width of the system.
However, increasing the packet size may also greatly increase the
number of primitive intersections performed as more rays “come
along for the ride”. In Figure 6 we examine the number of prim-
itive and box tests per ray for increasing packet size. The other
scenes demonstrate fairly similar behavior.

Single Ray Ray Type Speedup

“Conference” (no ray tree attenuation, bounce depth 5)

2x2 .37M .76M 2.02x
4x4 .43M 1.14M 2.65x
8x8 .44M 1.25M 2.85x
16x16 .40M 1.00M 2.53x

“rtrt” (w/ ray tree attenuation)

2x2 1.09M 1.98M 1.82x
4x4 1.20M 2.85M 2.37x
8x8 1.22M 3.30M 2.69x
16x16 1.14M 3.02M 2.65x

“Pool Hall” (w/ ray tree attenuation)

2x2 .64M 1.21M 1.89x
4x4 .71M 1.85M 2.60x
8x8 .73M 2.18M 2.97x
16x16 .71M 2.10M 2.96x

Table 1: Millions of rays per second for different scenes, packet sizes,
and ray tree attenuation vs no ray tree attenuation. In “conference”,
all surfaces are reflective and we use a maximum bounce depth of
5 without ray tree attenuation, while “rtrt” and “Pool Hall” have
ray tree attenuation turned on. As can be seen in the 2x2 case, we
get a speedup of roughly 1.8x to 2.0x through SIMD alone. On top
of that, for larger packets, we get an additional speedup of ∼1.5x
through algorithmic amortization, for a total of 2.5x–3x.
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Figure 6: Number of primitive (left) and box (right) tests per ray for
WRT for the conference scene as we vary the packet size. The data
clearly demonstrates that using 16x16 packets causes an explosion
both in the number of primitive and box tests per ray. The 8x8
packets achieve a sweet spot for most data, however, the 4x4 packets
produce similar numbers.

5.3 Distribution Ray Tracing

With DRT at 64 samples per pixel, we are factors of hundreds or
thousands from interactive performance on commodity hardware.
Because DRT uses 64 samples per pixel instead of 1 as in RCS
and WRT, we find it more meaningful to compare the total number
of rays traced per second. For DRT, the rays per second achieved
is about one half that for WRT on the conference scene, and only
about 30% worse for the rtrt scene (see Table 2). The reduced per-
formance for the conference scene is partly an artifact of the con-
ference scene material parameters: all surfaces are reflective with
a fairly glossy exponent (in essence creating a DRT version of the
test by Reshetov [26]).

RCS rps WRT rps DRT rps

conference 3.25M 1.79M 0.88M
rtrt 3.30M 2.00M 1.53M
poolhall 2.83M .83M 1.23M

Table 2: The number of rays traced per second (rps) in millions for
each of our scenes. This data is for a single frame and not the camera
paths used from the WRT results.

While the total number of rays cast per second is usually lower in
DRT than WRT, if we cast few enough rays we can provide interac-
tive performance. The purpose of DRT, however, is to render fuzzy
effects that WRT cannot produce. In practice, rendering these ef-
fects requires somewhere between 16 and 64 samples per pixel. As
sample density increases, however, we can use larger ray packets
and either maintain or increase the number of rays cast per second
(see Table 3).

Single Ray Ray Type Speedup

2x2 .42M .73M 1.86x
4x4 .44M .88M 2.00x
8x8 .29M .88M 3.03x

Table 3: Millions of rays traced per second for the conference scene
under distribution ray tracing at 4, 16, and 64 samples per pixel.
Each setting uses a packet of rays equivalent to 1 pixel.

5.3.1 Performance as DRT features vary

In our tests, most DRT effects display fairly small performance dif-
ferences across different values and the different scenes. For exam-
ple, in changing the diameter of the lens aperture from 0 (a pinhole
camera) to twice a reasonable size we only see small differences in
the number of box and primitive tests at each step (see Figure 7).
Changing the light source size only affects the shadow rays as these
rays do not cast recursive rays. The shutter time behaves similar
to other variables for small values, but performance is non-linear

with respect to equal steps in shutter time. When the shutter time is
short, primitives in the scene expand the bounding boxes less and
to the packet of rays “look like smaller primitives”. As this shutter
time becomes longer, this effectively creates much larger primitives
for the rays to intersect.
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Figure 7: Effect of aperture on primitive tests (left) and box tests
(right) per ray for the conference scene. As aperture diameter in-
creases the effect on primitive intersections is fairly small. Similar
behavior is seen for other DRT effects such as glossy exponent and
light source size.

5.4 Packet Assembly

As shown previously, compared to tracing single rays or even SIMD
packets of rays, the ray type assembly algorithm offers increased
performance. Our previous results all use the ray type assembly be-
cause it is usually 10-20% faster for a given scene over the full an-
imation path than the runs assembly. While this seems like a small
improvement, it is important to understand where this improvement
comes from.

The difference in performance between ray type and runs assem-
bly can be seen from looking at the behavior of packets of rays as
the bounce depth increases (see Figure 8). Both methods perform
fairly similarly at first and the difference in overall performance is
only around 10%. At higher bounce depths, however, the runs as-
sembly usually demonstrates significantly more primitive and box
tests. While the runs method produces slightly less primitive inter-
sections overall, the increased number of box tests counter balances
this. This implies that while the ray type method may sometimes
produce large bad packets (e.g., when half the rays hit a nearby ob-
ject and half hit a distant wall), the losses from the conservative
decisions made by the runs method are a more serious problem in
our tests. As the performance gap between CPUs and memory in-
creases, reducing box tests will reduce memory accesses and should
widen the gap between ray type assembly and runs assembly [26].
Similarly, if the number of rays traced at deeper bounces becomes
more important (as for path tracing or caustics from long specular
chains) the ray type assembly should pull further ahead.

6 CONCLUSIONS AND DISCUSSION

We have demonstrated what we believe is the first interactive WRT
system to support deformable scenes. We have shown that ray pack-
ets and reflection/refraction rays are not necessarily incompatible.
We have also shown that DRT is not severely more expensive per
ray than WRT, and that most of the cost difference is due to neces-
sary multisampling.

The following are a number of important questions we have not
definitively answered, along with our best current answers. We be-
lieve all of these topics deserve further study.

What applications benefit from ray tracing? The sub-linear time
complexity of ray-scene intersections is a primary advantage of ray
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Figure 8: Ray type assembly and runs assembly for primitive tests
(left) and box tests (right) with increasing bounce depth. The final
column is an overall average taking into account the number of rays
cast at each depth. It is not an equal average of all columns due to ray
tree pruning. The ray type assembly method produces substantially
fewer box and primitive tests as bounce depth increases.

tracing, which allows us to interactively render densely tessellated
surfaces with complex lighting and materials. The process of char-
acter posing often involves manipulating a bone rig and previewing
the influence on a low-resolution mesh in a limited lighting envi-
ronment. The reason for this is due in large part to polygon rasteri-
zation limits and the demands of complex lighting. Interactive DRT
offers the potential for animation setups in a lighting environment
that is closer to the final frame quality. DRT also holds promise for
interactive games with substantially more detailed models and more
general lighting. This approach avoids special case approximations
such as environment maps and low quality shadow maps by directly
and efficiently simulating reflection and visibility. The character
model seen in Figure 1 can be posed in our system at interactive
rates (at lower sample rates, 1-16 samples per pixel), allowing an
animator to work in a more representative lighting environment.

Is DRT enough? Several extensions to WRT and DRT allow com-
putation of global illumination effects; among these are path trac-
ing [14], bidirectional path tracing [18], and photon mapping [13].
These are certainly useful for some applications, and if enough
computational power becomes available, they are worth pursuing.
However, we think DRT will be sufficient for many applications
including most games, and simpler additions such as ambient oc-
clusion will be almost as valuable as global illumination.

How many samples per pixel are needed? WRT benefits from
multiple samples per pixel for antialiasing, and DRT requires mul-
tiple samples per pixel for acceptable image quality. The number of
samples needed will depend on scene and display characteristics; in
our experience, 16 to 64 samples per pixel have been sufficient for
high quality results.

Should rasterization be used for visibility? This is the trend in
the computer-generated film industry because of the high number
of procedural objects (e.g., displacement-mapped subdivision sur-
faces) that are used [5]. However, we believe interactive applica-
tions will benefit more from enhanced lighting effects than from
complex procedural geometry that requires on-the-fly computation.
Since visibility computations are an inherent part of ray tracing,
we believe that future interactive applications may simply use ray
tracing alone, rather than computing visibility with rasterization.

Shouldn’t GPUs be used for ray tracing? So far, GPU ray tracers
are not as fast as CPU ray tracers. If reflection and refraction from
curved surfaces are not needed, then the GPUs rasterization unit can
be used to compute reflections, and the accumulation buffer [11]
could be used to great effect. However, we think that such reflec-
tions and refractions are desirable.

What hardware will WRT and DRT run on? WRT performs
reasonably well on commodity CPUs, and with teraflop processors,

WRT should run very fluidly on most scenes. DRT, on the other
hand, may require special purpose hardware, especially if high-
resolution images are needed.

Are BVHs needed for secondary packets? It remains to be seen
whether grids, kd-trees, or some other acceleration scheme can be
used to make packets useful for secondary rays. The native advan-
tages of the BVH make the use of packets naturally independent of
SIMD, but some clever as yet unmade observation might make the
kd-trees and grids similarly natural.

Are ray packets a good idea? Ray packets trade software com-
plexity for speed, and for secondary rays, the trade-off is not as
clear as it is for ray casting. Although it is not often discussed in
the graphics literature, most researchers are well aware that there
is a high hidden cost for software complexity. More research into
automatic ray scheduling in the spirit of Pharr et al. [23] could com-
bine the best qualities of packet-based and single-ray code.

What is the new bottleneck? Shading time is now competing with
total tracing time as the bottle neck (a profile of our code reveals
that shading is now 1/3 of the total with traversal and primitive in-
tersection the remaining 2/3), as long as some reasonable packet
grouping is used. This implies that one of the most important tasks
for future work is to be able to group shading operations and per-
form common sub-expressions in a parallel manner. Alternatively,
robust methods that amortize shading costs (similar to irradiance
caching) may provide the same sort of improvement for shading
cost that we have seen in tracing costs.

What are the main limitations of this paper First, it is not clear
how sensitive our results are to current CPU characteristics; as new
cores become more “friendly” to ray tracing, the details of perfor-
mance tradeoffs could change. Second, our results are on mod-
els composed of triangles, and applications that use subdivision or
spline surfaces directly may have different characteristics. Finally,
even for applications that use models composed of triangles, the
details of what triangles and shaders are used may make results dif-
ferent in significant ways.
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