
Image Synthesis using Adjoint Photons

R. Keith Morley

Princeton University

Solomon Boulos

University of Utah

Jared Johnson

University of Central Florida

David Edwards

University of Utah

Peter Shirley

University of Utah

Michael Ashikhmin

SUNY Stony Brook

Simon Premože

ILM

Figure 1: An image generated using adjoint photon tracing in a scene with millions of instanced polygons, a heterogeneous medium from
simulation data, and Rayleigh scattering for the sky. The Sun is the only source of light in the scene (i.e. there is no background radiance or
sky map) and uses a spectral radiance emission function.

ABSTRACT

The most straightforward image synthesis algorithm is to follow
photon-like particles from luminaires through the environment.
These particles scatter or are absorbed when they interact with a
surface or a volume. They contribute to the image if and when they
strike a sensor. Such an algorithm implicitly solves the light trans-
port equation. Alternatively, adjoint photons can be traced from
the sensor to the luminaires to produce the same image. This “ad-
joint photon” tracing algorithm is described, and its strengths and
weaknesses are discussed, as well as details needed to make adjoint
photon tracing practical.

Keywords: global illumination, adjoint Monte Carlo methods

1 INTRODUCTION

In this paper we discuss tracing adjoint photons to create images.
This method of image synthesis has some theoretical and practical
advantages over path tracing [9]; it is simpler to motivate because
less of the machinery of radiometry and Monte Carlo integration
are needed, and lacking ray integration and explicit direct lighting
it deals better with some “difficult” scenes. Our paper develops
some of the details of adjoint photon tracing, and discusses where
it needs improvement.

Our motivation for this work is three-fold. First, we have found
that for predictive engineering applications (e.g. accurately simulat-
ing a car headlight modeled as a glass case over a curved, specular

reflector in a fog bank), both the geometric and optical complex-
ity can overwhelm most renderers. Second, as complex renderers
adopt layers of tricks, approximations, and hacks, both their design
elegance and robustness suffer. Finally, we note that in a world of
interactive ray tracing, a batch renderer can send trillions of rays
in an overnight run. Such a budget obviates the need for many ap-
proximations in applications that benefit from higher accuracy. All
three of these motivations imply that we should explore simple al-
gorithms with high generality and straightforward implementation.

The particular algorithm we have choosen is to send photons
from the sensor (pixel) into the environment and note how likely
this is to hit the light source. This is like path tracing in that it sends
rays from the sensor into the environment and lets them choose
random directions, but it has three important differences from path
tracing all of which are advantages in complex scenes where pre-
dictive results are desired:

• indirect and direct lighting are not separated so there are no
explicit shadow rays making luminaires with reflectors not
any more difficult than diffusely emitting surfaces;

• all adjoint photons have exactly one wavelength rather than
carrying a spectrum, so bidirectional reflection distribution
functions (BRDFs) and phase functions that vary in shape
with wavelength present no particular difficulties;

• volumes are probabilistically either hit or not hit by adjoint
photons so their transparency is accounted for by the percent-
age of adjoint photons that hit rather than by accumulation
of opacity for each adjoint photon, resulting in a straightfor-
ward implementation well-suited to problems requiring many
samples per pixel.

sensor
plane

752nm

540nm

585nm

Photons

lens

light

420nm

Adjoint Photons

lens

 sensor
(weighting
 function w)

 light
(density e)

Figure 2: The light emits spectral radiance e and the sensor weights
incident light with function w. Left: Photons are traced from the light
with cosine-weighted e(~x,ω,λ , t) as the emitted radiance and only
recorded with w(~x,ω,λ , t) when they hit the sensor. Right: Adjoint
photons are traced from the sensor with cosine-weighted w(~x,ω,λ , t)
as the emitted radiance and only recorded with e(~x,ω,λ , t) when they
hit the light. These processes both result in the same accumulated
response with no need for conversion factors between units. In this
example, the adjoint photon case is equivalent to using a planar light
source behind the lens and a spherical camera.

2 ADJOINT LIGHT TRANSPORT

While the self-adjoint nature of light transport has been exploited in
graphics for over a decade [5, 13, 18], it has a longer history in other
transport problems as surveyed in the excellent articles by Arvo [1]
and Christensen [4]. However, a physical implication of this self-
adjoint property is not as well known: the emission of a light source
and the response of a sensor can be exchanged without changing
the throughput along a path. This property has been exploited in
graphics for the first time indual photography [16] but also makes
the design of a rendering algorithm straightforward.

This exchange of source emission and sensor response does not
just mean that some kind of “importance” can be emitted from the
light, but that a complete exchange can take place without any nor-
malization. That is, suppose we have a luminaire whose emitted
spectral radiance is given by a functione(~x,ω,λ , t), where~x is a
3D location,ω is the emitted direction of light,λ is wavelength
andt is time. Further suppose we have a sensor which responds to
incident spectral radianceL with the integral:

R =
∫

w(~x,ω,λ , t)L(~x,ω,λ , t)cosθdAdΩdλ dt

whereR is the response of the sensor andw is the weighting func-
tion for the sensor. Note thatR depends on bothe and the properties
of the environment. In a typical environment,e is non-zero on any
luminaire surface during whatever time period it is “on”. The sen-
sor weightw is non-zero on the sensor element (e.g. a CCD pixel)
during the time the sensor is active.

If we were to make the sensor emit light with spectral radiance
w(~x,ω,λ , t) and make the luminaire a sensor with weighting func-
tion e(~x,ω,λ , t) the resulting response is:

RA =
∫

e(~x,ω,λ , t)L(~x,ω,λ , t)cosθdAdΩdλ dt.

The key property that reversibility implies is that this response is
exactly the same as the original case:

RA = R.

An immediate implication of this is that any rendering program can
be “run in reverse” by emitting light from sensors using the sensor
response as an emitted radiance distribution, and sensing that light
at luminaires using their radiance distribution as sensitivity. This
requires no additional normalization or complicated equations. We
exploit this in the next section using photon tracing.

3 ADJOINT PHOTON TRACING

The simplest algorithm is a brute-force simulation of photon-like
particles as illustrated in the left of Figure 2. This differs from
the family of photon-tracing algorithms that store photon-surface
and photon-volume intersections [7] in that nothing is logged but
interactions with the sensor array. The tracing of photons (as op-
posed to how they are logged) is the same as that of Walter et
al. [23] where photons have individual wavelengths so wavelength-
dependent scattering is straightforward. The algorithm to compute
the sensor responseR is:

R = 0
Q =

∫
e(~x,ω,λ , t)cosθ dAdΩdλ dt

for each of N photons do
choose a random (~x,ω,λ , t) ∼ e(~x,ω,λ , t)cosθ/Q
while photon is not absorbed do

find point ~x′ hit by ray
R = R+(Q/N)w(~x′,ω,λ , t)
H =

∫
ρ(~x′,ω ′,ω,λ , t)cosθ ′ dA′ dΩ′ dλ dt

if random < H then
choose random ω ′

∼ ρ(~x′,ω ′,ω,λ , t)cosθ ′/H
else

absorb photon

Hereρ is the BRDF,e is the emitted spectral radiance as defined in
the last section, andw is the sensor response function as defined in
the last section. The lineR = R+Qw(~x,ω,λ , t) has no cosine term
because it is included implicitly by the change in projected area of
the sensor which varies linearly with cosine. Note that bothe and
w are defined over all surfaces, butw is non-zero only on the sensor
ande is non-zero only on the luminaires. Thus no photons are gen-
erated except at luminaires, and only photons hitting a sensor affect
the value of the sensor valueR. The constantsH andQ simply serve
as normalization factors to ensure thate andρ are valid probability
density functions (pdfs). Note that the valueR is a scalar, just as for
one element in a typical CCD camera. For many pixels or multiple
colors there need to be more sensors (e.g. three for each pixel, one
red, one green and one blue). In the case of an open environment,
the ray will also terminate when it leaves the environment.

Because the transport equation is self-adjoint [13, 18], or can
be made so [22], the photon tracing algorithm can be run in reverse
with “adjoint photons” as shown in the left of Figure 2. Thus revers-
ing the photon tracing algorithm above involves just one change:
the function w should be exchanged with the function e. Adjoint
photons are emitted from sensors usingw as the emission function
and are “sensed” by luminaires usinge as the “sensor” weighting
function.

Operationally, an adjoint photon tracer behaves identically to a
traditional photon tracer. An implication of this is that adjoint pho-
ton tracing can be implemented by tricking a traditional photon
tracer to usew as a spectral emission function ande as the sen-
sor weighting function. We are using the fact that the physically
based scattering is self-adjoint to avoid explicitly using the under-
lying adjoint transport equations. The same principle has been used
for decades in other radiation transport problems [10]. We empha-
size that no normalization is required when swapping the emission
and sensor response functions.

Figure 3: Using a mixture density. Left: Sampling the BRDF. Middle: Sampling the environment map. Right: Mixture density with weighting
coefficients 0.75 for the BRDF and 0.25 for the environment map. All images use 289 samples per pixel and have the same run times.

4 IMPORTANCE SAMPLING

Although adjoint photon tracing is clean, it is very noisy in the pres-
ence of small bright sources (e.g. the Sun). This can be improved by
all the standard techniques of Monte Carlo particle transport [2, 10].
The most critical of these is importance sampling, where instead
of using the densityp′(ω ′) = ρ(ω,ω ′)cosθ ′/H to choose the di-
rection ω ′ to scatter the particle at a surface, we use some other
densityq(ω ′). When we do this, some directions will get “too
much” energy and some will get “too little” and a correction factor
p′(ω ′)/q(ω ′) is needed to appropriately scale the energy. We use a
q(ω ′) designed to emphasize directions we expect to be bright. The
algorithm proceeds as follows:

RA = 0
Q =

∫
w(~x,ω,λ , t)cosθ dAdΩdλ dt

for each of N adjoint photons do
choose a random (~x,ω,λ , t) ∼ w(~x,ω,λ , t)cosθ/Q
E = Q/N
while photon is not absorbed do

find surface hit by ray
RA = RA +Ee(~x′,ω,λ , t)
H =

∫
ρ(~x′,ω ′,ω,λ , t)cosθ ′ dA′ dΩ′ dλ dt

if random < Hh then
choose a random direction ω ′

∼ q
E = (1/h)Eρ(~x′,ω ′,ω,λ , t)cosθ ′/(Hq(ω ′))

else
absorb photon

HereE is the energy of the adjoint photon which is initialized to be
the total energy divided by the number of adjoint photons. Due to
importance sampling, the energy is rescaled.h is a user-set variable
that controls the Russian-roulette of photons [2] and can be set to
one for simple operation. In practice we usually useh = 1 along
with a maximum photon depth.

The key to improving the efficiency of our adjoint photon tracer
is to choose a “good” density functionp. Most path tracers choose
to partition illumination into two separate integrals corresponding
to “direct” and “indirect” lighting [17]. One problem with such a
separation is that it is not clear where high dynamic range (HDR)
environment maps or bright caustics fit into such a partition. We
instead only sample directions without the explicit concept of direct
lighting.

In practice we use a weighted average of simple probability den-
sity functions (pdfs). This averaging of density functions is a “mix-
ture density” where a new pdf is constructed by a weighted average
of N pdfs p1 throughpN [10]. In practice, onepi is related to the
BRDF, one describes directions toward luminaires, and one is pro-
portional to the background luminance. When the background is
an HDR environment map, thepi related to the background can be
sampled according to intensity weighted solid angle. Note that we

Figure 4: Top: Sampling using a mixture density averaging cosine
weighting and directions toward the light. Bottom: Sampling using
multiple importance sampling with the power heuristic. Both images
were computed in approximately the same amount of time. The
insets are magnifications of the pixels near the back left corner.

need to evaluate the values of everypi regardless of which distri-
bution the sample is taken from. This matters for cases where the
pi have overlapping non-zero regions (e.g. sampling the BRDF and
the environment map).

This mixture density architecture can be extended recursively.
The density for BRDFs can be a mixture density of a diffuse and a
specular lobe. The density for area lights can weight nearby lights
more heavily. A density over known caustics could weight direc-
tions according to an approximation of subtended solid angle. This
emphasizes that any improvement in the weighting coefficients,
even through approximations, will be beneficial in improving ef-
ficiency.

An example of the power of this mixture density importance
sampling technique is shown in Figure 3. Here we use brute force
importance sampling of the environment map and the BRDFs, us-
ing models and BRDF data from Lawrence et al. [12]. In addition to
dealing with sampling problems, the directional sampling method
produce a very clean code architecture.

While using mixture densities is robust, it helps little over tra-
ditional path tracing for simple scenes. Figure 4 (left) shows an
image with depth 6 and a mixture density sampling function that
is the average of cosine density and a density that approximates
uniform sampling toward the light, using 10,000 paths per pixel.
10,000 paths per pixel is approximately ten times the paths needed
for the same level of convergence as for a conventional path tracer
in our experience (and approximately five times the total ray seg-
ments because no explicit shadow rays are used). So adjoint photon
tracing is not a good choice for simple diffuse scenes. However, this
method pays off in the presence of complex lights or participating
media.

In addition to changing the density we can split adjoint photons
as long as the expected weights add to one. This allows not only
traditional splitting [10], but also any of Veach’s multiple impor-
tance sampling (MIS) techniques to be integrated into adjoint pho-
ton tracing [21]. The big difference is that a sample (and thus a
ray) is needed for each density combined with MIS, producing a
branching factor above one. This is shown for the power heuristic
with exponent 2 in the right of Figure 4 for a similar runtime to the
left figure (using about half as many screen samples to make up for
the extra branching). As can be seen, if there is an advantage over
the branchless case, it is slight. In practice we usually avoid split-
ting for the sake of simplicity, but some MIS splits early in the ray
tree does improve convergence for some scenes.

For traditional path tracers that use direct lighting, samples are
generated on the surface of a luminaire in order to query prop-
erties of the light source. Many direct lighting computations re-
quire a direction and distance for a shadow ray as well as an es-
timate of the emitted radiance from the light source if the point
is unoccluded [17]. While choosing a point towards a complex
reflector would be fairly straightforward, it is not clear how one
would cleanly estimate the emitted radiance when the “light” is un-
occluded. Our method instead considers important directions such
as those towards light sources or a complex reflector (Figure 5) and
avoids determining whether or not something is occluded.

As another simple example of this distinction, consider a glass
cover over a light source. For direct lighting calculations, the glass
cover occludes the light source and the computation produces a
shadow. In a system without direct lighting, we will simply send
samples towards the light source more frequently and would pro-
duce the appropriate image.

Figure 5: Top: A small spherical light inside a metal parabolic reflec-
tor, where the sphere itself is sampled, along with a magnification of
the front of the taller box. Bottom: The opening of the parabolic re-
flector is sampled instead of the sphere. The same number of samples
are used in each and the runtimes are approximately the same.

light

ray

medium

surface

∆s

ray
∆s

Figure 6: Top ray: a traditional ray-march through a heterogeneous
medium, and at each step a shadow ray is also marched. Bottom
ray: an adjoint photon also steps through the medium (unless the
intersection can be done analytically) and if it has an interaction with
the volume it generates a new ray only at that point.

Figure 7: At one sample per pixel each pixel either hits the medium
completely or is all background.

5 PARTICIPATING MEDIA

Path tracers have traditionally handled participating media by per-
forming shading at many points along each ray which in turn gen-
erates many visibility rays each of which requires many samples
in turn as shown for the top ray in Figure 6. For each of then
steps along the ray, an estimate of the radiance reaching that point
is computed by scattering according to a phase function, sampling
light sources or some combination of the two resulting in anO(n2)
algorithm (each step generatesO(n) steps for the radiance estimate
and there areO(n) steps). This is just for the single scattering.
The multiple scattering is done separately. However, adjoint pho-
ton tracers operate as shown for the bottom ray in Figure 6 and only
O(n) steps are needed.

TheO(n) approach arises naturally in our framework. We treat
the participating medium as a probabilistic scatterer/absorber rather
than as an attenuating body. An adjoint photon traveling through
the medium will either “hit” a particle and cause its shader to be
executed, or it will pass through the medium unaffected. Although
this results in more randomness for a given ray, it allows us to im-
plement a volume traversal using anO(n) algorithm with the same
interface as a surface intersection.

Not surprisingly, theO(n) approach also arises naturally for
traditional photon tracers [8] as well as for bidirectional meth-
ods [11, 14]. Our approach is almost identical to the first pass
of photon mapping, although our single-wavelength implementa-

Figure 8: Top: Traditional ray marching, 4 samples/pixel. Bottom:
New probabilistic intersection, 400 samples/pixel. These images are
computed in approximately the same time.

tion has important simplicity and efficiency advantages for volumes
such as air that absorb or scatter different wavelengths with very
different probabilities without adding large correction weights. Un-
like the second (visualization) pass of photon mapping, we never
engage in traditionalO(n2) single-scattering computation.

Figure 7 shows adjoint photon tracing with one sample per pixel
and a ray depth of one, withq(ω ′) sampling only the luminaire
(usually we run it with a mixture density defined over the hemi-
sphere but for this example we hardcode the density for the single
scattering case for the purpose of comparison). This effectively
does direct lighting within our framework and it demonstrates the
probabilistic nature of our intersection routine: adjoint photons ei-
ther hit the volume or pass through it completely. Figure 8 com-
pares ray marching with our probabilistic intersection method. Note
that for 4 samples per pixel, ray marching has mostly converged
except for the shadow, which has variance because its samples are
distributed across the light source. Our volume shading method
runs in linear time, compared to the quadratic time required for tra-
ditional ray marching. This increase in efficiency allows us to uti-
lize more samples per pixel with similar computational time. This
higher sampling density leads to lower variance in other portions of
the scene, such as shadows.

The probability of an adjoint photon scattering is allowed to vary
with wavelength. For example, in Rayleigh scattering light is scat-
tered inversely proportional toλ 4. This causes blue light (shorter
wavelength) to be preferentially scattered when compared to red
light (longer wavelength). With a single wavelength per adjoint
photon, implementing Rayleigh scattering is straightforward (see
Figure 9).Subsurface scattering is also straightforward to model as
a medium inside a dielectric boundary. An example of this is shown
in Figure 10.

Figure 9: A sky at three different times of day done with a participat-
ing media and a sun. The background is black and all color comes
from Rayleigh Scattering within the sky participating medium.

Figure 10: Subsurface scattering done automatically: the object is
modeled as a polygonal mesh that has a participating medium inside
it.

6 IMPLEMENTATION

We implemented adjoint photon tracing in our rendering framework
galileo using C++ and many of its details are the same as any ray
tracer. For each pixel sample, we generate an adjoint photon with a
random wavelength, time, lens position, etc. Instead of importance
sampling the sensor response function, we simply choose our wave-
length uniformly in the visible spectrum. If our sensor response had
significant variation with respect to wavelength (e.g. a green CCD
pixel that mostly responds to green wavelengths only) this would be
fairly inefficient. For the images in this paper, however, we simply
use the standard XYZ response curves. When an adjoint photon
hits a sensor element, we increment three quantitiesRX , RY , and
RZ , so the same photons are used in parallel for all three sensor
computations for all of the pixels.

Our galileo renderer supports a “Surface” class that has a hit
routine. The probabilistic media we described in this paper are im-
plemented as a subclass of Surface and are probabilistically hit or
not using a media intersection seed (this is in addition to the stan-
dard seeds used for lens position, motion blur time, etc). The “Sur-
faceShader” class ingalileo has a “kernel” function that computes
either a BRDF multiplied by cos(θ) or a phase function and scatter-
ing albedo depending on whether it is meant for surfaces or media
respectively. The SurfaceShader class also supports two sampling
functions: “sampleKernel“ and “pdfDirection”. This pair of func-
tions provide the ability to generate samples according to some den-
sity and return the probability of generating a sample for any arbi-
trary direction. This allows for implementing importance sampling
of BRDFs and phase functions and allows for the use of mixture
densities and multiple importance sampling. For verification pur-
poses, the default implementation for sampleKernel and pdfDirec-
tion represent uniform domain sampling. This allows us to check
that our importance sampling converges to the same result as uni-
form sampling and may also be used for functions that cannot be
analytically sampled, such as measured data.

When shading an intersection point, we use a mixture density
that combines kernel sampling, luminaire sampling, environment
sampling and uniform domain sampling (either hemisphere for
BRDFs or full sphere for phase functions) to determine a new di-
rectional sample. We evaluate the probability of generating this
direction for each of the densities in our mixture and compute the
full probability using the weighted average. We also evaluate the
kernel value for the chosen direction regardless of which sampling
method generated it; for example, if the chosen density is over lu-
minaires the kernel function must still return an answer (even if it
is 0). We then weight the kernel value by the pdf and evaluate the
spectral radiance of the new ray. This process continues until we
reach the background or until a max depth is achieved.

Environments and luminaire emission functions are described
using “LightShaders” which provide an “emittedRadiance”, “sam-
pleDirection” and “pdfDirection” function. The emittedRadiance
function is the functione from before and behaves as it does in
any rendering framework, while sampleDirection and pdfDirection
behave similarly to the SurfaceShader functions (the major differ-
ence being that the luminaire should attempt to choose an important
direction relative to the shading point). Efficient environment map
sampling is achieved by using a Lambert cylindrical equal-area pro-
jection; this causes each pixel in the environment map to have the
same solid angle allowing for simple importance sampling of pixel
luminance using a summed area table without the need for a cor-
rection factor.

A complex scene rendered using our approach is shown in Fig-
ure 1. While adjoint photon tracing is relatively slow for simple
scenes such as the Cornell box, its merits are evident in dealing with
photometrically complex scenes where its robustness and lack of
simplifying assumptions allow it to work without special changes.

7 DISCUSSION

Adjoint photon tracing is in some sense a rehash of neutron trans-
port work from the 1940s and 1950s, and most (and possibly all) of
the details of its implementation have appeared in different places
in the graphics literature. However, we have found that our im-
plementation as a whole seems quite different and is simpler than
anything we have seen in the graphics literature or encountered in
discussions with other rendering researchers. We now explicitly
address several questions about adjoint photon tracing.

Isn’t adjoint photon tracing just path tracing? It is simi-
lar but has three important differences. First it abandons traditional
direct lighting which fundamentally changes the architecture of a
path tracer. Second it handles media differently by avoiding tra-
ditional ray marching. Finally, it avoids the more complex math
of Monte Carlo integration and replaces it with Monte Carlo simu-
lation. Imagine teaching both derivations to a freshman computer
science class and that advantage is quickly apparent.

Is per-wavelength sampling inefficient? An immediate
question that concerned us is whether associating individual wave-
lengths is the main source of our variance. As in Walter et al. [23],
we have not found color noise to be a significant problem as il-
lustrated by the test shown in Figure 11. Adding spectral effects
such as dispersion to such a renderer requires no special handling
or complicated code.

Why strive for code simplicity? While the theoretical prin-
ciples of rendering are fairly well-understood [6, 20], much less is
known about how to field systems that deal with complex scenes
under complex illumination, with the most well-documented effort
beingpbrt [15]. Thepbrt system is designed for flexibility and the
resulting complexity is managed using careful software engineer-
ing. We instead make all software design decisions by choosing
the simplest thing that could possibly work, and introducing com-
plexity above that only when simpler solutions have been tried and
empirically shown not to work.

Isn’t that too many rays? There will always be an impor-
tant role for batch rendering in both engineering and artistic appli-
cations. With advances in CPU resources and ray tracing efficiency
structures, approximately one trillion ray-scene intersections can be
performed in an overnight run. That is more than enough for most
scenes. For the most challenging scenes, more than one CPU can be
used as pixel-based techniques easily scale to thousands of CPUs.

Is importance sampling effective? Importance sampling is
only as effective as its ability to not miss hugely important paths.
This is why bidirectional methods are important for some scenes.
However, this paper has used very crude importance sampling and
we think we have demonstrated that adjoint photon tracing is an
approach worth exploring, especially for complex scenes. More
sophisticated importance sampling such as sampling the product
of the illumination field and the BRDF could further increase effi-
ciency [3, 19].

Aren’t adjoint photons really importons? Christensen has
categorized many photon-like particles that might be sent from the
sensor [4], but we really are switching the roles of lights and sen-
sors and sending photons without normalization. Once the principle
advocated by dual photography is accepted, no knowledge of “im-
portance” is needed.

Figure 11: Sampling the Macbeth Color Checker Chart with one ran-
dom wavelength per ray (adjoint photon) under ambient illumination.
Convergence is fairly rapid. Top: 4 samples/pixel. Middle: 16 sam-
ples/pixel. Bottom: 49 samples/pixel. All images are computed
using one wavelength per adjoint photon.

8 CONCLUSION

An adjoint photon tracer sends adjoint photons from the sensor el-
ements into the environment and records hits at luminaires. The
implementation of an adjoint photon tracer is straightforward, and
has the important software engineering benefit of being able to im-
plement participating media as randomized surfaces. From a prac-
tical standpoint this is very important because, in our experience,
supporting media typically uglifies a rendering system to the point
where it is hard to maintain it, and in adjoint photon tracing the
complexity associated with media is cleanly hidden. Importance
sampling can be used to make adjoint photon tracing practical for
many scenes, including those with spectral effects and complex par-
ticipating media. At a high level, an adjoint photon tracing program
operates much like a Kajiya-style path tracer. However, in its details
it has several advantages, and is based on a more intuitive formula-
tion where the details of Monte Carlo integration are hidden in the
importance sampling rates.

ACKNOWLEDGEMENTS

David Banks suggested the term “adjoint photons”. Steve
Marschner participated in helpful discussions about adjoint light
transport. The Dragon model is courtesy of the Stanford 3D Data
Repository. The data for Figure 3 was provided by Jason Lawrence
(Princeton University). The smoke simulation data was provided
by Kyle Hegeman (SUNY Stony Brook). This work was partially
supported by NSF grant 03-06151 and the State of Utah Center of
Excellence Program. The second author was also supported by the
Barry M. Goldwater Scholarship.

REFERENCES

[1] James Arvo. Transfer equations in global illumination. Global Illumi-
nation, SIGGRAPH Conference Course Notes, 1993.

[2] James Arvo and David B. Kirk. Particle transport and image synthesis.
In Proceedings of SIGGRAPH, pages 63–66, 1990.

[3] David Burke, Abhijeet Ghosh, and Wolfgang Heidrich. Bidirectional
importance sampling for direct illumination. InRendering Techniques,
pages 147–156, 2005.

[4] Per H. Christensen. Adjoints and importance in rendering: An
overview. IEEE Transactions on Visualization and Computer Graph-
ics, 9(3):329–340, 2003.

[5] Per H. Christensen, David H. Salesin, and Tony D. DeRose.A con-
tinuous adjoint formulation for radiance transport. InEurographics
Workshop on Rendering, pages 95–104, 1993.

[6] Philip Dutre, Philippe Bekaert, and Kavita Bala.Advanced Global
Illumination. AK Peters, 2003.

[7] Henrik Wann Jensen.Realistic Image Synthesis Using Photon Map-
ping. AK Peters, 2001.

[8] Henrik Wann Jensen and Per H. Christensen. Efficient simulation of
light transport in scenes with participating media using photon maps.
In Proceedings of SIGGRAPH, pages 311–320, 1998.

[9] James T. Kajiya. The rendering equation. InProceedings of SIG-
GRAPH, pages 143–150, 1986.

[10] Malvin H. Kalos and Paula A. Whitlock.Monte Carlo methods. Vol.
1: basics. Wiley-Interscience, New York, NY, USA, 1986.

[11] Eric P. Lafortune and Yves D. Willems. Rendering participating media
with bidirectional path tracing. InEurographics Rendering Workshop,
pages 91–100, 1996.

[12] Jason Lawrence, Szymon Rusinkiewicz, and Ravi Ramamoorthi. Effi-
cient brdf importance sampling using a factored representation. ACM
Transactions on Graphics, 23(3):496–505, 2004.

[13] S. N. Pattanaik and S. P. Mudur. The potential equation and im-
portance in illumination computations.Computer Graphics Forum,
12(2):131–136, 1993.

[14] Mark Pauly, Thomas Kollig, and Alexander Keller. Metropolis light
transport for participating media. InEurographics Workshop on Ren-
dering, pages 11–22, 2000.

[15] Matt Pharr and Greg Humphreys.Physically Based Rendering. Mor-
gan Kaufmann, 2004.

[16] Pradeep Sen, Billy Chen, Gaurav Garg, Stephen R. Marschner, Mark
Horowitz, Marc Levoy, and Hendrik P. A. Lensch. Dual photography.
ACM Transactions on Graphics, 24(3):745–755, 2005.

[17] Peter Shirley, Changyaw Wang, and Kurt Zimmerman. Monte carlo
techniques for direct lighting calculations.ACM Transactions on
Graphics, 15(1):1–36, January 1996.

[18] Brian E. Smits, James R. Arvo, and David H. Salesin. An importance-
driven radiosity algorithm. InProceedings of SIGGRAPH, pages 273–
282, 1992.

[19] Justin Talbot, David Cline, and Parris Egbert. Importance resampling
for global illumination. InRendering Techniques, pages 139–146,
2005.

[20] Eric Veach.Robust Monte Carlo Methods for Light Transport Simu-
lation. PhD thesis, Stanford University, December 1997.

[21] Eric Veach and Leonidas J. Guibas. Optimally combining sampling
techniques for monte carlo rendering. InProceedings of SIGGRAPH,
pages 419–428, 1995.

[22] Eric Veach and Leonidas J Guibas. Metropolis light transport. In
Proceedings of SIGGRAPH, pages 65–76, 1997.

[23] Bruce Walter, Philip M. Hubbard, Peter Shirley, and Donald F. Green-
berg. Global illumination using local linear density estimation. ACM
Transactions on Graphics, 16(3):217–259, 1997.

