
Packet-Based Whitted
and Distribution Ray

Tracing
Solomon Boulos, David Edwards, J. Dylan Lacewell,
Joe Kniss, Jan Kautz, Peter Shirley, Ingo Wald

University of Utah

I’m Solomon Boulos from the University of Utah. I’ll be presenting my work on interactive ray tracing involving real secondary
rays using packets.

This is the goal. A nice looking distribution ray trace of the standard conference scene. Every material in here has been made
glossy to really stress the system (but still produce a reasonable looking image). Our system traces slightly less than 1M ray
segments per second per Opteron core and this image requires just under 300M ray segments. So this is a 5 minute image on 1
core. The latest 8-core mac pro is about twice as fast per core as the Opteron used for this timing, so this is about a 20 second
image on modern hardware.

Ray Casting vs Whitted

In ray casting: packets can amortize constants

eye

light

refraction

reflection

Recent interactive ray tracing performance has been mainly derived from the use of ray packets. Larger ray packets allow for significant amortization of both
computations and memory accesses. Successful systems such as OpenRT, Intel’s MLRTA and our own Coherent Grid and Dynamic BVH are examples of
systems that attempt to take advantage of ray packets to avoid redoing work. Each of these systems relies on more than just “using SIMD” and takes advantage of
some clever geometric or mathematic technique due to common origin, common sign, etc. These are available when perform ray casting or even shadows from a
point light (we call this Ray Casting with Shadows). In Whitted’s illumination model, however, even reflection and refraction rays from a pinhole camera yield non-
constant origin or signs. This yields a situation where how rays are grouped into packets is non-obvious.

Assembling Packets

1 2 3

5

16

4

6 87

12

15

1110

1413

9

As an example, consider 16 primary rays in this historical Utah scene. Rays 1-4 hit diffuse surfaces and require shadow rays. Rays 5 and 6 hit the shiny floor
with a phong model and require both reflection and shadow rays. Rays 7, 8, 11, and 12 all hit a metal teapot and only generate reflection rays. All other rays hit
glass and generate both reflection and refraction rays.

Three Basic Options

No Packets / Single Ray

Blind / All Together

Groups

Runs (material type)

Ray Type

eye

light

refraction

reflection

There are three basic methods for taking our previous situation and choosing how to form new packets of rays. The first is to
not use any packets at all, which is what the OpenRT system has traditionally done. In this case, primary rays use packets but all
shading is done with traditional single ray code. The complete opposite of this is to just put all the rays together. However, as
we remember from the earlier example this would produce awful packets. The basic point of this work is to explore reasonable
assembly methods. The two specific methods are runs based on material type and grouping based on ray type.

Runs (by example)

1 2 3

5

16

4

6 87

12

15

1110

1413

9

Runs grouping is the style of grouping we have used in the Manta Interactive Ray Tracer. The basic idea is to loop over input
rays and build runs of rays that share some common property. In this case, we have chosen to use the material pointer to
determine rays that agree. For this scene, rays 1-4 would shade together, 5-6 together, 7-8 together, 9-10, 11-12, and then
13-16. This simple example demonstrates a possible failing for runs grouping: it is inherently sensitive to ordering.

Ray Type

1 2 3

5

16

4

6 87

12

15

1110

1413

9

In ray type grouping, all input rays first fill in queues of rays for shadows, reflections and refractions. This grouping completely
ignores whether a diffuse or phong model has generated a shadow ray: all are treated the same. An important feature of this
specific ray type grouping is that the number of groups is bounded at 3: shadows, reflections and refractions. More general
grouping methods might be possible, but could require either immense stack space or “thin out” input packets so much as to be
equivalent to single ray.

Faster than single ray?

Figure 5: Our three test scenes. Left: pool hall (305,314 triangles). Middle: conference (282,664 triangles). Right: rtrt (83,844 triangles).

5.1 Methodology

To determine the performance of our system, we report both archi-
tecture independent metrics as well as absolute render time met-
rics. The architecture-independent metrics that we report here in-
clude the number of box and primitive intersection tests per ray.
As the cost of tracing rays is highly dependent on these two sim-
ple statistics, we feel it is a good metric for comparing algorithmic
differences without requiring implementation details such as use of
SIMD, processor clock frequency, cache size, etc. To ensure that
the architecture independent improvements are not associated with
large hidden costs, we also report the total number of rays cast per
second. We also report all numbers for a single core of a 2.4 GHz
Opteron 880, despite having a 16 core system. While our system
scales linearly with the number of cores, we believe that single core
timings allow readers to scale the results to the size of their system.

Our system is implemented in C++ with SIMD extensions, and for
ray casting with shadows our performance is similarly to the system
demonstrated by Wald et al. [31]. The most important differences
to that system included adding support for general packets, reflec-
tion, refraction, and interleaved sampling. As noted by Reshetov
et al. [27], just adding support for normalized viewing rays, local
shading, and display significantly slows down ray casting. We have
noted the same phenomenon in our code, and it is similar to the
factor of two noted by Reshetov et al. All of our shading models in-
clude computation of Fresnel reflectance and other more advanced
shading techniques. We believe this is a more accurate depiction of
the desired shading models used in high quality rendering.

We ran our system on three scenes (see Figure 5) using camera
paths for each scene (the path for the conference scene was origi-
nally used by Reshetov [26]). The maximum ray depth allowed was
set to 50, but ray tree attenuation keeps the trees much shallower.

5.2 Whitted Ray Tracing

As mentioned from the outset, one concern with extending packet
tracing algorithms to WRT is that there might not be enough co-
herence available to gain anything beyond a single ray implemen-
tation. We compared for each of our three scenes, the performance
of our system for varying packet sizes and found that our algorithm
is able to extract enough coherence to not only gain a benefit from
SIMD, but also from the first hit and interval arithmetic test used by
our BVH. Table 1 demonstrates how our system performance varies
with packet size compared to single ray across our test scenes.

The reason our system increases in performance over single ray is
fairly simple. Despite being less coherent than primary visibility
rays, our system still amortizes a significant amount of box and

primitive tests. The first row in each table compares 2x2 packets of
primary rays, with single ray tracing for reflections and shadows.
By comparison, the ray type grouping produces around a 2-2.5x
speedup even for such small packets.

For the conference scene test, we disabled ray tree pruning for a
more direct comparison to Reshetov [26]. Ray type grouping with
2x2 packets is then identical to SIMD packet tracing. If the only
benefit our system could expose was due to SIMD, we would not
see further increases in performance for increases in packet size. It
should be noted that despite a programmer visible SIMD width of 4,
that realistically implementation achieve between 1.8-2.5x instead
of a theoretical 4x [33].

Increasing packet size allows the BVH to take advantage of algo-
rithmic amortization beyond the natural SIMD width of the system.
However, increasing the packet size may also greatly increase the
number of primitive intersections performed as more rays “come
along for the ride”. In Figure 6 we examine the number of prim-
itive and box tests per ray for increasing packet size. The other
scenes demonstrate fairly similar behavior.

Single Ray Ray Type Speedup

“Conference” (no ray tree attenuation, bounce depth 5)
2x2 .37M .76M 2.02x
4x4 .43M 1.14M 2.65x
8x8 .44M 1.25M 2.85x
16x16 .40M 1.00M 2.53x
“rtrt” (w/ ray tree attenuation)
2x2 1.09M 1.98M 1.82x
4x4 1.20M 2.85M 2.37x
8x8 1.22M 3.30M 2.69x
16x16 1.14M 3.02M 2.65x
“Pool Hall” (w/ ray tree attenuation)
2x2 .64M 1.21M 1.89x
4x4 .71M 1.85M 2.60x
8x8 .73M 2.18M 2.97x
16x16 .71M 2.10M 2.96x

Table 1: Millions of rays per second for different scenes, packet sizes,
and ray tree attenuation vs no ray tree attenuation. In “conference”,
all surfaces are reflective and we use a maximum bounce depth of
5 without ray tree attenuation, while “rtrt” and “Pool Hall” have
ray tree attenuation turned on. As can be seen in the 2x2 case, we
get a speedup of roughly 1.8x to 2.0x through SIMD alone. On top
of that, for larger packets, we get an additional speedup of ∼1.5x
through algorithmic amortization, for a total of 2.5x–3x.

An important question for any packet based work is whether or not it actually matters. In more direct terms, is it actually better
than just single ray code? Each row within the subtables compares single ray grouping for secondary rays against the proposed
ray type grouping. It should be noted that even the “Single Ray” code uses packets for primary rays where they are assumed to
be beneficial. This table demonstrates that for whitted style ray tracing, the benefits of packet tracing still exist. And indeed
even algorithmic amortization beyond simple SIMD are present in the table. It should be noted that comparing the best RayType
grouping to the 2x2 single ray, we can achieve nearly a 4x speedup for WRT. But then again, Whitted style ray tracing isn’t really
the goal...

Distribution Ray Tracing

Remove constants

lens

pixel

luminaire

For distribution ray tracing, we add a little bit of blur to each dimension. This immediately removes common origin optimizations for
even the camera and further decreases the so called coherence of generated packets (presumably regardless of assembly method).
An important question in our work was to actually generate data for this case. Many researchers have assumed that distribution ray
tracing leads to reduced coherence because of this blur, but nobody had shown whether or not that was the case.

Poolhall

This is our test scene mimicking Cook’s original 1984 distribution ray tracing paper (in fact, we even set up the animation to
look like his from above). We’ve added a glass ashtray and a real poolhall so we can demonstrate depth of field as well.

What about DRT?

 0

 5

 10

 15

 20

Primary Shadow Reflection

Ray Type

Primitive Tests Per Ray

2x2 Packets
4x4 Packets
8x8 Packets

16x16 Packets

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

ReflectionShadowPrimary

Ray Type

Box Tests Per Ray

2x2 Packets
4x4 Packets
8x8 Packets

16x16 Packets

Figure 6: Number of primitive (left) and box (right) tests per ray for
WRT for the conference scene as we vary the packet size. The data
clearly demonstrates that using 16x16 packets causes an explosion
both in the number of primitive and box tests per ray. The 8x8
packets achieve a sweet spot for most data, however, the 4x4 packets
produce similar numbers.

5.3 Distribution Ray Tracing

With DRT at 64 samples per pixel, we are factors of hundreds or
thousands from interactive performance on commodity hardware.
Because DRT uses 64 samples per pixel instead of 1 as in RCS
and WRT, we find it more meaningful to compare the total number
of rays traced per second. For DRT, the rays per second achieved
is about one half that for WRT on the conference scene, and only
about 30% worse for the rtrt scene (see Table 2). The reduced per-
formance for the conference scene is partly an artifact of the con-
ference scene material parameters: all surfaces are reflective with
a fairly glossy exponent (in essence creating a DRT version of the
test by Reshetov [26]).

RCS rps WRT rps DRT rps
conference 3.25M 1.79M 0.88M
rtrt 3.30M 2.00M 1.53M
poolhall 2.83M .83M 1.23M

Table 2: The number of rays traced per second (rps) in millions for
each of our scenes. This data is for a single frame and not the camera
paths used from the WRT results.

While the total number of rays cast per second is usually lower in
DRT than WRT, if we cast few enough rays we can provide interac-
tive performance. The purpose of DRT, however, is to render fuzzy
effects that WRT cannot produce. In practice, rendering these ef-
fects requires somewhere between 16 and 64 samples per pixel. As
sample density increases, however, we can use larger ray packets
and either maintain or increase the number of rays cast per second
(see Table 3).

Single Ray Ray Type Speedup
2x2 .42M .73M 1.86x
4x4 .44M .88M 2.00x
8x8 .29M .88M 3.03x

Table 3: Millions of rays traced per second for the conference scene
under distribution ray tracing at 4, 16, and 64 samples per pixel.
Each setting uses a packet of rays equivalent to 1 pixel.

5.3.1 Performance as DRT features vary

In our tests, most DRT effects display fairly small performance dif-
ferences across different values and the different scenes. For exam-
ple, in changing the diameter of the lens aperture from 0 (a pinhole
camera) to twice a reasonable size we only see small differences in
the number of box and primitive tests at each step (see Figure 7).
Changing the light source size only affects the shadow rays as these
rays do not cast recursive rays. The shutter time behaves similar
to other variables for small values, but performance is non-linear

with respect to equal steps in shutter time. When the shutter time is
short, primitives in the scene expand the bounding boxes less and
to the packet of rays “look like smaller primitives”. As this shutter
time becomes longer, this effectively creates much larger primitives
for the rays to intersect.

 0

 2

 4

 6

 8

 10

 12

 14

ReflectionShadowPrimary

Ray Type

Primitive Tests Per Ray

0.0x Aperture Diameter
0.5x Aperture Diameter
1.0x Aperture Diameter
1.5x Aperture Diameter
2.0x Aperture Diameter

 0

 5

 10

 15

 20

 25

 30

 35

Primary Shadow Reflection

Ray Type

Box Tests Per Ray

0.0x Aperture Diameter
0.5x Aperture Diameter
1.0x Aperture Diameter
1.5x Aperture Diameter
2.0x Aperture Diameter

Figure 7: Effect of aperture on primitive tests (left) and box tests
(right) per ray for the conference scene. As aperture diameter in-
creases the effect on primitive intersections is fairly small. Similar
behavior is seen for other DRT effects such as glossy exponent and
light source size.

5.4 Packet Assembly

As shown previously, compared to tracing single rays or even SIMD
packets of rays, the ray type assembly algorithm offers increased
performance. Our previous results all use the ray type assembly be-
cause it is usually 10-20% faster for a given scene over the full an-
imation path than the runs assembly. While this seems like a small
improvement, it is important to understand where this improvement
comes from.

The difference in performance between ray type and runs assem-
bly can be seen from looking at the behavior of packets of rays as
the bounce depth increases (see Figure 8). Both methods perform
fairly similarly at first and the difference in overall performance is
only around 10%. At higher bounce depths, however, the runs as-
sembly usually demonstrates significantly more primitive and box
tests. While the runs method produces slightly less primitive inter-
sections overall, the increased number of box tests counter balances
this. This implies that while the ray type method may sometimes
produce large bad packets (e.g., when half the rays hit a nearby ob-
ject and half hit a distant wall), the losses from the conservative
decisions made by the runs method are a more serious problem in
our tests. As the performance gap between CPUs and memory in-
creases, reducing box tests will reduce memory accesses and should
widen the gap between ray type assembly and runs assembly [26].
Similarly, if the number of rays traced at deeper bounces becomes
more important (as for path tracing or caustics from long specular
chains) the ray type assembly should pull further ahead.

6 CONCLUSIONS AND DISCUSSION

We have demonstrated what we believe is the first interactive WRT
system to support deformable scenes. We have shown that ray pack-
ets and reflection/refraction rays are not necessarily incompatible.
We have also shown that DRT is not severely more expensive per
ray than WRT, and that most of the cost difference is due to neces-
sary multisampling.

The following are a number of important questions we have not
definitively answered, along with our best current answers. We be-
lieve all of these topics deserve further study.

What applications benefit from ray tracing? The sub-linear time
complexity of ray-scene intersections is a primary advantage of ray

This is a table from the paper for distribution ray tracing on the conference scene comparing ray type grouping to a high
performance single ray implementation. Each row shows a different packet size from 2x2-8x8. The 2x2 row is a pure SIMD
implementation similar to Ingo Wald’s initial “packet tracing” paper. Our results demonstrate that even for distribution ray
tracing (every surface in the scene has a phong exponent of 256) both SIMD and algorithmic amortization are possible.

This is just a reminder of how glossy the test actually is. To me this looks a lot like a nice path traced image and for the most
part it basically is (a glossy exponent of 256 is low enough to be just sort of shiny).

How does this compare?

 0

 5

 10

 15

 20

Primary Shadow Reflection

Ray Type

Primitive Tests Per Ray

2x2 Packets
4x4 Packets
8x8 Packets

16x16 Packets

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

ReflectionShadowPrimary

Ray Type

Box Tests Per Ray

2x2 Packets
4x4 Packets
8x8 Packets

16x16 Packets

Figure 6: Number of primitive (left) and box (right) tests per ray for
WRT for the conference scene as we vary the packet size. The data
clearly demonstrates that using 16x16 packets causes an explosion
both in the number of primitive and box tests per ray. The 8x8
packets achieve a sweet spot for most data, however, the 4x4 packets
produce similar numbers.

5.3 Distribution Ray Tracing

With DRT at 64 samples per pixel, we are factors of hundreds or
thousands from interactive performance on commodity hardware.
Because DRT uses 64 samples per pixel instead of 1 as in RCS
and WRT, we find it more meaningful to compare the total number
of rays traced per second. For DRT, the rays per second achieved
is about one half that for WRT on the conference scene, and only
about 30% worse for the rtrt scene (see Table 2). The reduced per-
formance for the conference scene is partly an artifact of the con-
ference scene material parameters: all surfaces are reflective with
a fairly glossy exponent (in essence creating a DRT version of the
test by Reshetov [26]).

RCS rps WRT rps DRT rps
conference 3.25M 1.79M 0.88M
rtrt 3.30M 2.00M 1.53M
poolhall 2.83M .83M 1.23M

Table 2: The number of rays traced per second (rps) in millions for
each of our scenes. This data is for a single frame and not the camera
paths used from the WRT results.

While the total number of rays cast per second is usually lower in
DRT than WRT, if we cast few enough rays we can provide interac-
tive performance. The purpose of DRT, however, is to render fuzzy
effects that WRT cannot produce. In practice, rendering these ef-
fects requires somewhere between 16 and 64 samples per pixel. As
sample density increases, however, we can use larger ray packets
and either maintain or increase the number of rays cast per second
(see Table 3).

Single Ray Ray Type Speedup
2x2 .42M .73M 1.86x
4x4 .44M .88M 2.00x
8x8 .29M .88M 3.03x

Table 3: Millions of rays traced per second for the conference scene
under distribution ray tracing at 4, 16, and 64 samples per pixel.
Each setting uses a packet of rays equivalent to 1 pixel.

5.3.1 Performance as DRT features vary

In our tests, most DRT effects display fairly small performance dif-
ferences across different values and the different scenes. For exam-
ple, in changing the diameter of the lens aperture from 0 (a pinhole
camera) to twice a reasonable size we only see small differences in
the number of box and primitive tests at each step (see Figure 7).
Changing the light source size only affects the shadow rays as these
rays do not cast recursive rays. The shutter time behaves similar
to other variables for small values, but performance is non-linear

with respect to equal steps in shutter time. When the shutter time is
short, primitives in the scene expand the bounding boxes less and
to the packet of rays “look like smaller primitives”. As this shutter
time becomes longer, this effectively creates much larger primitives
for the rays to intersect.

 0

 2

 4

 6

 8

 10

 12

 14

ReflectionShadowPrimary

Ray Type

Primitive Tests Per Ray

0.0x Aperture Diameter
0.5x Aperture Diameter
1.0x Aperture Diameter
1.5x Aperture Diameter
2.0x Aperture Diameter

 0

 5

 10

 15

 20

 25

 30

 35

Primary Shadow Reflection

Ray Type

Box Tests Per Ray

0.0x Aperture Diameter
0.5x Aperture Diameter
1.0x Aperture Diameter
1.5x Aperture Diameter
2.0x Aperture Diameter

Figure 7: Effect of aperture on primitive tests (left) and box tests
(right) per ray for the conference scene. As aperture diameter in-
creases the effect on primitive intersections is fairly small. Similar
behavior is seen for other DRT effects such as glossy exponent and
light source size.

5.4 Packet Assembly

As shown previously, compared to tracing single rays or even SIMD
packets of rays, the ray type assembly algorithm offers increased
performance. Our previous results all use the ray type assembly be-
cause it is usually 10-20% faster for a given scene over the full an-
imation path than the runs assembly. While this seems like a small
improvement, it is important to understand where this improvement
comes from.

The difference in performance between ray type and runs assem-
bly can be seen from looking at the behavior of packets of rays as
the bounce depth increases (see Figure 8). Both methods perform
fairly similarly at first and the difference in overall performance is
only around 10%. At higher bounce depths, however, the runs as-
sembly usually demonstrates significantly more primitive and box
tests. While the runs method produces slightly less primitive inter-
sections overall, the increased number of box tests counter balances
this. This implies that while the ray type method may sometimes
produce large bad packets (e.g., when half the rays hit a nearby ob-
ject and half hit a distant wall), the losses from the conservative
decisions made by the runs method are a more serious problem in
our tests. As the performance gap between CPUs and memory in-
creases, reducing box tests will reduce memory accesses and should
widen the gap between ray type assembly and runs assembly [26].
Similarly, if the number of rays traced at deeper bounces becomes
more important (as for path tracing or caustics from long specular
chains) the ray type assembly should pull further ahead.

6 CONCLUSIONS AND DISCUSSION

We have demonstrated what we believe is the first interactive WRT
system to support deformable scenes. We have shown that ray pack-
ets and reflection/refraction rays are not necessarily incompatible.
We have also shown that DRT is not severely more expensive per
ray than WRT, and that most of the cost difference is due to neces-
sary multisampling.

The following are a number of important questions we have not
definitively answered, along with our best current answers. We be-
lieve all of these topics deserve further study.

What applications benefit from ray tracing? The sub-linear time
complexity of ray-scene intersections is a primary advantage of ray

An interesting question is how do different rendering types compare to each other. In this table, we demonstrate that while ray
casting with shadows is clearly the fastest our performance per ray does not degrade as severely as one might think. Adding
Whitted style illumination clearly reduces performance per ray by nearly a factor of 2, but adding distribution ray tracing on top
of this is not an extreme leap. In practice it’s at most a factor of 2 (for our stress test scene), but can even have improved
performance due to the higher density of primary rays (all our tests use 64 samples per pixel). As an important note, even our
RCS time include much more advanced shading than that used in our earlier TOG paper. In this work, we normalize camera rays,
evaluate fresnel coefficients, and chose not to use special primitive intersection tricks relying on common origin. This accounts
for the approximately 2.5x difference in performance from our TOG paper results.

Why does it work?

 0

 5

 10

 15

 20

Primary Shadow Reflection
Ray Type

Primitive Tests Per Ray

2x2 Packets
4x4 Packets
8x8 Packets

16x16 Packets

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

ReflectionShadowPrimary
Ray Type

Box Tests Per Ray

2x2 Packets
4x4 Packets
8x8 Packets

16x16 Packets

These graphs demonstrate the number of primitive and box tests per ray as we vary the ray packet size for a whitted ray tracing
conference scene. The different colors correspond to different ray packet size, while each group of packet sizes is a specific Ray
Type (primary, shadow, reflection). As can be seen, the 8x8 packets achieve a sort of sweet spot for this scene balancing
amortization of box tests versus increasing “bloat” during primitive intersection. You can also see that while primary rays
benefit significantly from growing packet size, shadow and reflection rays respond poorly. This is what I believe is the best
metric of “coherence”. I would also like to note that this is probably the most hand-wavy magical part of this and other
interactive packet based work: how do you choose packet size?

How does it behave?

 0

 2

 4

 6

 8

 10

 12

 14

ReflectionShadowPrimary
Ray Type

Primitive Tests Per Ray

0.0x Aperture Diameter
0.5x Aperture Diameter
1.0x Aperture Diameter
1.5x Aperture Diameter
2.0x Aperture Diameter

 0

 5

 10

 15

 20

 25

 30

 35

Primary Shadow Reflection
Ray Type

Box Tests Per Ray

0.0x Aperture Diameter
0.5x Aperture Diameter
1.0x Aperture Diameter
1.5x Aperture Diameter
2.0x Aperture Diameter

Once we demonstrated that Whitted ray tracing was achieving benefits due to packets and basic settings for distribution ray
tracing worked as well, it became obvious it may fail for more extreme settings. This graph is one of many we generated
showing that even somewhat severe changes in “blur” factors does not totally destroy our approach. The graphs for other
effects were similar, although aperture is an interesting effect because it affects all further dimensions (light samples, etc). Just
increasing light source size only effects shadow rays, by contrast aperture demonstrates how all ray types differ.

What about runs?

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 2 4 6 8 10
Bounce Depth

Box Tests Per Ray

Ray Type Assembly
Runs Assembly

 0

 2

 4

 6

 8

 10

 12

 14

 0 2 4 6 8 10
Bounce Depth

Primitive Tests Per Ray

Ray Type Assembly
Runs Assembly

Earlier we proposed two different simplified grouping methods: runs and ray type. In practice, we’ve found about a 10% overall
difference with ray type coming out ahead. I thought this was strange since Ray Type seemed like a better approach due to its
invariance to ordering. These graphs demonstrate primitive tests per ray and box tests per ray for the conference scene under
distribution ray tracing. Each column demonstrates this variable for increasing bounce depth with RayType in red and Runs in
green. The final column shows an average over all depths that takes into account the high number of “early bounce” rays. This
is the primary reason that ray type assembly does not usually greatly improve upon runs assembly: ray tree attenuation hides
high bounce depths. Runs clearly performs quite a bit more box tests relative to RayType especially for higher bounces, but this
is hidden. We believe in the future, ray type grouping will pull further ahead if higher bounce depths are needed as for example
highly specular chains.

Questions?

For more information see my research page:

http://www.cs.utah.edu/~boulos/research.htm

Or the SIGGRAPH 2006 course webpage:

http://www.cs.utah.edu/~shirley/irt/

http://www.cs.utah.edu/~boulos/research.htm
http://www.cs.utah.edu/~boulos/research.htm
http://www.cs.utah.edu/~shirley/irt/
http://www.cs.utah.edu/~shirley/irt/

