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Figure 1: Visualization of the oRGB decomposition of the image on the left into luma, yellow-blue, and red-green channels.

Abstract

We present a new color model, oRGB, that is based on opponent
color theory. Like HSV, it is designed specifically for computer
graphics. However, it is also designed to work well for computa-
tional applications such as color transfer, where HSV falters. De-
spite being geared towards computation, oRGB’s natural axes fa-
cilitate HSV-style color selection and manipulation. oRGB also al-
lows for new applications such as a quantitative cool-to-warm met-
ric, intuitive color manipulations and variations, and simple gamut
mapping. This new color model strikes a balance between sim-
plicity and the computational qualities of color spaces such as CIE
L*a*b*.

1 Introduction

Digital images are stored, manipulated, and transmitted in a vari-
ety of color spaces. Many different color spaces have been pro-
posed, withRGB, CMYK, HSV, andCIE L*a*b* being especially
popular (see [Hunt 2004; Fairchild 2005]). TheRGB space is
an additive color model and is probably the most commonly used
among computer graphics practitioners, but it is not very intuitive.
CMYK is a subtractive color model and is most useful in color print-
ing. A bijective transform ofRGB space,HSV was introduced by
Smith [Smith 1978] as a more convenient and meaningful color
space, designed specifically for computer graphics. At about the
same time, the need for a device independent, perceptually linear
color space led to the development ofCIE L*a*b*.

The recent interest in automatic image manipulation techniques
such as color harmonization, color transfer, colorization, as well
as the proliferation of work in computational photography, suggest
a need for an intuitive, yet simple and practical computational com-
puter graphics color space. WhileHSV has proven extremely useful
in practice, there are two characteristics it lacks from our stand-
point. First, its primary colors (red, green, and blue) are based on
the mechanics of additive color mixing rather than the more natural
psychological primary colors. Second,HSV is well-suited for color
selection, but is not a good space for computational applications.

In this paper we introduce a new color space, theoRGB model.
Like HSV, it is a an invertible transform fromRGB. The primaries
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of this model are based on the three fundamental psychological op-
ponent axes (white-black, red-green, and yellow-blue). The model
has three channels - one luma (see Section 2.5 for a definition) and
two chroma, as shown in Figure 1 . The non-linearity of these chan-
nels relative to intensity uses the non-linear gamma encoding of the
nativeRGB space. Thus it has some of the advantages of non-linear
perceptual spaces such asCIE L*a*b*, while maintaining a sim-
ple gamut and computationally simple transform to and fromRGB.
Because the chroma axes ofoRGB go from warm to cool (red to
green and yellow to blue),oRGB has a quantitative concept of color
warmth as needed by some artistic applications. This new space is
reasonably simple, has intuitive axes, and is well-suited for compu-
tational applications.

In the rest of this work, we first review opponent process color the-
ory and some of the color models used in computer graphics (Sec-
tion 2). We then develop the details of theoRGB model (Section 3),
and show the application of this color space for color adjustment,
NPR lighting computation, color transfer, and gamut mapping (Sec-
tion 4).

2 Background

We now review the high-level differences between various color or-
dering systems, paying particular attention to opponent color sys-
tems. We also establish several terms and symbolic conventions as
the study of color spans several disciplines and there are no univer-
sally consistent uses.

2.1 Hue Spacing Systems

Most color spaces have one light-dark axis and two chromatic axes.
The boundary of the realizable colors in the chromatic dimension is
often displayed as a circle or “wheel”. The ordering of hues is the
same in most color spaces, but the spacing between the hues differs.
We summarize these to clarify the relationship between opponent
color systems and more traditional hue ordering systems.

Four of the most popular types of color circles are shown in Fig-
ure 2. The two circles to the left are based on three primaries and
how they mix. The uniform color circle, of which the one that vi-
sualizes the Munsell Color Space is perhaps the best known, at-
tempts to arrange the hues so they are “evenly spaced”. Such uni-
form spaces often lack a concept of “primaries” as uniformity pre-
cludes even spacing between named colors such as red and blue.



To the right is a Hering-style opponent circle with four primaries
on two natural axes. It emphasizes his concept of red-green and
yellow-blue axes, while maintaining the order of colors as in the
other color circles.

2.2 Hering’s Opponent Process Color Theory

The opponent process theory of color was first advocated by Ewald
Hering in the 1870s. It took a sharp departure from the prevalent
theory of the time, thetrichromatic theory of Young-Helmholtz, by
proposing four hue primaries: red, green, yellow, and blue, instead
of the traditionally accepted three: red, green, and blue.

While three primaries are needed to produce all possible colors,
Hering noted that our subjective experience of color suggests that
perceptually there is an encoding for the fourth. For example, while
purple seems to be a mixture of red and blue, yellow does not seem
to be composed of any other primaries. Instead, it seems to be a
“pure” color, a primary itself. In addition, Hering observed that we
don’t seem to have a phenomenological experience for a color that
is both yellow and blue, nor red and green. However, we have one
for a color that is both yellow and red (orange).

These observations led Hering to hypothesize that human color per-
ception uses two chromatic axes: one that ranges from red to green,
and another from yellow to blue. If these axes are independent, then
people will be able to see a red and yellow color simultaneously (or-
ange), but not a red and green color, nor a blue and yellow color, as
they share the same “channel” (see Figure 3).
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Figure 3: The color circle divided into its opponent sides. The top
part of the circle is composed of colors that have a red tone in them,
the bottom - green, the right - yellow, and the left - blue.

Hering’s ideas were controversial at the time. However, there has
been a wealth of psychological and physiological evidence since
then (Hurvich [Hurvich and Jameson 1957] brought the revival of
the theory) that suggests that the organization of human color per-
ception is at least partially based on opponent axes [Conway 2002;
Valberg 2005]. Color scientists have moved more and more towards
including some form opponency into many of their color spaces,
with CIE L*a*b* and the Natural Color System (NCS) being no-
table examples.

2.3 Opponent Space Models

A variety of spaces are based on opponent axes, with the television
encodingYIQ being perhaps the best known. However, we make
the distinction that most of these spaces are not Hering-style oppo-
nent spaces in that their principal axes do not include a red-green
dimension (while some of them do include a blue-yellow). This
is illustrated in Figure 4 forYCC (a modern digital descendant of
YIQ), lαβ (a color space based on natural image statistics), andCIE
L*a*b* (an approximately perceptually uniform space). Note that

all of these models have more of a magenta-cyan axis than a red-
green one. An opponent space proposed for computer graphics by
Naiman [Naiman 1985] is similar toYCC (thought it has a slightly
different matrix, and operates on linearRGB), but it also has an axis
shifted toward magenta-cyan.

Figure 4: Visualization of the chroma channels for (left to right):
YCC, lαβ , and CIE L*a*b color spaces. Compared to our new
oRGB space (Figure 1), these spaces do not have a true red-green
channel.

The most well-known opponent space with a true red-green axis
is theNCS. Unfortunately, there are no accepted color formulas to
allow this space to be used for computation [Kuehni 2004], and is
therefore not well suited for computer graphics applications.

We are aware of only three quantitative Hering-style opponent mod-
els. The first is that of Schwarz et al. [Schwarz et al. 1987] who
embed their space inXYZ tristimulus space with non-orthogonal
but true opponent axes. The second, introduced by Ware and
Cowen [Ware and Cowan 1990], places the opponent primaries at
corners of the model. Unfortunately, the axes are not opponent. The
third is that of Shirriff [Shirriff 1993] who developed an orthogo-
nal red-green and yellow-blue space, usingHSV as an intermediary
space. Each of these spaces were designed for color selection, are
defined in terms of linearRGB, and are not well suited for computa-
tional color applications. We will explore this further in Section 4.

2.4 Limitations of Color Models

One approach to generating a color model is to proceed directly
from existing scientific knowledge. While one might expect color
science to be both a mature and static field, this is far from the case.
The details of the physiological origin of color perception remain
enigmatic despite the increasing understanding of opponent mech-
anisms [Conway 2002; Valberg 2005]. The psychophysical ap-
proach that is used in the construction of most models also has lim-
itations. There is unlikely to be a “right” choice, as different color
spaces have different goals and are all simplifications of the real ex-
perience [Kuehni 2003]. For this reason, existing color spaces are
based at least partially on heuristics and differ largely in their goals
and how they manage trade-offs.

Opponent color theory presents many unknowns and asymmetries.
For example, it is believed that the opponent signals are not simple
linear combinations of cone signals as is often diagrammed in text-
books [Chichilisky and Wandell 1999; Valberg 2005]. In addition,
the axes do not all combine in symmetrical ways. The combinations
of some axes create “important” colors with their own names, while
others do not [Hardin 1998]. For example, red and yellow make or-
ange, while green and yellow make chartreuse (which most English
speakers associate with a pink or purplish color). Fundamental col-
ors such as blue still look “blue” when darkened, while some may
change color category such as an orange turning to “brown” when
darkened. In addition, the chromatic axes have a natural symmetry



subtractive additive uniform opponent

Figure 2: Visualization of four common types of color circles. The ordering of hues is preserved in each, while the position of the hues on
the circle varies. The subtractive circle is that used by painters while a cyan-magenta-yellow circle (not shown) is used by most ink printing
processes.

around grey while the achromatic black-white axis is believed to be
(and represented in most color models as) just positive [Volbrecht
and Kliegl 1998; Kuehni 2003].

These uncertainties and trade-offs suggest that there is no “true”
color space. It is important that one bases the choice of color space
on its performance in the applications of interest. Here we propose
a color space that is suitable for computational applications and is
simple, intuitive, and practical.

2.5 Terminology and Notation

Most computer graphics images are stored in some form of anRGB
color space. While there are many differentRGB spaces, we as-
sume that for the most part, our images are encoded insRGB, an
increasingly popular standard. An often confusing notational issue
is distinguishing between linear and non-linear intensity red, green,
and blue components. A linear red channel stored with range[0,1]
for example, would represent half the maximum physical intensity
with 0.5. A non-linear one, however, might do so at 0.75, depend-
ing on the coefficients used.

We adopt the often used convention that a prime(′) is used to denote
a quantity that is non-linear in intensity and ready for display. So
the non-linearR′G′B′ stored in most files contains(R′,G′,B′), while
a linear intensityRGB contains(R,G,B). ForsRGB the relationship
between components is well approximated byR′ ≈ R1/2.2. When
converting to linear photometric quantities such as(X ,Y,Z), the
linear(R,G,B) should be used.

Linear color spaces usually useluminance, a linear photometric
standard for achromatic light response, and often denoted by the
symbolsL andY . The value for luminance can be computed as a
linear transform of a color value stored in linear color space. For
example, for linearizedsRGB values, the luminance is:

L = 0.213R+0.715G+0.072B (1)

Computing luminance as a linear combination of(R′,G′,B′) is not
possible. Instead, a non-linear analog of luminance calledluma
is often used. There is no single standard for luma computation
(see Poyton [Poynton 2004] for an excellent detailed discussion of
different luma computation standards). Sometimes the symbolsL
or Y are also used for luma, but we useL′ to distinguish it from
luminance. Typically, luma is a linear combination of(R′,G′,B′).
For example the YCC standard uses:

L′ = 0.299R′ +0.587G′ +0.114B′ (2)

The non-luma axes typically encode chromatic information, and are
also linear combinations of(R′,G′,B′). The color quantities are
usually calledchroma.

Thegamut of an RGB monitor is the set of colors it can physically
reproduce. InRGB space this gamut is the unit cube[0,1]3. When a
color space has a well-defined mapping fromRGB, theRGB gamut
within that space is the shape created by sending the entireRGB
cube through that mapping. For some color spaces the boundaries
of thatRGB gamut are algebraically simple, e.g. theRGB gamut of
the YIQ space is a parallelepiped. For others such asCIE L*a*b*
the surfaces on theRGB gamut boundary are algebraically com-
plicated. When color modifications take colors outside theRGB
gamut, some method must be used to map these colors back into
gamut before they can be stored in typicalRGB files. Such a method
is usually calledgamut mapping (for an overview see [Morovic
and Luo 2001]) and component by component truncation is often
used [Stone et al. 1988].

3 The oRGB Color Space

As our interest is an opponent color space that is ideal forRGB
computation, we begin with Alvy Ray Smith’s original observation
in his classicHSV paper:

Full-blown color theory is a quite complex subject, in-
volving physics, psychology, and physiology, but re-
striction to the RGB monitor gamut simplifies matters
substantially [Smith 1978].

Smith went on to designHSV as a simple bijective transformation
of RGB that is useful for color picking, as it has natural axes of
lightness, hue, and saturation. We would like an analogously sim-
ple space that retains these intuitive notions, but also uses the nat-
ural axes of light-dark, red-green, and yellow-blue as suggested by
perceptual theories. UnlikeHSV, however, we would like to be able
to perform well in computational applications.

Inspired by Poyton’s framework [Poynton 2004] for how different
color models deal with CIE tristimulus values, we note how two
popular color spaces,CIE L*a*b* andlαβ operate. Both of these
spaces have been used effectively in computational settings, and un-
like other opponent-like color spaces, store quantities that are non-
linear in intensity. However, both of these spaces have complicated
pipelines as shown in Figure 5. Each of them first “linearizes” the
(R′,G′,B′) to (R,G,B), does a linear transform to an intermediate
linear intensity space (eitherXYZ or LMS), applies a component-
by-component non-linear map (either logarithmic or polynomial),
and then does a linear transform to get into an opponent-like space.

Our goal is to design a space that is useful for graphics applica-
tions. Having a non-linear luma channel is more perceptually uni-
form than luminance, and we believe it is simpler, improves compu-
tational speed, and also works better for practical applications (see
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Figure 5: The pipelines ofR′G′B′ to CIE L*a*b* (top) andR′G′B′

to lαβ (bottom).

Figure 19 in Section 4.3). Therefore, instead of going through a
device-independent space and reintroducing non-linearity, we sim-
ply apply a linear transform directly to the non-linearR′G′B′ values
to get to an intermediate linear space we denote asL′C′C′. Like
the CIE L*a*b* and lαβ chroma axes,L′C′C′ does not have true
Hering-style opponent axes. Therefore, we introduce a final rota-
tion around theL′ axis that achieves a true Hering-opponent model
- oRGB (see Figure 6).
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Figure 6: The pipeline ofR′G′B′ (R′,G′,B′) to oRGB (L′,C′
yb,C

′
rg).

3.1 oRGB Step 1: Linear transform of R′G′B′ to L′C′C′

There is an existing family of color spaces that are linear transforms
of R′G′B′. These are those used for the video encoding of television
systems includingYIQ andYCC.

In a similar fashion,oRGB first transforms theRGB cube into a par-
allelepiped via a linear transform. This color space,L′C′C′, has 3
axes: white-black, yellow-blue, and magenta-red/cyan-green. The
matrix for this transformation is:





L′

C′
1

C′
2



 =





0.2990 0.5870 0.1140
0.5000 0.5000 −1.0000
0.8660 −0.8660 0.0000









R′

G′

B′



 (3)

and its inverse:




R′

G′

B′



 =





1.0000 0.1140 0.7436
1.0000 0.1140 −0.4111
1.0000 −0.8860 0.1663









L′

C′
1

C′
2



 (4)

3.2 oRGB Step 2: Non-uniform rotation around luma
axis L′ from L′C′C′ to oRGB

Is there an affine transform of theRGB cube that moves blue op-
posite yellow and red opposite green? Unfortunately, there is not.
Figure 7 shows theRGB cube viewed along the white-black axis.

As can be seen there is no affine transform that will make red,
white, and green collinear. The closest we can come is to put a
red-magenta opposite a green-cyan.

Figure 7: Orthographic view of RGB cube looking along white-
black axis (left). No affine transform will put red-white-green in
line (middle). The y-axis will have a red-magenta and a green-cyan
as its extreme values (right).

To create a true opponent space where red is actually opposite green
and orthogonal to the yellow-blue axis, we must apply some non-
affine transform. We use the simplest one we can think of: a con-
stant scaling of angle between the opponent directions (see Fig-
ure 8). A smoother mapping was attempted, but it made no visual
difference, and so we chose the simplest method that worked well.

compress

compress

stretch

stretch

Figure 8: To take the red and green directions to the vertical axis, we
compress angles on the blue side, and expand them on the yellow
one.

The transformation fromL′C′C′ (L′,C′
1,C

′
2) to oRGB (L′,C′

yb,C
′
rg)

is just a compression or decompression of angles depending on
which quadrant the linearly transformed point ends up in. For
points above the yellow-blue axis, the angle in the linear chroma
plane isθ = atan2(C′

2,C
′
1). The new angle inoRGB space,θo is:

θo(θ) =

{

(3/2)θ if θ < π/3
π/2+(3/4)(θ −π/3) if π ≥ θ ≥ π/3

(5)

To compute the point(C′
yb,C

′
rg) in oRGB we simply rotate the

(C′
1,C

′
2) point:

[

C′
yb

C′
rg

]

= R(θo −θ)

[

C′
1

C′
2

]

(6)

The inverse transformation angleθ from oRGB to L′C′C′ is:

θ(θo) =

{

(2/3)θo if θo < π/2
π/3+(4/3)(θo −π/2) if π ≥ θo ≥ π/2

(7)

These transformations are symmetric for points below the yellow-
blue axis. The effect of this rotation along the luma axis on the
gamut of the color space can be seen in Figure 9.

3.3 Properties of oRGB Space

oRGB is a simpleR′G′B′-based color space that is useful for com-
putational applications, such as color adjustment, color transforma-
tion, and color transfer. It retains the notions of hue and saturation
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Figure 9: Visualization of the gamut of our color space seen along
the luma axis before (left) and after (right) nonuniform rotation.
After rotation, the y-axis is a true red-green axis while keeping the
yellow-blue the same.

presented inHSV, but adds a non-linear perceptual brightness (sim-
ilar to HSB). This similarity to HSV/HSB makesoRGB a useful
space for color picking. UnlikeHSV/HSB, it encodes perceptual
color opponency and its axes encode common color naming used
by people [Hardin 1998]. It also provides a natural computational
framework for categorizing a color by its color temperature - i.e.
warm vs. cool. Finally, the simplicity of the intermediate space
L′C′C′ allows for straightforward gamut mapping that is critical for
computational applications where the manipulations of colors often
produces out-of-gamut results.

3.3.1 Locations of Colors

The chroma channels,C′
yb andC′

rg range in[−1,1], while the luma
channel,L′, ranges in[0,1]. The [L′,0,0] position on the chroma
plane corresponds to a neutral grey color, that is determined by the
lumaL′. In this constant chroma plane, the hue of a color is its angle
in this plane, while its saturation is its distance from the neutral
point.

The oRGB space places the Hering opponent primaries along the
four horizontal and vertical directions. In addition, it places the op-
ponent secondary colors (orange, magenta, cyan, and chartreuse)
exactly between the opponent axes, thus creating an intuitive space
for color modification based on common color naming (see Fig-
ure 10).

w
arm
s

cools

Figure 10: Colors to the right of the magenta-chartreuse axis are
warm, to the left are cool, and in the center are temperate.

Studies on basic color naming agree that people across cultures
often refer to colors as warm (red or yellow) and cool (blue and
green) [Berlin and Kay 1969].oRGB provides a straightforward
computational framework for color selection in terms of color tem-
perature. Colors to the right and top of the magenta-chartreuse di-
agonal (at 45◦ from theC′

RG axis) are warm, while color to the left

and bottom are cool (see Figure 10). Colors towards the center are
temperate. We show how this simple categorization can be applied
towards cool-to-warm shading models in Section 4.

3.3.2 The oRGB Gamut

The gamut ofR′G′B′ is the cube defined by its orthogonal basis
vectors - pure red, green and blue. LinearRGB and non-linear
R′G′B′ spaces have identical gamut -[0,1]3. When we transform
theR′G′B′ gamut intoL′C′C′ space, its(L′,C′

1,C
′
2) basis vectors are

simply the columns of the matrix in Equation 3. The transformed
gamut space is thus a parallelepiped. Because we use unequal coef-
ficients for determining luma values,L′C′C′ is a true parallelpiped
and not a rotated cube like HSV. Since black is~0, its mapping into
L′C′C′ is also~0, therefore the corner of the gamut cube remains at
~0.

Colors that fall within the volume of the transformed gamut space
map to in-gamut colors when converted back toR′G′B′ space. Col-
ors that fall outside the volume require gamut mapping.

A good gamut mapping method should first try to preserve lumi-
nance and then attempt to preserve hue [Stone et al. 1988]. In
L′C′C′, luminance is a separate axis, so luminance modification
and preservation are straightforward. Lines of equal angle also rep-
resent the same hue, with distance from the grey point being akin
to saturation. These properties allow for simple gamut mapping in
L′C′C′.

While our preferred editing space uses a further rotation around the
luma axis ofL′C′C′, projecting along lines of equal hue (and there-
fore equal angle) is equivalent to performing the same projection in
oRGB. This makes performing gamut mapping foroRGB a straight-
forward, two step process.

First, we ensure that our luma values are in the range of[0,1]. To do
so, we generate a piecewise polynomial mapping that ensures that
the mean luma value does not move, while values to the right of the
mean get compressed to fit within[µ,1], and values to the left of
the mean fit within[0,µ ]:

L′(L) =











µ +(1−µ)
[

(L−µ)
(Lmax−µ)

]β
if L > µ ∧ Lmax > 1

µ −µ
[

(L−µ)
(Lmin−µ)

]β
if L ≤ µ ∧ Lmin < 1

where µ is the average luma,Lmin is the minimum luma value,
andLmax is the maximum luma value. In practice we have found
β = 2/3 to work fairly well.

Second, we need to determine whether the chroma values are out-
of-gamut, and if so how to bring them into gamut. We found two
approaches that work well in practice - clamping and scaling.

In clamping, we take any pixel values that are outside theL′C′C′

gamut boundary (i.e. the parallelepiped) and project them to the
boundary. To do so, we trace a ray from〈L′

pixel ,0,0〉 to the pixel
value in question,〈L′

pixelC
′
pixelC

′
pixel〉. The ray is traveling along

the chroma plane of equal luma for that pixel. If we hit theL′C′C′

parallelepiped before we reach the value, we know that the pixel
value is outside the gamut space and needs to be clamped to the
chroma value found on the intersected boundary. Clamping to the
boundary is already a great improvement over first transforming
from L′C′C′ to R′G′B′ and then performing clamping before display
(see Figure 11). This is because clamping to the boundary inL′C′C′

preserves both the luma and the hue of a particular value, while
clamping anR′G′B′ triple to [0,1] does not.



(a) Original (b) Clamp inR′G′B′

(c) Clamp inL′C′C′ (d) Scale inL′C′C′

Figure 11: The original image is modified by doubling the stan-
dard deviation in the red-green channel resulting in out-of-gamut
red values but improved green variation. Clamping inR′G′B′ leaves
overly saturated reds. Both clamping and scaling inL′C′C′ preserve
luma, while scaling also produces a more even saturation distribu-
tion. Both methods retain the improved green variation.

If many pixel values are outside of theL′C′C′ gamut boundary,
however, clamping inL′C′C′ will produce a very saturated im-
age, as many values will be truncated to the most saturated part
of the space. For this case, we scale values towards the center, i.e.
〈L′,0,0〉, instead of simply clamping to the boundary. To do so, we
first divide the parallelogram into planes of equal luma. For each
equal luma plane, we discretize the plane into many angular slices.
For each angular slice, we compute both the furthest distance from
the grey point and the closest point on the boundary for all pixel
values that fall within the slice. We then project all pixel values
within that slice so that the point furthest out will lie on the bound-
ary of the parallelepiped. To avoid color discontinuities we use
about 3000 angular slices per luma plane which result in visually
smooth mappings of the colors.

Using a simple linear scaling provides excellent results in practice
(see Figure 11), though it is possible that some more complicated
non-linear method may be necessary in some cases. Gamut map-
ping via scaling is used for alloRGB results in the paper, unless
otherwise noted.

4 Sample Applications

We now demonstrate the utility of theoRGB color space in four dif-
ferent applications: color adjustment, cool-to-warm shading, color
transfer, and gamut mapping. For color adjustment, we show how
oRGB’s natural opponent axes can be used to provide a meaning-
ful Photoshop-style “variations” tool. AsoRGB’s natural primaries
and secondaries are intuitive they can aid in color selection and
can serve as a natural metric for color temperature in cool-to-warm
shading. For color transfer, we demonstrate thatoRGB performs at
least as well as previously suggested computational spaces. Finally,
we examine gamut mapping in the context of one computational ap-
plication - color transfer.

4.1 Color Adjustment

Users want to perform simple, yet intuitive color adjustments. Here
we show howoRGB can be used for Photoshop-style “variations”

as well as for selection of colors for shading models.

yellowblue

re
d

gr
ee

n

Figure 12: Modifying color contrast through deviation adjustment.
One step down/left scales deviation by 1/α while a step up/right
scales deviation in that channel byα . The horizontal axis is a
yellow-blue standard deviation change (left lowers and right in-
creases) and the vertical axis is a red-green change (down lowers
and up increases).

Our color space is useful for simple color contrast adjustments as
we can increase the saturation of the red-green channel indepen-
dently from the yellow-blue one. To do so, we simply have to scale
the standard deviation in each channel separately. This operation
provides useful and intuitive variations results (see Figures 12 and
13).

Sometimes, it is more useful to simply take an existing image and
make it “warmer” or “cooler” in tone. This operation is straightfor-
ward in oRGB, as the two chroma channels provide a direct map-
ping into a color’s temperature. Since the two chroma channels are
independent, we can adjust them without introducing global image
color casts (see Figure 14).

We can also apply the concept of “variations” to material param-
eters. Varying the diffuse texture via mean shifting in the chroma
plane generates meaningful alternative materials (see Figure 15).
Shifting up produces a redder tone, up and right - an orange tone,
right - a more yellow tone, and right and down - a chartreuse tone.
Similarly, shifting left and up produces a magenta tone, left - a bluer
tone, left and down - a cyan tone, and down - a greener tone.

4.2 Cool to Warm Shading

Gooch et al. [Gooch et al. 1998] present a cool-to-warm shading
model that maps surface normal to color, with normals pointing
away from the light being associated with cool colors, and those that
point toward the light being warm. They also present a model for
choosing the colors based on intrinsic surface color. Their model
is:

C(cos) = (1− f (cos))Ccool+ f (cos)Cwarm, (8)

where cos is the cosine between surface normal and a light direc-
tion, f is a monotonically increasing function that maps[−1,1] to
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Figure 13: Another example of color adjustment using deviation
scaling, similar to Figure 12.

[0,1], andCcool andCwarm are empirically chosen colors. They
present results for a linearf and a variety ofCcool andCwarm.

A difficulty that arises when using this model is that there is no
metric that helps users decide how “warm” or “cool” a color is. This
issue can be directly addressed inoRGB (see Figure 10), as a color
is warm if its dominant direction is toward the red or yellow axes,
and cool if its dominant direction is toward the blue or green axes.
Quantitatively a warm color is one where(L′,C′

yb,C
′
rg) ·(0,1,1) > 0

and a cool color is one where that dot product is negative.

To determine whether the intuitive axes of theoRGB space are help-
ful in NPR applications, we first added a cool-warm test to an NPR
shader that uses Equation 8. We also explored changes to the in-
terpolation rule in an attempt to make NPR shaded objects less flat
looking. If the three channels are interpolated separately, then we
have:





L′

C′
yb

C′
rg



 =





(1− f0(cos))Lc

(1− f1(cos))Cc
yb

(1− f2(cos))Cc
rg



+





f0(cos)Lw

f1(cos)Cw
yb

f2(cos)Cw
rg



 (9)

where(Lc,Cc
yb,C

c
rg) and (Lw,Cw

yb,C
w
rg) are theoRGB components

of Ccool andCwarm respectively. This will be a valid cool to warm
mapping provided the end colors are warm and cool, and that all
of fi are strictly non-decreasing andfi(−1) = 0, fi(1) = 1). If the
two chroma channels are handled as in Gooch et al. [Gooch et al.
1998] and the luma channel is an average between linear interpo-
lation and cosine-based interpolation (Gouraud lighting), then an
NPR look can be retained while also having some visual character
of diffuse lighting (Figure 16). Our point is not that this is a better
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Figure 14: Changing the overall tone of an image through mean
shifting. The natural axes of oRGB provide intuitive shifts along
primaries (yellow, red, blue, and green) and secondaries (orange,
magenta, cyan, and chartreuse). The horizontal axis is yellow (shift-
ing right) and blue (shifting left). The vertical axis is red (shifting
up) and green (shifting down).

NPR model, but thatoRGB provides a space where reasoning about
NPR model design is fairly natural.

4.3 Color Transfer

For color transfer, Reinhard et al. [Reinhard et al. 2001] demon-
strated that thelαβ color space [Ruderman 1998] provides excel-
lent results when compared to theRGB color space. Whilelαβ
works well in many situations,oRGB provides features we feel are
lacking in lαβ . For example, color transfer inoRGB allows for
independent manipulation of the luma, pure yellow-blue, and pure
red-green channels. Thus, the statistical properties of the channels
can be transfered in a space that is meaningful in terms of natural
primaries and secondaries.

We compare color transfer results (see Figures 17 and 18) pro-
duced byoRGB with those of three different Hering-style opponent
color models -Schwarz [Schwarz et al. 1987],RBW [Shirriff 1993],
andRGBY [Ware and Cowan 1990]. We showoRGB results that
use no gamut mapping or use gamut scaling. In addition, we com-
pare against Adobe Photoshop’s “Color Match” function, as well as
HSV, lαβ , CIE L*a*b* andYCC.

In oRGB shifting red towards blue produces purple, while retaining
yellow (Figure 17), and shifting magenta towards red results in true
red (Figure 18). The opponent spaces we compare against also have
orthogonal axes, and the hue shifts in these spaces seem to produce
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Figure 15: Instead of applying mean shifting to the final image, as
in Figure 14, we instead used the intuitive oRGB axes as a color
“variations” selector for the diffuse term in a car rendering.

Figure 16: Bottom: shading from Gooch et al. Top: the luma chan-
nel in oRGB is modified to partially resemble traditional Gouraud
style shading while maintaining a cool-to-warm transition.

reasonable results. However, the saturation and brightness in these
spaces do not seem to perform as well, perhaps as a result of the
fact that they operate in linear space. In Figure 19 we show the
importance of running in non-linear space foroRGB. The rest of the
spaces do not have orthogonal red-green and yellow-blue axes, and
therefore independent shifting and scaling results in mixing some
of the color from the other axis (e.g. the magenta cast forlαβ in
Figure 18).

Figure 19: Linear version of our model for color transfer (original
and target images are the same as the ones used in 17 and 18).

It should be noted that orthogonality is not the full story for color
transfer. RGB has orthogonal axes, but unfortunately for natural
images, it has highly correlated axes restricting its use for color
transfer [Reinhard et al. 2001]. Whilelαβ produces de-correlated
axes using PCA,oRGB attempts to utilize opponent-color percep-
tual axes for meaningful computational applications.

Color transfer is a complex operation that is highly dependent on
the specific image distributions. We don’t believe there is one color
space that can consistently provide the best results. However, we
believeoRGB performs at least as good, and in many cases - better,
than other computational color spaces, based on the set of images
we’ve tested.

4.4 Gamut Mapping

Gamut mapping is a necessary operation for computational appli-
cations, as values are often shifted and scaled, thus increasing the
chance for producing out-of-gamut pixel values. BecauseoRGB is
a linear transform ofR’G’B’ followed by a rotational distortion, the
gamut boundary is simpler than for most other spaces. While this
does not necessarily guarantee fewer out-of-gamut values, it allows
us to correct such cases more easily than inCIE L*a*b* or lαβ .

One computational application, color transfer, works by shifting
and scaling groups of pixels without regard to gamut boundaries.
While any image used for transferring statistics will have a well
defined mean in theRGB gamut space, some values towards the
tails of the distributions may land outside theRGB gamut following
transfer.

To provide a comparison metric for the out-of-gamut results pro-
duced by different color spaces during color transfer, we did the
following test. We took the top 12 images produced by Google im-
ages, using “family vacation” as a search term. We then did color
transfers of the 12 photos to each other, producing 132 non-trivial
transfer results per color space. Table 1 summarizes the averaged
results for each of the color spaces.

Color Space % Pixels % R % G % B
oRGB 10.36 22.58 16.59 26.42
HSV 9.07 121.87 122.12 118.9
lαβ 10.46 104.54 40.56 25.02
Schwarz 16.45 >999.9 >999.9 >999.9
RBW 11.95 146.29 124.20 154.94
RGBY 13.67 296.99 234.07 174.70
CIE L*a*b* 10.89 117.82 66.05 38.33
YCC 11.24 22.99 15.99 25.91

Table 1: Different color spaces tend to produce different out-of-
gamut results. The first column lists the color space tested. The
second column shows the average percentage of out-of-gamut pix-
els. The remaining three columns demonstrate the out-of-gamut
percentage range per RGB channel.

CIE L*a*b* and lαβ produce a similar number of out-of-gamut
values tooRGB, however, they tend to generate results that are fur-
ther from theRGB gamut boundary. For these spaces, simply clip-
ping once the color transfer result is returned toRGB can be disas-
trous. WhileoRGB has very low out-of-gamut values by compar-
ison, we still seek to remove these remaining out-of-gamut values
via gamut mapping.

Having the ability to perform gamut mapping should not be ig-
nored. Thelαβ andCIE L*a*b* results in Figure 17 produce re-
sults that are wildly out of theRGB gamut, thus resulting in unpre-
dictable and unexpected color transfer results.

5 Conclusion

The oRGB color space we have introduced has two basic merits.
First, it is a relatively simple transformation ofR’G’B’, so it is effi-
cient, easy to implement, and has a reasonably simple gamut. Sec-
ond, it has orthogonal axes that are aligned with Hering’s opponent
color pairs.

We have shown empirically that this space can be useful in some
common computer graphics computations. We suspect the space
works well for three reasons. First, the gamma encoding of



(R′,G′,B′) values serves the same role as the non-linearities in mod-
els such asCIE L*a*b*. Second, the simple gamut boundary re-
duces out-of-gamut issues and allows any that remain to be easily
corrected. Third, we believe that for computer graphics applica-
tions, there is something natural about the Hering primaries and
their opponency.

There are several limitations of theoRGB space. As a computer
graphics space, it is not well-suited to traditional colorimetric ap-
plications where all possible colors, as opposed to all displayable
colors, are represented. In applications where the Hering primary
colors are not central, it is unlikely to have advantages over linear
transformations ofR’G’B’ such asYCC. Perhaps its biggest limita-
tion is that it is not a pure bijection ofRGB, so it is not the perfect
space for choosing colors forRGB displays.
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(a) Original Image (b) oRGB none (c) oRGB scale (d) HSV (e) Photoshop (f) lαβ

(g) Target Image (h) Schwarz (i) RBW (j) RGBY (k) CIE L*a*b* (l) YCC

Figure 17: The statistics of the target image are transferred to the originalimage in a variety of color spaces. Transferring red towards blue
produces purple inoRGB instead of yellows, reds, or browns produced by the other spaces.

(a) Original Image (b) oRGB none (c) oRGB scale (d) HSV (e) Photoshop (f) lαβ

(g) Target Image (h) Schwarz (i) RBW (j) RGBY (k) CIE L*a*b* (l) YCC

Figure 18: The statistics of the target image are transferred to the originalimage in a variety of color spaces. A magenta shifted towards pure
red becomes pure red inoRGB instead of remaining magenta.


