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Hi, I’m Solomon Boulos from Stanford University and today I’ll be presenting our paper on 
adaptive ray packet reordering. This work was done in collaboration with Ingo Wald and 
Carsten Benthin, both currently at Intel. As mentioned previously, this work started as a 
project a couple of years ago at Utah that we’ve all split up and turned into a few 
publications.



This is the Sponza atrium with 64 paths per pixel. Each path has 2 diffuse bounces for a total of 6 rays per path. 
It’s essentially a canonical image for any student’s path tracer, but sadly has been quite out of reach for the 
packet based ray tracing community. The point of this paper was to demonstrate a feasible reordering method to 
maintain high performance for these very incoherent ray distributions. But first for a trip down previous work, 
where I’ll only use my own work to make fun of.



Here’s a nearly useless test scene thanks to Pete, Ingo, Alex, and many others. The interactive ray tracing 
community very quickly caught on that all sorts of data structures could be used to ray trace this thing super fast 
with packets. However, it basically didn’t bring us any closer to our goals of producing pictures that ray tracing 
systems have been known for but it was pretty damn fast (particular Alex’s).



This was probably the best image we made for our original large packet paper. It looks like a z-buffer with a high 
shadow map resolution made it but much more slowly. In fact, you might notice that the plants look wrong due to 
their lack of alpha texture which is similarly true on the fairy’s clothing. Overall, we traced only very coherent 
primary and second rays and argued that we were focusing on simply handing dynamic scenes.



Next up came our foray into distribution ray tracing. I was proud to say that we finally made some pictures I 
wasn’t embarrassed to show. The biggest change over our previous work was that instead of just taking a big 
input packet and recursively tracing rays (with more and more of them needing strange masking to disable them), 
we filled in large queues of rays in order and only worked on the compact set of new rays. Writing these shaders in 
SSE was too painful, so most of it was scalar C++ code. This resulted in decreased shading performance, but was 
able to demonstrate useful gains over single ray traversal for somewhat incoherent rays. A downside, however, 
was that arbitrary shaders weren’t possible; all rays were batched into queues and so had to carry a weight with 
them. Like others, we liked claiming that it was okay to use ray queueing.



With RTSL we finally no longer had to write SSE code by hand to produce either physically based BRDFs for path 
tracing or arbitrary shaders for other pieces of code. This reduced our programming burden and for this paper 
was useful to be able to quickly prototype the shaders we used. Moreover, it’s useful to reiterate the need to 
handle arbitrary shading and avoid ray queues as it seems like a slippery slope to have to write shaders in a higher 
level language that interact with these ray queues. As always of course, if you are a physically based purist you 
can go down the ray queue route; however, if you want to batch up shadow rays across different shaders you’ll 
have to compute their shading results before shooting them which could be pretty expensive.



Overview

• Problems with current packet traversal

• Breadth First Ray Tracing

• Improving Full Packet Tests

• Adaptive Reordering Traversal

• Experiments and Results

As a simple overview of this talk, I’ll briefly discuss problems with current packet traversal methods wrt rays 
becoming inactive and how breadth first ray tracing improves the situation. Then I’ll talk about some of the 
improvements we’ve made to the full packet tests from our original BVH paper, how we then leverage those for 
our adaptive reordering traversal, and finally talk about the experiments we ran and the results we obtained.



Inactive Rays 

This figure from the paper demonstrates the current state of the world in packet traversal. Given a hierarchical 
structure such as this BVH and a packet of 3 input rays the first ray (top) drags the other 2 rays along with it. In 
SIMD packet tracing with a SIMD width of at least 3, the SIMD utilization would be very low. In BVH packet tracing, 
the 2 rays that should be marked inactive would not be noticed until the second level of node tests due to the 
speculative first hit test. 



Breadth First Traversal

Instead, we could take the input set of rays on the left and filter out the inactive rays after the first box test. While 
this would probably require a linear sweep over all the rays to determine which are active or inactive, we wouldn’t 
end up with a single ray dragging many others along with it. The only additional cost is in shuffling the ray data 
around to form a new packet. A downside of this traditional breadth first traversal, however, is that we lose the 
benefit of the quick first hit or all miss tests from recent packet tracing research.



Types of packet results

• All hit

• All miss

• Partial Overlap

To frame the packet tracing problem, it’s useful to consider that there are only three simple cases to consider for 
a ray packet test against primitives, boxes, kd-tree planes, etc. All the rays can hit, all the rays can miss, or there 
might be some overlap. In our original packet BVH paper, the all hit case was speculative based on the first ray in 
the packet and so could be fooled into dragging lots of inactive rays along with it. The all miss on the other hand 
was conservative and so while it might miss some possible cases for quick culling, it never drags inactive rays 
around. Finally, in the case of partial overlap the packet was only “resized” by moving the first active ray pointer 
forward. In this paper, we attempted to improve on all three of these issues.



Reordering Traversal

• If it’s possible and useful, see if all rays hit

• If it’s useful, see if all rays miss

• Test all rays

• If it’s a good idea, compact the rays

Given the previous possible outcomes, there’s a simple way to take advantage of them during traversal. For some 
definitions of possible, useful and good, we can determine which case of the previous 3 we are in and act 
accordingly. In our particular implementation, the first two tests use interval arithmetic and are disabled based on 
those possible and useful conditions. The test all rays loop is SIMD-ified as much as possible and then the 
compaction only happens when it’s a good idea. On current architectures, compact the rays is not well supported 
so it’s scalar in our prototype implementation (due to a lack of vector gather or scatter depending on how you see 
it). So let’s start with how to do a quick all hit test that isn’t speculative using interval arithmetic.



Interval All Hit

While interval arithmetic is not really geometric in nature, I hope that this poorly drawn diagram will be of assistance during the explanation of how 
to think about this test. First, we convert a set of rays (here shown in green and orange) into a single “Interval Ray”. This interval ray has an interval 
vector as its origin (shown here in the dashed red box) and an interval direction in place of a standard direction. For example, the interval origin is 
simply a bounding box of the ray origins as this represents min_x to max_x in the x axis and similar values for other dimensions. For direction the 
same idea is used min_dx to max_dx or in this diagram, min_dy and max_dy shown in blue and yellow respectively.

For a standard plane test (of which a BVH test is the union of 6 such tests) the ray origin in that dimension is subtracted from the plane position 
and then divided by the ray direction. With interval arithmetic, we instead take the plane position and subtract the interval of the ray origin before 
dividing by the interval of the ray direction. Instead of a single ray parameter, we obtain an interval of ray parameters. We can compute several of 
these for a single BVH node (one for each plane) and compose them using union and intersection operations. This eventually gives us a single 
interval ray parameter for the box entry (usually tmin) and box exit (usually called tmax). Combining the interval of ray parameters with the interval 
origin and interval direction produces an interval of hit points. 



Interval All Hit

For example, in this case the standard box tmin (after all the intervals have been collapsed through intersection operations) is shown in yellow. If 
we take the green ray’s tmin value (the larger of the two assuming both ray directions are normalized) and use it for the orange ray we can see that 
we’re still inside the bounding box. In this case, we can safely say that all rays will hit the bounding box at some point. Note that this all hit test like 
the previous all miss test is still conservative; if there was a vast difference in ray lengths then it’s possible that the orange ray when evaluated at 
the ray parameter would end up outside the box despite having intersected the box. Normalizing the ray directions helps alleviate this issue by 
ensuring that all rays treat ray parameters in the same units. Also, instead of testing each ray individually we apply the “inside the box test” using 
the interval ray instead of individual rays.



Possible/Useful?

• Possible: all rays are active / intervals up-to-
date

• Useful: Might provide some speedup over 
linear testing (packet size > k * SIMD 
width)

So when is the all hit test possible and when is it useful? In the context of packet tracing, if you have inactive rays floating around and you don’t 
update your intervals to reflect that (read: all previous papers) then the all hit test is useless: you already know that your rays don’t all hit the 
current node since at least one missed a previous node. For the all miss test that’s a little less clear; the intervals don’t necessarily need to be 
updated to have the test succeed but the tighter they are the more likely it is.

If it is possibly useful, it’s important to know when interval tests actually have some chance of being useful. While the probability of success is a 
function of the rays and the box, it’s useful to consider the maximum possible benefit before even wasting time with it. In this case, if you consider 
the test as wasting SIMD width rays worth of effort you clearly need at least SIMD # of rays to get any benefit from an interval test. Because you’re 
unlikely to get that 100% probability of an all hit test succeeding, you probably want to scale this factor by some value of k depending on your 
architecture. Again it depends how expensive the interval tests are relative to the linear sweep.



Adaptive Reordering

• Only reorder when it’s a good idea

• Initial thought: cost function

• In practice: SIMD utilization < threshold

“True” breadth first ray tracing always takes an input set of rays and filters it depending on whether or not the rays take the same path through the 
BVH. In reality, you’d love to reorder or compact the rays whenever you know that you would reduce execution time. To do so, you’d have to model 
the average number of SIMD box tests, primitive tests, etc that will occur if you leave inactive rays in the packet, compare it to the cost of 
reordering in addition to the cost of tracing the reordered packet, and then hope for the best since your estimated cost is probably quite wrong. 
This analysis is essentially impossible without many assumptions that are too scene dependent to be useful. 

On the other hand, the speedup gained in using SIMD operations is directly proportional to the SIMD utilization; in the case of ray packets this is 
the number of active rays per SIMD group averaged over the packet. This makes SIMD utilization a natural reordering metric that happens to be 
easily computed. As a side note, the utilization threshold allows for a natural continuum between always reordering (a la breadth first ray tracing), 
never reordering (SIMD packet tracing) and our reordering heuristic. We’ve found .5 to work pretty well in practice but could envision some wiggle 
room depending on architecture specifics (primarily the cost of shuffling data around).



SIMD Utilization

25% 100% 100%50%

Average = 68.75%

As a simple example, consider this packet of 16 rays with active rays marked in red (for hot) and inactive as blue 
(for cold). In this case, many rays are active, but they’re slightly spread out. Overall, the SIMD utilization for this 
packet is around 68% which can be arrived at in many ways. The simplest from an implementation standpoint is 
actually to count the number of active rays and compare it to the size of the packet (so SIMD padded). With the 
latest hardware, there’s a POPCNT instruction that could be useful for this case but counting the active rays is 
essentially free if you’re already doing a linear sweep for the box tests.



Reordering

Average = 91.67%

Reordering the packet then means shuffling all the ray data around so that the active rays appear in the first 
portion of the packet while a few remaining inactive rays are left trailing. In our Manta prototype I just make a new 
ray packet on the stack (lazyness wins) but we’ve also done an implementation for LRB that does the sorting in 
place and requires no extra memory. Just imagine the inactive rays moving to the right and the active ones moving 
to the left.



SIMD Trimming
0% 100% 100%50% = 62.5%

X
= 83.3%

It’s important to note, however, that SIMD trimming (adjusting the first active and last active indices for a packet) 
can have a similarly positive effect on SIMD utilization. Because of it’s essentially free cost, we always first trim the 
packet from both ends before deciding what the new packet’s utilization will be. Because of this, we end up 
avoiding lots of unnecessary reordering. 



Recomputing Intervals

• Doing a linear sweep, how about intervals?

• Only if useful (again, # active > k * SIMD)

When we reorder the rays in the packet, we have an opportunity to recompute the ray intervals in hopes of 
improving the probability of success for the interval arithmetic tests. Of course this linear sweep isn’t free either 
and more over, the maximum possible benefit of the IA tests decreases as our packet shrinks.  As before, we just 
compare the number of active rays against some multiple of the SIMD width (as this is the assumed unit of 
comparison of the IA tests vs the SIMD box tests).



s

Tighter Intervals

When we do recompute the intervals, we can do slightly better than just computing the interval origin and interval 
directions. Because we know that future tests are constrained to be within the child node we just intersected, we 
can move the effective ray origins to their entry points for the BVH node.  When computing the tmax value for 
each ray we then use the difference between the exit point and entry point ray parameter values. This is somewhat 
similar to Alex Reshetov’s “on the fly frustum” from last year, but applied to interval arithmetic. As we can see in 
some cases this should tighten the intervals considerably even if rays do not become deactivated.



How many bounces?

In the setup I’m most interested in (glossy and diffuse reflection), I think 1 or 2 bounces is probably the setup of 
interest (as diagrammed here for 2 bounces). 1 bounce has been used in production rendering as it is sufficient 
for final gathering while 2 bounce would let you compute irradiance at the final gather points (as is used often as 
well). Similarly, in situations where ray tree attenuation is used for glossy setups many rays don’t live past 2 
incoherent bounces so a 2 bounce diffuse path trace seems to be fairly difficult. To span the spectrum of ray 
distributions though, we examined perfect specular reflection, glossy specular, and diffuse path tracing; all of 
these included soft shadows.



Which scenes?

For our scene setup, I chose the Sponza Atrium, Utah Fairy Forest and Conference room. These scenes span a 
gamut of model sizes, configurations and most importantly are easily available and renderable. Other scenes 
didn’t make the cut since they either have too little geometry to be useful (Cornell Box and erw6), are not even 
somewhat representative of actual scenes (some tessellated mesh floating in space), or lack sufficient use to be 
comparative to other papers. While I feel all of these scenes we’re using have their problems, they’re what we’ve 
got to work with.



Implementation

• Branch of Manta

• 4-wide SSE (Intel Clovertown system)

• Reordering == new compacted ray packet

• All timings single core

To make sure we’re all on the same page for the results here, our prototype implementation is a branch of the 
ever popular Manta interactive ray tracer. That being said, it targets SSE and so the SIMD width is a measly 4. Since 
we used a Clovertown with massive amounts of L2 cache, I went the lazy route and just used a new ray packet 
allocated on the stack to do the reordering (by just filling in the active rays only). Lots of stuff could be improved 
here, but I was more concerned about whether or not it would already show an improvement. All timings are going 
to be given for a single core, since core count seems to be a number that will change wildly. Everyone’s renderer 
basically scales linearly anyway, so if you want to imagine my system as being faster scale by 8 or 16 if you’d like. 
Now, on to the measurements.



Specular Performance

As a first sanity check, I want to ensure that we’re not losing much performance off of speculative packet tracing 
for fairly coherent rays. Because only a few bounces of perfectly specular reflections seems like a pointless 
comparison, I’ve gone ahead and run this test with 2, 5, and 10 bounces of specular reflection (with each bounce 
sending a single shadow ray towards a large area light). Ray tree attenuation is not used to avoid thinning out the 
rays. As the caption indicates, we retain most of the benefits of packet traversal but perform better for higher 
bounce depths.



Glossy Performance

For glossy specular reflections (with the same material setup used in the original glossy conference scene I did) a 
similar pattern is visible: reordering is competitive with packet tracing for coherent rays and still better than single 
SIMD tracing for incoherent rays. I should mention that I unfortunately first rounded off the render time and then 
computed speedup, this makes bounce 0 a little difficult between the packet and reordered since they’re so fast.



Diffuse Performance

As before, the relative performance between the different methods is fairly similar. It is important to note that this 
is a real implementation with only 4 wide SIMD and that our results also come close to the theoretical maximums 
we had hoped for with breadth first ray tracing given this input size of packets (256 rays in this case). We’ll see 
this theoretical comparison in the next slides when comparing against exact reordering. Also, while the gain over 
SIMD packet tracing is fairly small in for very incoherent rays, we’ll see that for larger SIMD width we would expect 
a larger relative gain in performance.



Arch Independent Stats

Since your architecture may change in the future and your implementation details may differ, I find it useful to 
also compare architecturally independent statistics across the different traversal methods for the 2 bounce diffuse 
path tracing case. Our adaptive reordering compares favorably to exact/breadth first ray tracing in terms of a 
number of statistics such as box tests per ray, triangle tests per ray, traversal steps per ray and primitive tests per 
ray. It does so with about 3x less reordering moves per ray. Each reordering move corresponds to shuffling a 
single ray’s data from its current position to a new position; as this code does not use in-place reordering, this 
number is actually higher than it could be. We can also see what has gone wrong with the packet traversal: it’s 
doing more box tests than the single ray traversal and we’re doing a lot of IA tests as well. Combine that with the 
higher number of triangle tests, we’re really just dragging around a big packet to intersection tests that aren’t 
desired.



IA Benefit

This graph shows the number of rays “skipped” by using our combination of IA tests and compares tight vs loose 
bounds (which I affectionately call the IA benefit). I’m certain you can’t see this, however, the tight bounds are 
slightly better than the loose bounds but certainly not worthy enough for their own publication ;). I unfortunately 
didn’t think to compare with not recomputing the intervals... Loose vs tight intervals might matter more on other 
scenes or ray distributions, but I felt I’d include it in the paper anyway. This slide also demonstrates the 
decreasing benefit of the interval arithmetic tests beyond even a few levels in the BVH for incoherent rays. The 
performance benefit is quite high for coherent rays, however, so a system that doesn’t use large packet tests 
would lose quite a bit for coherent primary, shadow, and perfect reflection rays.



SIMD Speedup: Boxes

Current GPUs use larger than 4-wide SIMD units, and Intel’s upcoming CPUs will have 8-wide SIMD in 2010. If 
SIMD happens to keep going up, here is how our method will compare with SIMD packet tracing in red, adaptive 
reordering in green and exact reordering in blue for the speedup over scalar box testing. As we can see, all 
methods enjoy some benefit to increased SIMD width even for this 2 bounce diffuse path tracing setting. A nice 
takeaway from this side that our method is more beneficial as SIMD width grows, but that if you prefer to avoid 
the headache of packets larger than SIMD width (which could have code autogenerated) you’re still probably not 
much more than 2x from optimal. Then again, if you have the space for larger packets this benefit could be 
stretched further still; on the far right with 64-wide SIMD we only have 4 SIMD groups with our 256 rays.



SIMD Speedup: Leaves

The story for primitive intersection is much more grim however. For an input set of 256 rays, no matter what we 
do on average about 2 rays hit the same triangle. For large SIMD widths, this will then quickly become the 
bottleneck for ours and any other packet method. Our assumption that there was enough coherence within a 
window of 256 rays is simply not true at the primitive intersection level. Because of this, there has been a lot of N-
ary BVH work recently including our own paper that appeared yesterday and Holger Dammertz’s paper at EGSR. 
Similarly, Alex Reshetov’s shallow trees combined with vertex culling seeks to solve the same problem; as we 
mention in the paper, however, the vertex culling approach relies on highly coherent rays to perform quick 
rejections of the primitives within the leaves. Luckily, since we can detect when our packet is heavily inactive, we 
won’t be worse than SIMD packet tracing in this case and could even switch to an efficient single ray SIMD-width 
primitive testing traversal. It’s important to remember, however, that while this speedup is not only very low at the 
leaves, but at all the bounding boxes just above them.



SIMD Benefit vs Depth

Finally I think it’s useful to see where the cross over point is for SIMD utilization. This graph demonstrates our 
SIMD speedup including both box and primitive tests assuming a 16-wide SIMD width. Clearly we maintain a much 
higher utilization than SIMD packet tracing and do so for a longer period of time. Everything gets bad towards the 
leaves, but depending on your implementation there might be an interesting way to get the number to go back up 
just after it declines sharply. Our investigation with the N-ary BVH suggests something like that should be 
possible. 



What’s broken?

• Not enough coherence at leaves

• Resource requirements

• Not very large gain over SIMD tracing

As I always ask people what’s broken about their stuff, I figure I should just tell you up front what you already 
probably have realized: the coherence at the leaves is so low that this method provides essentially no benefit. 
What you might not have noticed is that since I’m using 256 rays per packet, this might not be very amenable to 
resource constrained architectures such as recent GPUs or custom ray tracing hardware; cache vs compute is 
always a difficult tradeoff and many recent FLOP rich monsters have chosen compute quite heavily. Finally, even 
my plot out to 64-wide SIMD suggests that SIMD tracing is only about 2x less efficient for box testing; with 
heavily reduced IA benefit at 2 diffuse bounces, our method quickly becomes dominated by SIMD utilization. In 
many situations, I would guess that the cleanliness of code maintenance would win out instead.



What’s right?

• Arbitrary shading

• Invisible to other parts of the renderer

• Retains coherent performance

• Less sensitive to packet size 

• Simple

Then again, I think there are several things that are right about our approach. The first two are more important 
than most publications admit lately, but I think allowing arbitrary shading is still useful to give people the 
flexibility to do crazy things with your renderer. Removing the need to have other portions of the renderer attempt 
to generate very coherent rays in the first place is also incredibly beneficial. Even rays that are wildly different will 
magically separate into coherent groups when the time is right (which is as soon as they disagree enough). 
Similarly, if very coherent rays are put in at the top, they stay together and there is a benefit to doing so. Finally, 
the metric used is simple and therefore robust and cheap. In contrast to some of the complicated reordering 
schemes that we and others have attempted, I’m not scared that there will be some crazy case that breaks the 
reordering heuristic: when enough rays become inactive, you should regroup if possible and useful. Like I said 
before, the worst part is that you have more code than before.



Future Directions

• Enormous ray packets

• Transition from packets to single ray

• More beneficial full packet tests

As for some future directions. The SIMD utilization also improves for various statistics if we increase the packet 
size further; the only real issue is things like rays not being kept in registers, polluting caches and so on so 
enormous ray packets (think 1M rays per packet) might possibly have some benefit on certain architectures. On 
more resource constrained systems though, it’s probably just useful to apply this as much as possible and know 
that you’ll run out of coherence eventually. Once we’re down to a single SIMD group, we currently switch to the 
SIMD traversal (unless we know we only have a single ray), but we could also switch to something like an N-ary 
BVH approach. Finally, I always hope that full packet tests, either geometric or interval based, might be improved 
further.



Questions? 
Complaints?

• Code available as a Manta branch:

• https://code.sci.utah.edu/svn/Manta/
branches/reorder/

https://code.sci.utah.edu/svn/Manta/branches/reorder/
https://code.sci.utah.edu/svn/Manta/branches/reorder/
https://code.sci.utah.edu/svn/Manta/branches/reorder/
https://code.sci.utah.edu/svn/Manta/branches/reorder/

