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Abstract 
This paper describes a method of creating facial animation using a combination of motion capture data and 
blendshape interpolation. An animator can design a character as usual, but use motion capture data to drive 
facial animation, rather than animate by hand. The method is effective even when the motion capture actor and 
the target model have quite different shapes. The process consists of several stages. First, computer vision 
techniques are used to track the facial features of a talking actress in a video recording. Given the tracking 
data, our system automatically discovers a compact set of key-shapes that model the characteristic motion 
variations. Next, the facial tracking data is decomposed into a weighted combination of the key shape set. 
Finally, the user creates corresponding target key shapes for an animated face model. A new facial animation is 
produced by using the same weights as recovered during facial decomposition, and interpolated with the new 
key shapes created by the user. The resulting facial animation resembles the facial motion in the video 
recording, while the user has complete control over the appearance of the new face.   

 
 

1. Introduction 
Animated virtual actors are used in applications such as 
entertainment, computer mediated communication, and 
electronic commerce. These actors require complex facial 
expressions and motions in order to insure compelling 
interaction with humans. Traditionally, animators 
tediously hand crafted these animated characters. Recently, 
performance driven facial animation has been used to 
create these facial animations, greatly improving the 
efficiency of the animation process.  

Advantages of performance driven systems include the 
speed up over manually crafted animations and the 
potential of producing more realistic facial motion. While 
many different techniques exist for performance driven 
facial animation, most methods track facial markers from 
an actor or actress, recover the 2D or 3D positions of these 
markers, and animate a 3D face mesh using the marker 
data. These methods typically require that the shape of the 
face in the source motion capture data closely resembles 

that of the target animated face. Otherwise, a method for 
retargeting the source motion data to the target face model 
is required.  

There have been several different approaches to map 
motion data from the source to the target model. They 
generally fall into two categories: Parameterization, and 
Motion Retargeting. In parameterization, some universal 
facial parameters are derived from the motion data such 
that when they are applied to another face model, the 
parameters remain the same. However, simple parameters 
are often insufficient to describe more complicated facial 
expressions, while more complicated parameters are 
difficult to estimate from the motion capture data. In 
Motion Retargeting, the motion of one facial expression 
animation is mapped directly to the target mode. Since the 
target model may look different form the source, the 
source motion needs to be ‘adapted’ to the new shape.  

There are many other popular methods for facial 
animation that are rarely used in conjunction with motion 

 
 



capture system [Par96]. Blendshape interpolation is one 
example. Many commercial 3D animation software 
packages provide tools to make blendshape animations 
[Maya]. The principle of blendshape interpolation is similar 
to key shape interpolation. In this case, more than 2 key 
shapes can be used at a time, and the interpolation is for a 
single static expression, rather than across time. Each 
blendshape can be modeled using a variety of different 
methods. The amount of detail in each expression can also 
vary, as long as the resulting faces can be ‘combined’ in 
some manner. While this method is popular for specifying 
facial animation, it requires manual specification, and 
designing a complete animation can be quite time 
consuming. 

We propose a method of making facial animation using 
a combination of motion capture data and blendshape 
interpolation. This method retains the flexibility of 
blendshape modeling, while gaining the efficient 
animation possible using motion capture. This technique 
consists of several stages: facial capture, facial 
decomposition and facial retargeting. An overview 
diagram of this method is shown in figure 1.  In facial 
capture, we track facial features of an actress in a video 
recording using computer vision techniques. In facial 
decomposition, facial features are decomposed into a 

weighted combination of key shapes. These key shapes are 
automatically selected from the tracking data. Many 
existing tracking techniques use PCA to find a compact 
basis-shape set. Unfortunately, PCA based representations 
are not very well suited for our retargeting task. We 
present a new algorithm that discovers a better basis set. In 
facial retargeting, key shapes for the animated face model 
are created by the user. These key shapes for the new face 
model resemble the key shapes from the video sequence. 
For instance, a smiley face corresponds to a smiley face. 
Then, the decomposed weights for the key shapes in the 
video sequence are used to create interpolated facial 
animation for the new face model. We believe that even 
though the shapes of the face model have changed, the 
essence of the facial animation remain in the weights that 
transform the facial expression in between the different 
key shapes. 

The advantage of this method is that the facial capture 
and retargeting are decoupled. The mapping from the 
source motion to the target is reduced such that only the 
weights for the blend shapes are transferred. Therefore, it 
is very easy to reuse a sequence on different models. The 
style of these models may vary greatly from the 
appearance of the original actress. Since many commercial 
tools already provide tools for blend shape interpolation, 
this method can be easily used in conjunction. 

The outline of the paper is as follows: after a description 
of related work in section 2, we describe the facial motion 
capture method used in our system in section 3. Section 4 
explains the process of decomposing facial expression into 
weighted combination of key shapes. In section 5, 
examples of 3D facial animation were created using the 
facial retargeting process. In section 6, we conclude our 
current work and discuss the future direction.  

2. Related work 
Most existing work on performance driven facial 
animation has focused on tracking and modeling of the 
human face [Gue99] [Wil90] [Mar00] [Ess96]. Through a 3D 
scanner [Cyb] or image measurement, a realistic face 
model is generated. The locations of the markers are used 
to drive the 3D model. Since the model usually has more 
details than the number of markers, a kernel function is 
typically used to deform the mesh so vertices that fall 
between the markers move properly. This work often 
assumes that the source and target face shape are identical. 

When the target face model is different from the motion 
capture data, we must retarget the motion. There are two 
general categories as mentioned in the previous section. 
The first category involves some kind of facial animation 
parameters. The type of parameters can be simple distance 
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Figure 1: Overview diagram of the Facial Animation
System. A motion capture module extracts facial
features from a source video sequence. The features
are decomposed into a set of  key shapes and key
weights. The user creates an analogous set of key
shapes in the target domain. These new key shapes,
together with the extracted key weights are together
used in a retargeting stage that creates the final
animated motion.  
 



measurement, such as eye opening, mouth opening, and 
eyebrow raising etc [Buc00]. However, these parameters 
are often insufficient to describe more complex facial 
expressions. There is also work on estimating physical 
control parameters, such as muscle action, from image 
measurement [Ter93] [Ess96]. In general, muscle parameters 
are difficult to obtain from the motion capture because of 
skin movement, therefore these systems usually employ 
complex optimization process. There are also high-level 
qualitative expressions, such as happiness and sadness, or 
speech related parameters, such as visemes in various 
other systems [Har98] [Ost98]. In general, the higher the 
level of control parameters, the harder they are to estimate 
because of the weak link between the image measurement 
and the actual control parameters.  

The other category of retargeting involves mapping 
motion vectors directly to another face model. Because the 
retargeted face model has different shape, the motion 
vectors are transformed to follow the curvature of the new 
shape [Lit94] [Bei92] [Noh01]. To retarget motion to a 3D 
model, this method requires dense mesh motion as input 
data, which may not be available from some motion 
capture systems. Furthermore it requires dense mesh 
correspondence, which may be difficult to specify when 
the source and target shapes are very different. 

Our work is closer to the category of motion 
parameterization. Previous work has required an explicit 
parameterization and mapping that is often difficult to 
specify. This work uses an implicit mapping between 
models, embedded in the key shapes. We rely on the user’s 
artistic skill to observe the source expressions and then 
model equivalent expressions in the target domain. 

3. Facial motion capture 
The technique described in this paper requires a feature 
vector that describes an actor’s motion. While a variety of 
motion capture techniques exist, the performance used 
here was recorded as a nearly marker-less face on a 
standard camcorder. Existing computer vision techniques 
were applied to track the facial features in this sequence. 
Features include the eyebrows, eyes, center of the pupil, 
and the inner and outer contour of the lips. The auxiliary 
marks drawn on the cheeks and chin where not used. We 
chose a model-based technique that can reliably track a 
marker-less face [Cov96]. We briefly describe the method 
here.  

A tracking model is trained from an annotated face 
database. To obtain the database, a handful of images from 
the video sequence are first labeled with facial contours. 
Feature points are distributed evenly along each contour. 
The labeled images are then adjusted to remove the affine 
motion. Next, we perform image morphing between the 
pre-warped images to enlarge the image database. 
Principle Component Analysis is performed on a vector 
containing the pixel intensity values and the labeled 
feature locations of the face images in the enlarged 
database. The k largest eigenvectors are retained as the 
tracking model. 

To track the facial sequence, the images are pre-warped 
to adjust for affine motion relative to the tracking model. 
Each frame is then projected onto the basis set of 
eigenvectors using only the pixel intensity values. Since 
the eigenvectors of the image database consists of both the 
pixel intensity values and the feature locations, the facial 
features of each frame can be obtained. Figure 2 shows a 
sample image of the tracked face.  

4. Facial decomposition 
The goal of facial decomposition is to take the facial 
features from the captured sequence and decompose them 
into a weighted combination of key shapes. The weights 
recovered during this process will be used to specify the 
animated motion of the target model. The key shapes are 
chosen via an automatic method that we will describe in 
section 4.2. These shapes should represent the variety of 

 
 
Figure 3: Top – facial features for some example key 
frames obtained through tracking. Bottom – traced facial 
features for the same frames. 
 
 

 

 
 
Figure 2: Facial features are recovered using a tracking 
model trained on an annotated database of images. 



facial expressions existent in the sequence. For example, 
figure 3 shows some example key shapes used for a video 
sequence in which only the lips were considered. 

We define a key shape in the source sequence as the 
control points of the facial features in that frame, 
Si = [x1,y1,x2,y2,…,xn,yn]T. The tracked facial features in 
each of the input frames can be described in terms of a 
weighted combination of a set of defined key shapes, that 
is,  

St = F(w, S),    w = [w1,..,wk], S = [S1,..,Sk] (1) 

where F is the morphing function used to combine a set of 
key shapes, k is the number of key shapes, and the weight 
of key shape i is wi. Facial decomposition is the inverse 
process of morphing. In image morphing, base images and 
weights are used to derive new warped images. In 
decomposition the morphing function and the resulting 
facial feature locations are known, but the weights must be 
recovered.  

After determining key shapes and the associated key 
weights for a sequence, the motion can be retargeted. In 
the retargeting stage, the user creates a new set of face 
models that correspond to the key shapes from the input 
sequence. The new face models have facial features Bi, 
where the definition of Bi varies depending on the output 
model. Finally, the weights wi are applied to the output 
sequence 

Bt = F(w, B),  w = [w1,..,wk], B = [B1,..,Bk] (2) 

The following sections describe two steps in the facial 
decomposition: determining the weights and choosing the 
key shapes. These two problems are not completely 
independent from each other. However, we will formulate 
them as separate processes in the paper for simplicity. 
Section 5 will describe facial retargeting and show some 

resulting output facial animations. 

4.1 Determining weights 
Given a set of input key shapes, S = [S1,…, Sk], finding the 
weights depends on the morphing function F . In this work 
we use linear morphing, that is, 

?=
k
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 (3) 

Weights that exactly satisfy this equation are unlikely to 
exist, but the best fit in a least square sense can easily be 
found. However, we are not interested only in a perfect 
reconstruction of the input facial features, we plan to use 
the recovered weights for retargeting. Minimizing the 
reconstruction error in the source sequence is not 
necessarily the most desirable thing. Our goal is to find the 
best weights to describe the process of creating each 
frame, as if it had been created using the morphing 
function and key shapes. Solutions that strictly minimize 
the least square error of equation (3) often introduce large 
positive and negative weights that counteract and 
compensate for one another. While these large weights 
minimize the error for the input shapes, they are not a good 
representation for describing the morphing process on a 
new target set of key facial features.  

A simple test example illustrates the difficulty with 
merely minimizing error. Given a set of tracked lip 
contours as the key shapes in the source sequence, we 
traced these lip shapes by hand and used the control points 
along the traced shapes as the target key shapes, as shown 
in figure 3. Although the traced shapes closely match the 
tracked contours, they are not identical. Figure 4(a) shows 
one frame of the reconstruction of the lip contour in the 
source sequence using the weights from a least square 
solution. There are 21 key shapes used in this example. As 
expected, the reconstruction looks very similar to the 
tracked frame. Figure 4(b) shows the reconstruction when 

 
Figure 5: Reconstruction of lip contours when the key 
weights were determined using a non-negative least 
squares fit. (a) Reconstruction in the original feature 
domain. (b) Reconstruction in the target domain. Note that 
the reconstructed shape in the target domain is faithfully 
reconstructed without distortion. 
 

 

 
Figure 4: Reconstruction of lip contours when the key 
weights were determined using a simple L2 norm. 
(a) Reconstruction in the original feature domain. 
(b) Reconstruction in the target domain. Even though the 
source and target key shapes were very similar, 
significant distortion is present. 



the weights are used for retargeting onto the traced lip 
shapes. Even though the two sets of key shapes are very 
similar, the retargeted result has bad distortions. 

Two simple methods can be used to minimize the 
distortion in the retargeted shape. First, the distortion 
reduces when the number key shapes are reduced, since 
this reduces the degrees of freedom. However, reducing 
the degrees of freedom also limits the amount of 
expressiveness in the animation and is not desirable. The 
second technique is to add constraints to the least square 
solution such that all the weights are positive. That is, 

0   ,
1
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This can be solved with standard numerical techniques 
[Law74]. Since negative weights are absent, large weights 
can not be counterbalanced. Thus, this constraint has the 
effect of reducing the number of large weights. However, 
it does not change the total number of key shapes, and thus 
preserves the expressive power of the representation. 
Figure 5 shows the same example of lip contour 
reconstruction and retargeting, where the weights were 
found using a non-negative constraint. The result has 
improved much throughout the entire sequence.  

4.2 Choosing key shapes 
Choosing appropriate key shapes is an important part of 

shape decomposition. Each key shape adds flexibility and 
expressiveness to the model, suggesting that many key 
shapes should be used. However, the user must create a 
target model for each key shape. In order to reduce user 
burden the number of key shapes should be kept small. An 
ideal method would balance these requirements to find the 
minimal set of key shapes that maintains the desired 
animation expressiveness. In this section we propose and 
evaluate several methods for choosing key shapes. 

The problem stated above can be phrased in the 
following manner: Given a sequence of frames, each with 
its own facial shape, Q = [Q1,Q2,….Qt],  we would like to 
pick k shapes from Q such that the rest of the sequence can 
be expressed as a combination of these key shapes with 
minimal error. Ideally this error would be measured in the 
target domain, since as discussed previously, even with 
low error in the source domain, retargeted shapes can 
become distorted. Unfortunately no ground truth data 
exists in the target domain, so we must resort to using 
reconstruction error in the source domain to evaluate the 
quality of sets of key shapes. Given a set of key shapes, S, 
the best weight vector, w, can be determined as above, and 
the error can be written as  
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Since finding the optimum set of key shapes is a large 
search problem that grows combinatorially with the 
number of key shapes, we instead propose three heuristic 
methods of choosing key shapes and evaluate them in 
terms of the metric given in equation (5).  Each of these 
heuristics is designed to choose key shapes that cover the 
space of shape variation that exists in the sequence. Since 
the number of facial feature is relatively large, the space 
defined by the feature vector has a high dimension. Like 
any pattern classification problem, a smaller input 
dimension makes the problem more manageable. 
Therefore, all three methods make use of principle 
component analysis (PCA) to reduce the dimensionality of 
the input data.  

Maximum spread along principle components. This 
method picks the data points that have the largest values 
when projected onto the principle axes. Starting from the 
first principle axis with the largest eigenvalue, the frames 
with the maximum and the minimum projection onto each 
axis are chosen as key shapes. Therefore, to pick k key 
shapes, we will use the first k/2 axes. The intuitive 
explanation of this heuristic is that for each direction of 
variation in the sequence, we want to choose the extreme 
maximum and minimum poses that encode this variation. 
All other shapes should be derivable as an interpolation 
between these two extremes.  

Clustering. Each face shape is projected onto a small 
number of eigenvectors to produce a low dimensional 
vector. This low dimensional data is clustered into k 
groups using Euclidian distance. The center of mass of 
each cluster is chosen as a key shape. The intuition here is 
that by clustering the input data and choosing a key shape 
in each cluster, coverage of the entire range of motion is 
ensured. Clustering results are reported using both two and 
three dimensional feature vectors.  

Convex hull. Each face shape is projected onto a small 
number of eigenvectors to produce a low dimensional 
vector. All shapes that lie on the convex hull of this space 
are chosen as key shapes. Since every other shape must lie 
within the convex hull, it is expected that all other shapes 
can be obtained by interpolating between the chosen key 
shapes. It turns out that for dimensions greater than two, 
nearly every frame of the example sequences lies on the 
convex hull. Since using every frame as a key shape 
defeats the purpose of this method, results are reported for 
the case of two dimensional feature vectors.  

Figure 6 shows the reconstruction error of the control 
points around the lips as a function of the number of key 



shapes. The key shapes are chosen by the methods 
described above, while the weights are produced by least 
square with constraints as shown in equation (4). The solid 
blue line shows the error from using the maximum spread 
along the principle components. The dashed green and 
magenta lines show the errors from using the key shapes 
chosen by the clustering method. The green line is the 
result from using 2 principle components, and the magenta 
line is the result from using 3 principle components. 
Finally, the red dot shows the error from using the convex 
hull method. Since the number of data points on the 
convex hull is fixed, only one data point is present. Note 
that using the maximum spread along the principle 
components results in the smallest reconstruction error 
among the three methods. In addition, the error decreases 
monotonically as the number of key shapes increases, 

suggesting a graceful degradation when fewer key shapes 
are used. The errors produced by clustering also decrease 
with an increasing number of key shapes. However, the 
curves are somewhat noisy; and furthermore it is not clear 
whether using more dimensions is advantageous. The 
convex hull method seems to perform as well as choosing 
the maximum along principle components. However, since 
the number of chosen key shapes is fixed, this technique is 
less flexible.  

From the above analysis, we concluded that the first 
proposed method, which picks the extreme data points 
along principle components axes, selects the key shapes 
that best represent the variety of shapes in the input 
sequence. This method also has the property that quality 
degrades gradually as the number of key shapes is reduced. 
Figure 7 shows some of the key shapes picked by this 
algorithm. Note that the set of key shapes consists of a 
variety of eye and mouth shapes, matching our intuitive 
notion of covering the space of possible poses. 

5. Facial retargeting  
To retarget the recovered facial motion to a new face 
model, the user creates new key shapes in the target 
domain. The weights that describe the combination of key 
shapes in each frame of the source sequence remain the 
same in the retargeted sequence. Only the key shapes 
themselves are replaced to form the new animation. Each 
frame in the new facial animation is a weighted 
combination of the new key shapes. It is important that the 
key shapes are consistent, for example if the mouth opens 
wider in key shape 3 than in key shape 5 and 6, the new 
key shapes need to have this property also. If the amount 
of ‘extremeness’ in the key shapes is contradictory, the 
output sequence will jitter in an uncontrolled fashion.  

To demonstrate the facial retargeting, we use a 3D face 
model made with NURB surfaces. The output key shape 
vectors, B = [B1,…,Bk], described in section 4.2 now 
consists of the control vertices of the NURB surfaces. 
Other types of models may have different feature vectors. 
For example, for polygonal models, the vertices can be 
used as facial features. In order to minimize the number of 

 

 
Figure 6: Comparison of reconstruction error using key 
shapes chosen by different methods. The solid blue line is 
the error obtained when key shapes are chosen with the 
maximum spread in the direction of principle components. 
Note that this method consistently obtains the lowest 
error. The dashed green and magenta lines are the results 
of using clustering to choose key shapes. The red dot 
represents the error when key shapes are chosen on the 
convex hull of the feature space. 
 
 

 
 

 
Figure 7: Examples of key shapes picked by the proposed algorithm. Note that these shapes cover the space of variations 
existent in the recorded motion. 
 
 



key shapes, we divide the face into multiple regions. The 
eye region and the mouth region are modeled separately. 
The resulting faces are blended with linear weights in the 
intermediate region. The affine motion extracted during 
the facial capture stage is used to produce the global head 
motion in the retargeted sequence. We did not estimate 3D 
head motion, only scaled 2D translation and rotation are 
applied to the output motion. 

The first video (included with submission) consists of a 
total of 386 frames, recorded at 30 frames per second. We 
used 10 key shapes for the eye region, and 12 key shapes 
for the mouth region. Figure 8(a) shows several sample 
frames from the input video sequence and the 
corresponding retargeting facial animation. Notice that the 
facial expression of the 3D model mirrors that of the input 
video sequence as desired. The second sequence shown in 
figure 8(b) consists of 396 frames. We used 8 key shapes 
for the eye region, and 14 key shapes for the mouth region. 
In this sequence, the motion of the eyes was also animated 
by treating the motion of the pupil as a separate region and 

modeled the eyes separately.  

6. Discussion and future work 
We have described a method of creating facial 

animation using a combination of motion capture and 
blendshape interpolation. A method for extracting a 
compact key-shape set that models motion variation was 
presented. Facial tracking data is then decomposed into a 
weighted combination of key shapes. These key weights 
encode the mouth shape, eye movements, motion, and 
style present in the original sequence. By transferring these 
weights to a new set of key shapes modeled by the artist, 
this characteristic motion is preserved. We show an 
example of this method in which the facial expressions of 
a talking actress in a video recording are retargeted to a 
different 3D face model.  

The method described here is very intuitive and 
straightforward, and the resulting facial animation is 
expressive. Although we chose a particular method to 
capture the facial motion, and a particular 3D face model 

 
 

 
 
Figure 8(a): Example frames from a video sequence that was retargeted onto a 3D face model.  
 

 

 
 
Figure 8(b): Example frames from another sequence retargeted onto the same 3D face model. This sequence uses a new set 
of key shapes that better match the range of expression that exists in this sequence. 
 
 



for retargeting, this process is flexible and different 
methods and models can be applied. For example, the 
input face data could come from a commercial motion 
capture system. Similarly, the output face model could be 
a 2D drawing instead of a 3D model.  

We are currently planning to investigate additional 
methods of face decomposition. The assumption of a linear 
interpolation function is limiting and could be generalized. 
In addition, better methods for extracting key shapes and 
determining key weights may exist.  

Learning the dynamics of facial expressions is also an 
interesting future direction. Most existing techniques use 
raw marker positions as input training data. The learned 
dynamics can not be applied directly to a new face model 
without some method of re-mapping. It would be 
interesting to use key weights as input to a training 
algorithm. This may provide a more flexible model of 
motion dynamics. 
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