
Fast Rendering of Subdivision Surfaces

Kari Pulli (Univ. of Washington, Seattle, WA) Mark Segal (SGI)

Abstract

Subdivision surfaces provide a curved surface representation that is useful in a
number of applications, including modeling surfaces of arbitrary topological type, fit-
ting scattered data, and geometric compression and automatic level-of-detail genera-
tion using wavelets. Subdivision surfaces also provide an attractive representation for
fast rendering, since they can directly represent complex surfaces of arbitrary topol-
ogy.

We present a method for subdivision surface triangulation that is fast, uses mini-
mum memory, and is simpler in structure than a naive rendering method based on di-
rect subdivision. These features make the algorithm amenable to implementation on
both general purpose CPUs and dedicated geometry engine processors, allowing high
rendering performance on appropriately equipped graphics hardware.
Key Words: subdivision surfaces, surface rendering.

1 Introduction
A subdivision surface results from iteratively refining a control mesh of arbitrary topology
by adding new vertices into the mesh and modifying the locations of existing vertices. In
the limit the mesh converges to a continuous surface. The control mesh usually gives a
rough polygonal approximation of the resulting surface; some methods even interpolate
the control mesh [4]. The first subdivision surfaces were based on quadrilateral meshes
and generalize biquadratic [3] and bicubic [1] tensor product surfaces (see [5] and [9] for
extensions). In addition to surface modeling, subdivision surfaces have been used for fit-
ting scattered data [6], and geometric compression and automatic level-of-detail genera-
tion using wavelets [8].

The goal of this work was to develop an efficient algorithm to implement Loop’s sub-
division scheme [7] with additions by Hoppe et al. [6]. Loop’s subdivision scheme is a
generalization of C2 quartic triangular B-splines, and is the simplest method known to lead
to tangent plane smooth surfaces. The control mesh consists of triangular faces and, like
subdivision surfaces in general, can have any topology. The resulting surface has the same
topology as the control mesh.

Figure 1 diagrams Loop’s subdivision process. Each iter-
ation splits all the edges in the control mesh and introduces
four new triangles for each original one. The location of
a new vertex is obtained by a weighted average of the sur-
rounding vertices. For example, when the edge BC is split,
the vertex m is introduced at location m = A+3B+3C+D

8 . Each
iteration also perturbs the locations of existing vertices by

m

A B

C D

Figure 1: Triangle subdivision.

taking a weighted average of the locations of the vertex and its immediate neighbors. It is
also possible at any level to directly calculate the limiting location of each control vertex
on the final surface, as well as the normal vector.

Hoppe et al. [6] extended Loop’s scheme by introducing subdivision rules that lead to
a piecewise smooth surface with features such as creases, corners, darts, and conical ver-



tices. The vertices and edges of the control mesh are typed and the weights in the subdi-
vision rule are chosen based on the vertex and edge types (the rules are collected in Ap-
pendix).

1.1 Rendering
Figure 1 suggests a simple method for rendering a subdivision surface: for each triangle,
create four new triangles, and compute the locations of the resulting (original and new) ver-
tices, then recurse. The control mesh can be stored in a general mesh data structure which
facilitates operations such as finding the neighbors for each vertex and edge. While this
algorithm is straightforward, it is inappropriate for implementation in dedicated graphics
hardware. Geometry engines (GEs) typically have limited memory and may be ill-suited
to linked-list traversal and recursion.

We describe a novel algorithm for subdivision surface triangulation that is fast, uses little
memory, and is easy to parallelize. These features make the method ideal for GE imple-
mentation. If GEs are available, then the host is freed from doing most of the work of
generating triangles on the subdivision surface. In addition, instead of sending the GEs
a long list of triangles, the host sends a compact representation of the surface, reducing
host-GE bandwidth requirements. Even an implementation that performs all the compu-
tations in the CPU, however, can reap the speed benefits of the simple indexing, iterative
processing, and small memory consumption of our algorithm.

1.2 Overview of paper
In the next section we describe the full algorithm for rendering subdivision surfaces. We
describe how to do the subdivision using a simple 2D array and present a sliding window
method for rendering the subdivision surface patches depth-first and in-place, thus saving
memory. We then describe how we find the submeshes that are sent to GEs and describe
some practical issues and limitations. Section 3 presents our results and compares sub-
division surface rendering to that of NURBS surface rendering. Section 4 discusses the
promise for fast rendering when other subdivision surface features are considered such as
automatic LOD selection and compression. An appendix describes the actual subdivision
rules.

2 Method
Our basic idea is to divide the subdivision of an arbitrary control mesh into two tasks. The
host manages the general control mesh and partitions it into small, regular patches. These
patches can then be rendered independently inside a GE using an efficient algorithm. The
patches are stored so that after partitioning the host need only consult a cache and send the
precomputed messages to the GEs to render more frames.

We have implemented the control mesh in the host as a half-edge data structure similar
to ones described in [11]. Although such a data structure is needed to describe an arbitrary
control mesh, we can use a simpler data structure to describe the regular surface regions
between the original control points. Our method avoids the overhead of explicitly repre-
senting concepts such as faces, edges, and neighbors, and stores only the vertices. The
vertices can have arbitrary dimensions, so each vertex can have color or texture coordi-
nates in addition to 3D space coordinates. The subdivision algorithm treats all dimensions
in the same fashion.



In order to preserve continuity between patches, the patches
need to overlap. Figure 2 shows two subdivisions of a patch
consisting of a single control triangle. In the first subdivision,
all the support vertices (the 1-neighborhood) of the patch are
needed both to split the edges and to update the (three) old ver-
tices in the patch. The neighboring triangles are subdivided
only enough to obtain a new layer of supporting vertices and
edges. In the following subdivisions this support layer shrinks
even closer to the patch.

Figure 2: The immediate
neighbors are needed.

We first describe how a 2D array can be used to subdivide pairs of control mesh trian-
gles. Then we present a depth-first method for performing these calculations in a memory-
efficient manner. We propose a method for finding the triangle pairs from the original con-
trol mesh, and finally describe the structure of the messages sent from host to GEs as well
as some limitations caused by limited resources.

2.1 Subdivision inside a GE
Subdivision in a 2D array

A 2D array is perhaps the simplest possible
data structure for describing points on a surface.
However, it can store effectively only regularly
tesselated surfaces of planar topology, so it is
not a suitable representation for the general con-
trol mesh. Inside the control triangles things are
simpler: the surface has planar topology and the
vertices are connected in a very regular fashion.
When we combine two triangles into a quadran-

level j level j+1

Figure 3: A 2D array stores vertices compactly.

gle, we obtain a natural mapping from subdivided triangle pairs to a square array. Figure 3
shows the array representation of the triangle pair after one and two subdivisions.
There is no need to keep any connectivity information to find the neighbors for a vertex,
since the neighbors are always in the adjacent array locations. With Hoppe’s extension to
Loop’s subdivision scheme, each edge and vertex can have an associated type. However,
we only need to store the original edge and vertex types, and the types can be deduced
from the location in the 2D array and the stored original types. The extra corner support
vertices are stored in an additional array.

With this scheme, it is easy to subdivide the triangles one level at a time. The size of the
array at an intermediate level j is (2j +3)�(2j+3). At the final level we calculate the vertex
coordinates and normal vectors on the final surface, store them in a (2 j +1)� (2j +1) array,
and render them as triangle strips. An exception occurs if the (diagonal) edge between
the original triangles is sharp. In that case the vertices on the diagonal have two normal
vectors, so we need one more element for each row for the extra normal, and each row must
be rendered as two triangle strips. The number of subdivision levels is decided beforehand
by the application and is a tradeoff between execution time and rendering accuracy.

The sliding window method
The simple method of subdividing a triangle pair one level at a time, even with a clever

implementation, uses memory on the order of the size of the output. Since each level



of subdivision quadruples the number
of triangles, we could only implement
a very modest number of levels (e.g.,
2) in a GE. Instead, we use a depth-first
approach that incrementally calculates
the vertex coordinates, renders the tri-

level j level j+1

Figure 4: Initialization of the depth-first algorithm.

angles as soon as they are calculated, and reuses memory. This technique enables us to go
several levels deeper than the naive approach with the same amount of memory.
It turns out that it is sufficient to store only a window of three rows of the 2D array for each
level, plus two rows for the final vertex coordinates and normal vectors. In the course of the
algorithm we slide the window down the 2D arrays. Figure 4 illustrates the initialization
phase of the algorithm. On the left side we have the three first rows of the triangle array
at subdivision level j.

We obtain the first row support vertices at level j + 1 (the right image) by splitting the
diagonal and vertical edges between the first and second row vertices at level j. Similarly,
the second row in the right image is obtained by splitting the horizontal edges and updat-
ing the vertices in the left image. The third row is obtained by splitting the vertical and
diagonal edges connecting the second and third rows at level j. We initialize the three-row
arrays a level at time, and at the final level we calculate the final coordinates and normal
vectors for one row.

After the top rows have been initialized, we begin the recursive part of the algorithm. We
introduce the next row of vertices from the original message. Figure 5 (the upper arrow)
shows how a new row at level j provides the neighbors needed for splitting the horizontal
edges and updating the vertex coordinates in the middle row. The new and updated vertices
become the new low row at level j +1, and they are written over the old highest row at that
level. We can now repeat the same going from level j + 1 to j + 2.

The new row at level j also enables us to split the diagonal and vertical edges connect-
ing the level j low and middle rows, which produces yet another new row for level j + 1
(the lower arrow in Fig. 5). In this manner, we write new rows over old ones and descend
towards the final subdivision level. There, with each new row, we calculate the final co-
ordinates and normals for the middle row vertices and render another triangle strip.

level j level j+1

Figure 5 Introduction of the lowest row on the left enables us to calculate two new rows on the
right. The bars on the right denote the extent of the window before, after the split of the horizontal
edges, and after the split of the vertical and diagonal edges.

Let us calculate the space and time requirements of our method. We denote by n the num-
ber of 3D points (with normal vectors) that running the algorithm for l levels produces. The
length of the rows at the finest level is approximately

p
n, and since the rows at a coarser

level are only half as long as at the next finer level, the algorithm uses O(
Pl

i=0

p
n 1

2i ) =
O(
p

n) memory. Each vertex is calculated only once, the calculation takes constant time,



and since there are only about one quarter as many vertices at a coarser level, the algorithm
uses O(

Pl
i=0 n 1

4i ) = O(n) time.
SUBDIVIDE(level, last)
BEGIN
IF (level != last) THEN

split horizontal edges, update vertices
SUBDIVIDE(level+1, last)
split vertical and diagonal edges
SUBDIVIDE(level+1, last)

ELSE
calculate final positions and normals
render a triangle strip

ENDIF
END

Here is pseudocode for the depth-
first algorithm. Although the algo-
rithm is not tail recursive, we can
unroll the algorithm and execute it
iteratively since we know the max-
imum number of subdivision levels
(which is dictated by the availabil-
ity of resources).

2.2 Finding triangle pairs
As we have already said, we render the control triangles in pairs. The host needs to par-
tition the control mesh into pairs of neighboring triangles, which are then rendered in the
GEs. A simple, linear time algorithm would just remove a triangle along with a neigh-
bor, until no triangles remain. This simple approach, however, is likely to produce several
triangles whose neighbors have already been paired with other triangles, which wastes re-
sources.

Intuitively, we want to avoid running into a dead end where some of the triangles end
up without a unique pair. Therefore, we want to nibble away pieces from the boundary of
the mesh so it remains as compact as possible in the sense that the number of the boundary
edges is minimized. We also want to avoid breaking the mesh into disconnected parts.

Our algorithm proceeds as follows. Each triangle is inserted into one of four priority
sets depending on how many free (unpaired) neighbors it has (see Fig. 6). Triangles with
zero or one free neighbors have the highest priority (3), and the triangles with three free
neighbors have the lowest priority (0). Of the remaining triangles (two free neighbors), the
ones with both neighbors in set 0 have lower priority (1). The algorithm chooses a triangle
from the highest nonempty set and pairs it with the neighbor of highest priority. The paired
triangles are removed from the sets, and their remaining neighbors are promoted to a higher
priority set (from 1 and 2 to 3, from 0 to 1). Additionally, all the triangles in 1 with a free
neighbor not in 0 are promoted to set 2.

The algorithm has as many cases as we have priority sets: let’s analyze each of the cases
(see Fig. 7). If the highest nonempty set is 3 and the triangle under consideration does not
have any free neighbors (Fig. 7(i)), we can remove it. We will, however, pair this triangle

set

3

2

1

0

0 or 1

3

2,one of them not in 3

2,both of them in 3

number of free
neighbors

Figure 6 The sets for
pairing triangles.

a b
a

a

b

c
a

b

a b

Set 3

 (ii)

Set 3

 (i)

Set 2

 (iii)

Set 1

 (iv)

Set 0

 (v)

Figure 7 The different cases of the triangle pairing.



with a dummy mate and make a note that only this triangle of the pair will be actually
rendered. The number of boundary edges is reduced by 3, and this choice does not break
up the mesh.

If the current triangle (a in Fig. 7(ii)) has one neighbor we pair it with that neighbor (b).
This choice is forced. Though it can break up the mesh, it will not produce a suboptimal
triangulation: it could be that b was needed as a mate of some other triangle in the optimum
pairing, but if we don’t pair it, a will be left alone. The number of boundary edges may
stay the same, or is reduced by up to 4 edges.

If the highest nonempty set is 2 (Fig. 7(iii)), one of the neighbors of the current triangle
a must also belong to 2 (in this case b, while c belongs to set 0). In the example, pair-
ing a with b just chips off a corner of the mesh. The number of boundary edges remains
the same. Here we have to be careful, though, since it is possible to disconnect the mesh.
Therefore, if there are any other triangles in the set 2 that do not disconnect the mesh, they
should be given precedence.

If the highest nonempty set is 1 (Fig. 7(iv)), the mesh has rather regular structure at the
boundary: each triangle with a boundary edge will have two neighbors that have only a
boundary vertex. In the example pairing a with b would directly lead to a cascade of pair
removals (the neighbor of b is promoted to set 3) which would peel off a layer of triangles
from the mesh boundary. The number of boundary edges grows by 2, and the mesh cannot
be disconnected.

The case where the highest nonempty set is 0 (Fig. 7(v)) can only occur in the beginning
if the mesh forms a closed surface. The number of boundary edges increases to 4, and the
mesh remains connected.

Figure 8 gives two examples of how the algorithm proceeds. In the left mesh, all the
triangles with a border edge belong to set 2, while the others belong to set 0. We start by
pairing two triangles marked “1”, which promotes one of triangles marked “2” to set 2.
They form the next pair, which now promotes one of the triangles marked “3” to set 3,
and so forth. In the mesh on the right we always remove triangle pairs such that at least
one of the triangles is left with only one free neighbor.

1 12
2

3

3

5

5

6

6
8

8

9
9

7

7

4

1
1

2
2

3
3

4
4

5
5

6
6

7
7

8
8

9
9

4

Figure 8 Pairing of triangles in a mesh.

...

... ...

...

Figure 9 Two triangles and
their immediate neighbors.

2.3 Some implementation issues
Host-GE interface
Figure 9 illustrates the information in the message that is sent to the GEs for rendering two
triangles. The message comprises two parts: a fixed-length part and a variable-length part.
The fixed-length part contains the vertex coordinates along with vertex and edge types for
the triangle pair (the shaded triangles) and the neighboring triangles (the four unshaded tri-
angles). Additional information includes the dimension of vertex coordinates and whether



the second triangle should be rendered or is a dummy. The variable-length part accommo-
dates the variable valence of the control mesh vertices.

The overhead of subdividing the neighbors
When looking at Fig. 2 it might seem that we are doing more work subdividing the im-
mediate neighbors than the actual patch. A closer look reveals, however, that after a few
subdivisions the space and time spent on the support edges and vertices is but a small frac-
tion of the real work.

A larger patch size with more control triangles would mean less duplicated work with
the support edges. However, that would destroy the simple square array structure and the
patch would not be guaranteed to be topologically planar. Also, the patch size should be
constant to obtain even load balancing for maximum performance in the case of several
GEs.

Limitations
Due to the limited memory, there has to be a maximum number for the levels of subdivision
we can process in a GE. If the user wants more subdivisions, the first levels can be done
in the host, and the results then sent to GEs.

The memory limitations also prevent us rendering meshes with arbitrarily large vertex
valencies. We currently support a combined valency of 40 for the four corner vertices,
though the choice is arbitrary and could easily be made somewhat larger.

3 Results
We implemented this algorithm as an experimental extension to OpenGL for the Silicon
Graphics Onyx Reality Engine. The host stores the general control mesh using a half-edge
data structure, chops the mesh into triangle pairs, and sends the pairs (with their neighbors)
to GEs. The GE microcode (unoptimized C) subdivides the triangle pairs and renders them
using the existing OpenGL code for rendering triangle strips.

3.1 Performance measurements
We present some performance measurements comparing subdivision surface and NURBS
versions of the Utah teapot and a cylindrical car part with holes (see Fig. 10). In the follow-
ing table, RE refers to an SGI Onyx RE2 with 12 geometry engines operating in parallel,
while Indigo refers to an SGI Indigo2 XL on which all subdivision work is done in the host.

All subdivision surface times include finding triangle pairs. The additional control points
for the “car part” NURBS surface indicate trim curve points; measured times include trim
region tesselation. The two sets of subdivision surface timing numbers are for 2 and 3
levels of subdivision. The triangle rates of the two examples seem typical: other complex
surface models (e.g., head and distributor cap) had very similar rates.

The results show that even our unoptimized implementation was faster than the OpenGL
NURBS, both for a GE microcode implementation (RE) and when the subdivision was
performed completely on the host (Indigo). In addition, for a surface with complicated
local geometry (see color plate) a NURBS rendering would require more triangles to ob-
tain a comparable visual quality. The reason is that the subdivision surface representation
concentrates more triangles in areas of higher detail; this effect is difficult to achieve with
NURBS renderers.

The triangle rate increases with the number of subdivision levels. There seem to be three



Subdivision surfaces
model control triangles triangles/sec (1000s)

points RE Indigo
teapot 157 4960 147 26

19840 207 31
car part 126 3264 157 26

13056 212 39

NURBS surfaces
teapot 512 8740 141 24
car part 1143+189 5608 80 22

Figure 10 Subdivision surfaces: the
Utah teapot and a cylindrical car part
with holes.

reasons: with more subdivision levels, the setup and communication costs are amortized
over a larger number of triangles, more of the computed triangles are inside the control
triangles where the subdivision algorithm is most regular, and individual triangle strips
become longer.

3.2 Real time editing
We implemented a simple surface editor that allows us to move the control vertices around
and change the types of the control vertices and the connecting edges. The fast rendering
allows interactive editing of the control mesh even for quite complicated objects (consist-
ing of hundreds of control triangles) and gives real-time feedback by showing the resulting
subdivision surface. The color plate shows a model of a head and the result of a couple of
minutes’ worth of editing.

3.3 Comparison with NURBS
Subdivision surfaces possess several potential advantages over NURBS patches. The most
obvious advantage is that a single subdivision surface can model an object of any topology,
whereas objects with complicated shapes usually need to be covered by several NURBS
patches. The color plate shows such a surface. With a single continuous surface there is
no need to stitch patches together to avoid cracks or to trim patches to avoid surface in-
terpenetration. Further, the control points of a NURBS patch need to be in a topologically
regular 2D lattice, whereas the subdivision surface control mesh gives more freedom about
the connectivity of the control points.

4 Discussion
4.1 Compression in communication
Rendering a (piecewise) smooth surface accurately by polygonal approximation requires a
large number of polygons. Our method not only relieves the host from the task of tesselat-
ing the surface into a set of triangles, but it also reduces communication between host and
GEs. Let’s assume that the user wants to subdivide the control mesh four times to achieve
a very high geometrical accuracy. Every triangle in the control mesh is subdivided four
times, yielding 44 = 256 triangles. When these triangles are rendered, for example as tri-
angle strips, we still have to send each vertex twice (on average) to the graphics hardware.
A single subdivision message, however, sends typically only 10-15 vertices (two triangles
and their neighbors), along with some type information, but produces 512 triangles.

Subdivision surfaces combined with wavelet analysis may yield even greater compres-
sion in communication [2]. A multiresolution representation of the control mesh would
allow sending larger submeshes compactly.



4.2 Level-of-detail control
In order to obtain interactive rendering speeds, automatic level-of-detail (LOD) control is
essential. With subdivision surfaces, there is no need to store or create alternate descrip-
tions of geometry at different levels of detail. The LOD control is built in: one parameter,
the number of subdivision levels, dictates how detailed the rendering is. The color plate
shows a teapot at four different levels of detail.

It is quite easy to obtain a continuous LOD control by interpolating between subdivision
levels. This is important for eliminating “jumping” of the surface, e.g., when one zooms
in to an object to display more detail. Suppose we want to display the object at subdivision
level 3.5. Let us call the vertices introduced at level j even and vertices at level j + 1 odd.
We would then calculate the surface points at level 4, use the average of the parent vertices
(even) for each odd vertex as the starting point, and the actual location as the ending point.
The non-integer subdivision levels between 3 and 4 can now be obtained by interpolating
between the starting and ending points.

It is also possible to render different control mesh triangle pairs at different levels of
subdivision. A naive implementation would leave cracks between patches, but with a bit
of extra information, the cracks can easily be filled. Let’s assume that while rendering the
current patch we know that the patch on the left was rendered with one fewer levels of
subdivision. We know that each leftmost vertex of the even rows corresponds to a vertex
on the neighboring patch. Introducing a new triangle consisting of the even, odd, and the
next even vertex will fill the crack. In general, if there are more levels between the patches,
the crack filling polygons consist of the vertices shared by the patches and of all the finer
level vertices between them.

4.3 Conclusions
We have presented an algorithm for rendering Loop’s subdivision surfaces with Hoppe’s
extensions that uses very little memory and is efficient to execute. A control mesh of arbi-
trary topology is efficiently divided into patches consisting of triangle pairs and their im-
mediate neighboring vertices. The patches can be rendered separately and they are about
the same size, which makes the algorithm attractive for parallel implementation if several
GEs are available. Our algorithm works also for any other subdivision scheme with the
same support of the subdivision masks and can be extended in a straightforward manner
to triangle-based schemes with larger support.

Subdivision surfaces have several advantages over traditional surface descriptions, such
as NURBS. Arbitrarily complicated objects can be represented by a single surface rather
than a collection of patches; the control mesh is quite natural to edit by designers and pro-
vides both smooth surfaces and sharp features; level-of-detail control is supported in a nat-
ural way; and our implementation outperformed the OpenGL NURBS versions of compa-
rable surface models.

Acknowledgements
We would like to thank Tony DeRose, Hugues Hoppe, and Paul Beame for useful discussions, and Ziv Gigus,
David Blythe, Ben Zhu, Bob Drebin, Erik Lindholm, and David Immel for their help in implementing this method
for Reality Engine.

Appendix
The edges and vertices in the control mesh can have the following types. An edge can be either smooth (contin-
uous surface normals) or a crease (discontinuous surface normals). A vertex can be either smooth, dart, crease,



or corner, depending whether it has zero, one, two, or more incident crease edges, respectively. A crease vertex
is regular if there is exactly two smooth edges between the two creases, otherwise it is nonregular. Additionally,
any vertex can be tagged as a conical vertex.

Figure 11 presents the masks used for both subdividing the control mesh and calculating the final positions
and normal vectors at each vertex location. A new value is obtained by an affine combination of a vertex and its
neighbors, and the mask gives the appropriate weights. For example, a new vertex position can be obtained by
v0

0 =
Pn

i=0
civi=
Pn

i=0
ci , where v0 is the old vertex position and the other vi’s are the neighbors. The following

table gives the masks for subdivision (S) and final locations (F)1. In the formulas �0i is 1 if the edge c0-ci is a
crease, 0 otherwise, a(n) = 5=8 � (3 + 2 cos(2�=n))2=64 and b(n) = (3 + 2 cos(2�=n)=8.

vertex type c0 ci

S smooth or dart n=a(n) � n 1
S crease 6 �0i
S corner 1 0
S conical b(n) 1
F smooth or dart 3n/(8a(n)) 1
F regular crease 4 �0i
F nonregular crease 3 �0i

c4

a

b

c d

c3

c0
c2

c1cn wn

w0

w1
w2

w3

Figure 11 The subdivision masks.

The center mask is used when subdividing edges (between a and b). If the edge is smooth or if either of the
vertices (a or b) is a dart, the weights fa,b,c,dg are f3,3,1,1g. If the edge is a crease and one of the edge vertices
(a) is a regular crease while the other (b) is either non-regular crease or corner, the weights are f5,3,0,0g. In the
remaining cases the weights are f1,1,0,0g.

The normal vectors can be calculated by taking the cross product of two surface tangent vectors u1 and u2. For
non-crease vertices, we use the left mask. The center weight c0 is 0 for both u1 and u2, while ci = cos(2�i=n) for
u1 and ci = cos(2�(i � 1)=n) for u2. For crease vertices we use the right mask (the fat line denotes the crease),
where u1 goes along and u2 across the crease. The u1 weights are w1 = 1, wn = �1, other wi’s are 0. For a regular
crease vertex, u2 weights fw0, ..., w4g are f�2,�1, 2, 2,�1g. For a non-regular crease vertex, u2 weights are,
for n � 4, w0 = 0, w1 = wn = sin �, and wi = (2 cos � � 2)(sin(i � 1)�) for 1 < i < n, where � = �=(n � 1);
for n = 3, fw0, ..., w3g are f�1, 0, 1, 0g; for n = 2, fw0, w1, w2g are f�2, 1, 1g.

References
[1] E. Catmull and J. Clark. Recursively generated b-spline surfaces on arbitrary topological meshes.

Computer-Aided Design, 10(6):350–355, September 1978.

[2] M. Deering. Geometry compression. In SIGGRAPH ’95, pages 13–20, August 1995.

[3] D. Doo and M. Sabin. Behaviour of recursive division surfaces near extraordinary points. Computer-Aided
Design, 10(6):356–360, September 1978.

[4] N. Dyn, D. Levin, and J. Gregory. A butterfly subdivision scheme for surface interpolation with tension
control. ACM Transactions on Graphics, 9(2):160–169, April 1990.

[5] M. Halstead, M. Kass, and T. DeRose. Efficient, fair interpolation using catmull-clark surfaces. In SIG-
GRAPH ’93, August 1993.

[6] H. Hoppe, T. DeRose, T. Duchamp, M. Halstead, H. Jin, J. McDonald, J. Schweitzer, and W. Stuetzle.
Piecewise smooth surface reconstruction. In SIGGRAPH ’94, July 1994.

[7] C. Loop. Smooth subdivision surfaces based on triangles. Master’s thesis, Department of Mathematics,
Univ. of Utah, 1987.

[8] M. Lounsbery. Multiresolution analysis for surfaces of arbitrary topological type. PhD thesis, Dept. of
Computer Science and Engineering, Univ. of Washington, September 1994.

[9] A. H. Nasri. Polyhedral subdivision methods for free-form surfaces. ACM Transactions on Graphics,
6(1):29–73, January 1987.

[10] J. Schweitzer. Analysis and appliction of subdivision surfaces. PhD thesis, Department of Computer Sci-
ence and Engineering, Univ. of Washington (in preparation), 1996.

[11] K. Weiler. Edge-based data structures for solid modeling in curved-surface environments. IEEE CG&A,
5(1):21–40, January 1985.

1Formulas from [6], except for conical vertices from [10].



Left top: a control mesh and the resulting subdivision surface. Different
colors denote different vertex and edge types.
Center top: A head before and after some simple edits.
Right top: Another example of a complicated object with a single surface.
Bottom: A teapot with 0, 1, 2, and 3 subdivisions. Note that the visual
accuracy is already very good with only 2 subdivisions.
(Pulli and Segal)


