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Figure 1: We learn an efficient and robust 3D descriptor for matching local geometry. Specifically, we focus on partial,
noisy 3D data obtained from commodity range sensors. On the left, we show three sample pairs of geometric fragments
from a scan whose features are matched with our method. We can use these matches of sparse geometric features in order
to obtain a 3D reconstruction using a simple (geometric-only) sparse bundle adjustment formulation.

Abstract

Establishing correspondences between 3D geometries is
essential to a large variety of graphics and vision applica-
tions, including 3D reconstruction, localization, and shape
matching. Despite significant progress, geometric match-
ing on real-world 3D data is still a challenging task due
to the noisy, low-resolution, and incomplete nature of scan-
ning data. These difficulties limit the performance of cur-
rent state-of-art methods which are typically based on his-
tograms over geometric properties. In this paper, we in-
troduce 3DMatclE| a data-driven local feature learner that
jointly learns a geometric feature representation and an
associated metric function from a large collection of real-
world scanning data. We represent 3D geometry using ac-
cumulated distance fields around key-point locations. This
representation is suited to handle noisy and partial scan-
ning data, and concurrently supports deep learning with
convolutional neural networks directly in 3D. To train the
networks, we propose a way to automatically generate cor-
respondence labels for deep learning by leveraging exist-
ing RGB-D reconstruction algorithms. In our results, we
demonstrate that we are able to outperform state-of-the-
art approaches by a significant margin. In addition, we
show the robustness of our descriptor in a purely geometric
sparse bundle adjustment pipeline for 3D reconstruction.

L All of our code, datasets, and trained models are publicly available:
http://3dmatch.cs.princeton.edu/

1. Introduction

Matching 3D geometry has a long history starting in the
early days of computer graphics and vision. With the rise of
commodity range sensing technologies (e.g., the Microsoft
Kinect), this research has become paramount to many appli-
cations including 3D scene reconstruction, localization, and
object retrieval. However, establishing correspondences be-
tween local geometric features in low-resolution, noisy, and
partial 3D data is still a challenging task. While there are a
wide range of low-level hand-crafted geometric feature de-
scriptors that can be used for this task, they are mostly based
on signatures derived from histograms over static geometric
properties [18}[19] 23], which are often unstable or inconsis-
tent in real-world partial scans. For instance, state-of-the-art
3D reconstruction methods [6] note the unsatisfactory per-
formance of current geometric matching algorithms for the
registration of fused fragments, thus requiring significant al-
gorithmic effort to deal with outliers and to establish global
correspondences.

In response to these difficulties, we introduce 3DMatch,
a data-driven model that learns a robust, local geometric
feature descriptor specifically for partial 3D data. We pro-
pose a unified 3D convolutional neural network (ConvNet)
with an architecture particularly designed for matching lo-
cal geometry. As shown in Figure 3] our model jointly
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learns a geometric feature representation and an associated
metric function from a large collection 3D volume corre-
spondences gathered from real-world scanning data.

To enable the use of 3D ConvNets, we encode 3D geom-
etry using a truncated distance function (TDF). his regular
structure is amenable to 3D convolution and other kernel
operations used in the ConvNet, thus allowing the model to
learn geometric shape representations directly in 3D space.
Moreover, this form of encoding allowed us to aggregate
the information from multiple depth frames to reduce sen-
sor noise, and is aligned with common representations for
3D reconstruction [8]. In order to capture meaningful sig-
nal within the large space of geometric shapes, we train our
descriptor only on the local geometry around 3D Harris key-
points.

Training the 3D ConvNets requires labels for key point
correspondences. We propose to use of existing RGB-D
reconstruction algorithms to obtain good 3D alignment re-
sults in order to generate the training labels. From the re-
construction of these scans, we know the exact world-space
locations for feature points from different camera views,
which allows us to automatically generate a large amount
of ground truth correspondences without manual annota-
tion. As a result, we obtain globally-consistent keypoint
pairs, and we are able to correlate their respective partial
geometries with each other. Since each camera view yields
a different occlusion pattern, this provides partial-to-partial
ground truth matches.

A key insight of this process is that we can escape the
feature quality used in the training process (i.e., for 3D re-
construction). For instance, a training sequence may only
have a small number of matched features. But once it is
reconstructed successfully, it can generate many more key-
point correspondences; even for the areas where the original
feature matching fails.

Our central contribution is the data-driven 3D keypoint
descriptor (3DMatch) for robustly matching local geometry.
We demonstrate the performance of our method in a thor-
ough evaluation against state-of-the-art geometry match-
ing and fragment alignment methods, where we outperform
existing approaches by a significant margin. For evalu-
ation and future study, we construct several benchmarks
for matching local 3D geometry captured from real-world
RGB-D scanning data. Furthermore, we demonstrate the
benefits of our robust descriptor on a high-level applica-
tion; even with a simple, unoptimized, and geometry-only
sparse bundle adjustment formulation, we are able to ob-
tain globally-consistent 3D reconstructions in challenging
3D environments (see Figure|T)).

2. Related Work

Handcrafted Geometric Descriptors Many handcrafted
geometric descriptors have been proposed in the last

decade. Examples include Spin Images [18], Geometry
Histograms [12]], and Signatures of Histograms [29]. Many
of these descriptors are now available in a unified frame-
work, the Point Cloud Library [3]]. A popular state-of-the-
art method in PCL is point feature histograms (PFH), which
are based on the relationship of all surface normals and cur-
vature estimates [26]. Aiger et al. [2] show that pairs of
fragments can be aligned by finding sets of four congruent
points (4PCS); Mellado et al. [22] extended this work to
Super 4PCS.

While these methods have made significant progress,
they still struggle to handle noisy, low-resolution, and
specifically incomplete data from commodity range sen-
sors. Since handcrafted geometric descriptors are mostly
based on signatures derived from histograms over static ge-
ometric properties, they are often unstable or inconsistent
in partial scans. To handle the low precision of state-of-the-
art geometric matching methods, Choi et al. [6] designed
a method for 3D reconstruction to specifically handle mis-
matched geometry in a robust optimization procedure. The
goal of our work is to provide a new type of local geomet-
ric feature that can provide much more robust and accurate
matching results.

2D Feature Learning for Images The recent availability
of large-scale labeled image data has opened up new op-
portunities to use data-driven approaches for designing 2D
image descriptors. For instance, Trzcinski et al. [31]] and Si-
monyan et al. [28]] learn a non-linearity mapping from inten-
sity patches to image feature descriptors under a pre-defined
metric such as the Euclidean or Mahalanobis distance. In
addition, Jia and Darrell [17], and Jain et al. [[16] demon-
strate that feature learning can be extended further by learn-
ing a feature comparison metric in addition to the feature
descriptor. More recently, it has been proposed to use a deep
convolutional neutral network to jointly learn the descrip-
tor and the comparison metric for local 2D RGB patches
[38L113]. Inspired by the success of these 2D preprints, we
design a similar network structure with a unified feature and
metric learning architecture that operates over 3D data to
learn 3D keypoint correspondences for matching local ge-
ometry. The main objective of the network is to regress an
end-to-end, keypoint-to-feature mapping and feature met-
ric that can robustly establish geometric correspondences
between viewpoint variant, noisy, and partial 3D scanning
data.

3D Feature Learning for CAD Models Aside from
learning 2D features, there has also been rapid progress
in the use of deep convolutional neural networks on three
dimensional data. For example, 3D ShapeNets [34] in-
troduced 3D deep learning for modeling 3D shapes, and
demonstrated that powerful 3D features can be learned from



a large collection of 3D CAD models. Additionally, several
recent works also extract deep learning features
from 3D data for the task of object retrieval and classifi-
cation for CAD models. While these works are inspiring,
their focus is centered on extracting global features from
complete 3D CAD models instead of local geometric fea-
tures from real-world RGB-D scanning data, the latter of
which is the goal of our 3DMatch descriptor.

3. Geometric Representation

The goal of geometric matching is to establish ro-
bust correspondences between ’fragments’ of 3D geometry.
While there are many possible ways to obtain and represent
geometry, we focus on a realistic case where our primary
source of input data is made up of depth frames collected
from (but not limited to) commodity range sensors, such as
the Microsoft Kinect or Asus Xtion Pro. By default, these
depth maps are not aligned to any global coordinate system,
and for our purposes, we do not use any color information
— focusing only on the information available from the depth
channels.

Our 3DMatch descriptor performs geometric keypoint
matching by comparing uniformly-sampled distance fields
surrounding points of interest. In Section [3.1] we describe
how we convert scanning data into geometric fragments and
how we represent these fragments as distance fields. In Sec-
tion[3.2] we describe how we extract points of interest from
these distance fields.

3.1. Fragment Volume Representation

Our method operates on geometric fragments, each com-
posed of N consecutive depth frames fused together into a
distance field. When N = 1, each fragment contains only
a single frame. As N becomes larger, each fragment is able
to integrate more information from multiple depth frames to
smooth sensor noise and to increase the fragment’s field of
view so that it contains more geometric information. How-
ever, we also keep IV small enough so that a standard lo-
cal alignment method can easily provide high-quality frag-
ments without accumulating too much drift error. In our
case, we align all frames in a fragment using a dense point-
to-point and point-to-plane iterative closest-point method
(ICP) [4] with N = (30, 50). If we cannot find a valid intra-
fragment alignment, we discard the fragment due to a lack
of geometric features (e.g., a planar wall). With the relative
transformations between the frames of a fragment obtained
from local alignment, we use volumetric fusion [8] to fuse
the frames’ depth data into a shared voxel volume that is
anchored to the first camera frame of the fragment. This
provides us with a truncated signed distance field (TSDF),
which is the same representation that is generated by mod-
ern real-time reconstruction pipelines.

Figure 2: We use Harris corner responses to detect key-
points. We discard keypoints whose local regions are not
observed by enough frames (blue). Only well-observed
keypoints (red) and their local regions are used to train
3DMatch.

Using a uniformly-sampled distance field representation
for encoding 3D data has significant advantages: the dis-
crete but regular structure allows for kernel operations, such
as 3D convolutions, to be performed over the data, which is
paving the way for gradient-capturing kernels that can be
regressed by deep learning architectures. Moreover, com-
pared to a 2D encoding of shape using depth patches, a vox-
elized 3D representation preserves real-world spatial scale
information, is invariant to projective scaling, and naturally
provides grounds for learning the invariance of spatial rota-
tion.

For our purposes, we ignore the sign of the TSDF, and
detect and compute features on the truncated distance field
(TDF). Since we are training a gradient-sensitive convolu-
tional neural network architecture (described in Section 4),
we want to minimize the confusion of the lower level ker-
nels by constraining the heaviest gradients to be exclusively
located over the detected surface areas. By removing the
sign of the TSDF, we no longer distinguish between unob-
served and observed free space. Consequently, the highest
distance field gradients are now concentrated around sur-
faces rather than in the shadow boundaries of the camera
viewing frustum.

3.2. Keypoint Volume Representation

Once we have generated a fragment and its TDF, we de-
tect points of interest within the fragment and extract their
local TDF regions. Our goal is to focus the descriptor on
geometrically discriminative regions of a the environment.
We find that the granularity of regions around keypoints
(radius of ~ 15cm) is a reasonable choice for typical in-
door environments: it is local enough to guarantee a certain
amount of contextual coverage while also being discrimina-



tive enough for capturing sufficient geometric detail.

Following an approach used in 3D object retrieval [20],
we use 3D Harris corner responses to determine keypoint
locations [[15]. For each voxel adjacent to the mesh surface,
we determine the covariance matrix C of its neighborhood
normals n;, given by the gradient function of the TDF; the
corner responses 7; are then given by r; = det(C;) — 0.04 -
trace(C;) - trace(C;). On the set of all corner responses, we
perform a non-maximum suppression to reduce the number
of samples and apply an iterative adjustment to move the
remaining samples to their local stable positions. If the in-
formation is available, we also filter out keypoints whose
local regions are not observed by enough frames. We then
use the remaining sparse set of keypoints and their local
TDF volumes as input to our descriptor. Figure 2] visualizes
the detected keypoints on a fragment. In terms of speed, the
complete Harris keypoint detection and extraction process
over a 512 x 512 x 1024 TDF voxel volume of a geometric
fragment takes only a few seconds using a single thread on
an Intel Xeon Core E5-2699 CPU clocked at 2.3 GHz.

4. Correspondence Generation for Training

The most effective deep learning algorithms are super-
vised, which implies that enormous amounts of training
data with ground truth labels is required. While it is easy
to obtain data, gathering the associated labels typically
requires a significant amount of manual effort (e.g., ob-
ject annotations for image recognition on ImageNet [10]).
Since our aim is to learn correspondences between key-
points, manual ground truth annotations would involve la-
beling millions of keypoint pairs between geometric frag-
ments [37]]. Fortunately, existing RGB-D reconstruction al-
gorithms are mature enough to accurately align and fuse
depth frames, even when with weak baseline features. By
leveraging the reconstruction results from [9]], we can auto-
matically generate point-to-point correspondence labels on
a large scale and without manual effort.

To this end, we use RGB-D scans where the same scene
is recorded multiple times with different camera trajecto-
ries and varying viewpoints. In order to obtain globally-
consistent reconstructions, we utilize state-of-the-art sparse
and dense bundle adjustment that consider on both RGB
and depth data. We then sample TDF voxel volume pairs
between different views to generate labeled training data,
which allows us to train our descriptor and metric network.
A key component of our method is that we can escape the
feature quality used in the original reconstruction process.
For instance, a training sequence may be reconstructed with
only a few, weak features. But once it is reconstructed suc-
cessfully, it provides many more keypoint correspondences,
even for the areas where the original feature matching fails.

In the context of this work, we generate training labels
from the following real-world indoor RGB-D data sets:

The Microsoft 7-Scenes Dataset contains a collection
of tracked RGB-D frames over 7 different scenes [27].
‘Ground truth’ tracking is performed using ICP and frame-
to-model alignment with respect to a dense 3D reconstruc-
tion represented by a truncated signed distance volume ob-
tained using KinectFusion [23]]. Our training split uses the
sequences from six of these scenes, while the testing split
contains the seventh scene.

The Analysis-by-Synthesis Dataset contains a collec-
tion of camera-tracked RGB-D frames over 12 different
scenes [32]. The dataset is similar to the 7-scenes; however,
the reconstruction is globally aligned with [9]. Our training
split uses the sequences from 10 of these scenes, while the
testing split contains the other two scenes.

These datasets were chosen because they offer various
viewpoints of the same scene from a variety of different
angles. This provides realistic samples of the distribution
of possible scanning conditions for any given keypoint. In
other words, since local keypoint volumes are oriented with
respect to the camera frames, the training data from these
datasets contain correspondences between keypoints whose
local volumes have properties that reflect viewpoint changes
and occlusions. The main idea is to train the descriptor to
generalize over this kind of complexity, which is most com-
monly found in real-world partial 3D data.

At 30 frames per fused fragment, our collective frag-
ment dataset features over 1,600 fragments for training and
over 500 fragments for validation. A typical fragment con-
tains 200 to 500 Harris keypoints. Using the pseudo ground
truth extrinsics provided from the reconstruction systems
of the training datasets, we establish ground truth corre-
spondences between keypoints of the same scene by relat-
ing their world coordinates. Pairs of keypoints within Scm
of each other are labeled as matches, while keypoint pairs
further than S5cm away from each other are labeled as non-
matches. For our purposes, the Scm search radius threshold
allows the algorithm to tolerate minor alignment errors from
the provided ground truth extrinsics of the datasets, while
also remaining flexible to minor translation differences be-
tween Harris keypoints. Our total pool of training data (a
pair of keypoint volumes per data point) contains millions
of unique volume comparisons.

Although it is feasible to train a descriptor on correspon-
dences between keypoints that can be situated at any loca-
tion near the detected surface regions, we specifically chose
to train on Harris keypoints (see Section [3.2) to focus the
descriptor on learning over features that have an adequate
amount of discriminative geometry. Despite this restriction
in the training data, we show through experiments (see Sec-
tion [6.1)) that our model is capable of generalizing to accu-
rately determine correspondences between randomly sam-
pled surface points.
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Figure 3: Matching two keypoints from different geometric fragments using 3DMatch. For each keypoint, its local 3D region
is extracted from the TDF volume of its fused fragment. This 3D region is then passed through the the feature network to
return a feature vector (green). To compare two keypoints to each other, their corresponding feature vectors are concatenated

and fed to the metric network which returns a similarity score.

5. Geometric Matching Network

Inspired by the recent success of learning feature repre-
sentations and metric functions on 2D [13]], we design our
3DMatch descriptor as a unified deep neural network archi-
tecture with two core components: a feature network that
maps a local 3D TDF volume to a high-dimensional feature
representation using a 3D ConvNet, and a metric network
that maps pairs of features to a similarity value through a
set of fully connected inner product layers.

Figure [3] visualizes our network architecture. First, the
local TDF volume around each query keypoint is cropped
from its geometric fragment. These volumes are then inde-
pendently passed through a feature network, which maps
them to a feature descriptor containing 2048 elements.
Pairs of these feature vectors are then concatenated and fed
through the metric network, which ends with a similarity
score that classifies the two points as either matching or not
matching. As we will show in Section [6] allowing the net-
work to optimize over different intermediate feature repre-
sentations produces features that are significantly more ro-
bust than methods that use a fixed representation. Our joint
feature and metric network is able to automatically learn
the best distance function from data without limiting itself
to certain similarity measure such as £; or Lo, which is
the approach taken by the Siamese network [3]] [7]. Sample
output of the network is visualized in Figure|[§]

5.1. Network Architecture

Geometric feature network The feature network of the
3DMatchmodel constitutes a descriptor function that maps
a keypoint’s 3D local region to a concise feature represen-
tation. In our case, the radius of the local regions for all

keypoints are set at 15cm (see Section [3.2), so the input to
our feature network is structured as a 31 x 31 x 31 voxel
TDF volume (voxel size = lcm with a standard truncation
distance of Scm), while the feature representation is a 2048
dimensional feature vector. Following several similar Con-
vNet architecture preprints for training over 2D local im-
age patches [38[13], the feature network consists of several
convolutional layers with ReLU non-linearity and a single
pooling layer. We include pooling to benefit from the re-
sponse filtering properties of max pooling; but since the
dimensions of the initial input volume are small, we only
include only one layer of pooling to avoid a substantial loss
of information. The detailed kernel sizes and number of fil-
ters are shown in Figure 3] The last fully connected layer
of the feature network determines the dimensionality of the
feature representation and prevents the network from over-
fitting [13]. Following prior work on feature learning for 2D
local patches [3] [7]], we ensure that the two feature network
towers maintain identical parameters by sharing all updates
between the networks. This maintains a globally consistent
keypoint-to-feature encoding.

Metric network The metric network of 3DMatchforms
a non-linear matching function that compares two feature
representations and determines whether or not the two rel-
evant keypoints correspond to each other. The input to this
network is the concatenation of two feature vectors, while
the output is a single confidence value between 0 and 1
that measures similarity between the keypoints, where 1 is
a match’ and 0 is a 'non-match’. Our metric network is
made up of several fully-connected layers with ReLU non-
linearity. The last layer uses Softmax, and its two values
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Figure 4: A feature embedding of local keypoint regions in a test scene, visualized using t-SNE. The learned features are
highly predictive of geometric structure as well as local context. This embedding suggests that our 3DMatch network is able
to coherently group 3D local keypoint volumes based on properties such as edges (a,f), planes (e), corners (c,d), and other
local geometric structures (g, b, h) in the face of noisy and partial data.

represent the networks estimate of probability that the two
features match and do not match, respectively.

Matching cost Using the training keypoint volume pairs
and their associated correspondence labels acquired from
the data preparation described in Section ] we minimize
the cross-entropy error

1O R R

E=-- ;[%ZOQ(%) + (1 —wi)log(1 —log(yi)] (1)
over a training set of ground truth correspondences using
stochastic gradient descent (SGD). Here, y; is the binary
label ("match’ or 'non-match’) for input x; and y; is the
probability estimate from the network output by the Soft-
max layer.

To highlight the metric network’s contribution to match-
ing performance, we additionally experimented with an ar-
chitecture where the metric network is replaced with a sin-
gle contrastive loss layer that compares the bottlenecked
features using Euclidean distance (L2). The absence of the
metric network reduced keypoint matching performance on
our benchmarks, shown in Figures El and @ However, it
continues to outperform the best hand-crafted feature meth-
ods. In all subsequent experiments, we used the 3DMatch’s

model that includes both the feature network and the metric
network.

5.2. Feature Visualization

To help better understand and examine the kind of infor-
mation that the neural network captures, we visualize the
descriptors learned by our feature network using the t-SNE
algorithm [33]. Specifically, we randomly extract 2,000
keypoint volumes from one scene of the test set and find
a 2-dimensional embedding of their 2048-dimensional fea-
ture vectors. Figure [4] visualizes this embedding. For each
keypoint TDF volume, we generate its mesh, and position
it in its exact location in the embedding. Additionally, each
keypoint volume mesh is colored with the normalized 3-
dimensional embedding of its feature vector. The overall
layout of the embedding suggests that the feature network
is able to coherently cluster different types of local 3D geo-
metric structures such as edges, planes, and corners.

5.3. Implementation Details

We implement our network architecture in Marvin [36],
a deep learning framework that supports N-dimensional
convolutional neural networks. To train the network, we
randomly initialize all layers by drawing weights from a
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Figure 5: Precision and recall curves over match confidence
thresholds (or distance thresholds) on a set of keypoint vol-
ume pairs with ground truth correspondence labels.

zero-mean Gaussian with standard deviation 0.01 and ini-
tialize biases to 0. During training, we set the mini-batch
size to 256 keypoint volume pairs per iteration. For each
of the training mini-batches, we regulate training biases by
balancing the number of matching volume pairs with the
number of non-matching volume pairs to a 1:1 ratio. The
base learning rate is set as 0.01, and the learning rate is re-
duced by a factor of 0.99 every 2,000 iterations. We run
SGD for 1.3 million iterations, with a momentum of 0.9
and a parameter decay of 0.0005. These learning param-
eters were empirically selected to optimize over validation
accuracy. Due to the large variation in training data, our
network requires a substantial number of training iterations
for convergence.

6. Evaluation

We demonstrate the effectiveness of the 3DMatch de-
scriptor on several real-world and synthetic tasks. In Sec-
tion[6.1]and [6.2] we present several test benchmarks to eval-
uate the performance 3DMatch against other 3D geometric
descriptors on the task of keypoint correspondence detec-
tion. In Section[6.3] we combine 3DMatch with a standard
RANSAC-based alignment approach, and compare it to var-
ious other geometric registration methods on the task of
fragment-to-fragment alignment and loop closure detection,
as proposed for indoor scene reconstruction algorithms [6].
In both quantitative experiments, we show substantial im-
provements over state-of-the-art methods. And finally, to
show the robustness of our descriptor in Section [6.4] we
demonstrate a complete scene reconstruction pipeline that
uses 3DMatch for sparse fragment alignment and loop clo-
sure.

All quantitative and qualitative evaluations performed in
the subsequent sections test exclusively on data from scenes
that were not part of training and that the 3DMatchmodel
has never seen before. This includes the testing split of the
datasets described in Section |4} as well as a number of dif-
ferent scenes from the SUN3D dataset [35]]. The 3DMatch-
model has been trained with over 332 million volume com-
parisons.
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Figure 6: Accuracy of keypoint matching when varying the
ratio of matches to non-matches in the testing set.

Test Spin | Rusuetal. | Lietal. | 3DMatch
condition Images (FPFH) (KDD) (ours)
3D Harris (%) | 55.9 67.4 74.2 95.6
Random (%) 55.6 66.8 63.7 87.5

Table 1: Accuracy (at 95% recall) of geometric descrip-
tors on the keypoint matching task (balanced ratio between
matches and non-matches). Testing on 3D Harris is more
accurate for all methods because keypoints have signifi-
cantly less geometric ambiguity.

6.1. Keypoint Matching Evaluation

We directly evaluate the quality of a 3D geometric de-
scriptor by testing its ability to classify whether two points
from different scans of the same environment correspond
to each other. Using environments never seen before by
3DMatch(the testing split of the datasets mentioned in Sec-
tion [4), we construct an evaluation dataset by sampling a
small number of keypoint volume pairs and their ground
truth correspondence labels (a binary label for match’ or
‘non-match’) in a way that is similar to what is done dur-
ing training for the descriptor. The evaluation dataset con-
sists of 20,000 pairs of points and their respective local
volumes, with a balanced 1:1 ratio between matches and
non-matches. The keypoint pairs are formed such that they
do not come from the same scans of the environment. We
construct two such evaluation datasets: Harris and Ran-
dom. In Harris, the points are chosen randomly from the
set of Harris keypoints with at least one other correspon-
dence, and in Random they are chosen at random from all
surface points of the fragments.

We ran 3DMatch along with several other geometric de-
scriptors on these two benchmarks. For spin images [18]]
and the fast point feature histograms [25]], we use the im-
plementation provided in the Point Cloud Library, tuning
the algorithm’s parameters specifically for the benchmark.
These methods operate directly on the point cloud of the
fragment, and are not able to incorporate additional infor-
mation from the signed distance field. For Li et al. [20],
we use an implementation provided by the authors. Their
method operates on the signed distance field and uses a
brute-force approach to account for varying rotations.



Figure [5] shows the precision and recall performance
of the various geometric descriptors over a match confi-
dence threshold (or distance threshold for some methods).
3DMatchis by far the most robust descriptor, and retains a
precision of 82.62% at 95% recall.

In Figure [6] we fix the matching threshold for each al-
gorithm at the optimal accuracy for a balanced 50:50 ratio
between matching to non-matching volume comparisons,
then vary this ratio in the evaluation dataset (via random
sampling) and assess how the general accuracy of the de-
scriptor changes with respect to this ratio. This experi-
ment illustrates how hand-crafted descriptors are naturally
weaker at establishing matching correspondences than non-
matching correspondences in the face of noisy and partial
data. 3DMatchretains consistent accuracy across this con-
dition, suggesting that the probability estimate computed
in the final layer of the metric network is an effective in-
dication of absolute match strength for real data. Table [T]
quantitatively shows the highest accuracy results obtained
under this evaluation. In all conditions, 3DMatch has sig-
nificantly higher accuracy than other geometric descriptor
approaches.

6.2. Keypoint Retrieval in Scenes
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Figure 7: Keypoint retrieval in scenes. The y-axis labels
the percentage of keypoints in the query sequence that can
successfully find a correct correspondence from all the key-

points in the sample sequence within the top k matches un-
der each geometric descriptor.

To evaluate the performance of 3DMatchagainst other
geometric descriptors on a more realistic distribution of cor-
respondences, we survey the descriptors’ ability to match a
3D keypoint to its ground truth correspondence from differ-
ent scans of the same large environment. Unlike the eval-
uation in Section this query has only several positive
correspondences among thousands of negative correspon-
dences. Specifically, we fuse fragments from two RGB-
D frame sequences of the same scene from our test set
of the 7-scenes dataset. We call these two sequences the
query sequence and the sample sequence, respectively. Us-
ing the ground-truth extrinsics from the dataset, both se-
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Figure 8: Sample Harris keypoints (middle column) de-
tected in the blue fragment, and their top-3 matching Harris
keypoints from the yellow fragment. Top-k is based on the
local descriptor similarity scores computed using 3DMatch.

quences are related to each other in world space (this infor-
mation is used only for evaluation). Within each fragment
of both sequences, we compute a set of 3D Harris keypoints
and extract their local TDF volumes. All Harris keypoints
within Scm of each other in world space are considered to
be ground truth correspondences. Since each keypoint and
its local TDF volume are anchored with respect to the cam-
era coordinate frame of the scans, the ground truth matching
keypoint volumes are oriented according to a variety of dif-
ferent camera viewing angles.

For each keypoint in the query sequence, we examine
how well the descriptor can find a ground truth correspon-
dence from the sample sequence within the top-k of simi-
larity scores (or closest in feature distances). For example,
when £ = 1, we measure the % of keypoints in the query se-
quence whose comparison to a ground truth correspondence
(vs. all other sample keypoints) returns the highest similar-
ity score. Figure[7]shows the percentage of query keypoints
that can successfully find a correct correspondence from the
sample sequence within the top k matches, where k varies
from 1 to 20. At k = 5, with 3DMatchover 20% of key-
points are able to find the correct match compared to only
8% with the FPFH descriptor. As we will show in Sec-
tion [6.3] this improved recall is important for algorithms
such as RANSAC-based alignment [23]]. Figure [§] visual-
izes several examples of top-k keypoint volumes matches
found in this way in between two fragments from different
scans.



6.3. Fragment Alignment Evaluation

One application of geometric descriptors is the registra-
tion of two fragments from a 3D scan, a subcomponent of
some 3D reconstruction approaches [6]]. The goal of sur-
face registration is to determine if two fragments (P;, P;)
overlap, and if they do provide an estimate of their rela-
tive geometric transformation 7;;. To focus our evaluation
on a registration method’s ability to detect and align loop
closures, we only consider pairs of fragments that are not
time-based adjacent to each other. We start by showing the
results of registration over an existing synthetic dataset de-
signed for indoor scene reconstruction, and then demon-
strate the results on fragments scanned from real-world
environments. We show that a standard RANSAC-based
registration approach using 3DMatch significantly outper-
forms other state-of-the-art geometric registration methods
for loop closure detection and fragment-to-fragment align-
ment.

Following the evaluation scheme introduced by Choi et
al. [6]], we evaluate the accuracy of alignment for both the
synthetic and real datasets by measuring the effect of 7};; on
the ground-truth correspondences K;; between P; and P;.
The transformation is accepted if it brings the ground-truth
correspondence pairs into alignment. In other words, T;; is
considered a true positive if the RMSE of the ground-truth
correspondences is below a threshold

1
K5 2

YT (p*,q*)EK

|| Tip* — q*||* < 72 2)

where p* and ¢* are the ground-truth correspondence points
in P; and P, respectively. Choi et al. [[6] uses a fairly lib-
eral threshold at 7 = 0.2. Lower values of 7 emphasize
alignment quality in a more fine-grain manner.

We perform registration between fused fragments using
3DMatch as the descriptor in a RANSAC-based approach,
following the PCL implementation of Rusu et al. [23].
However, instead of computing features over a subsampled
point cloud, we compute features over the set of 3D Harris
keypoints. Specifically, we first map each 3D Harris key-
point to its top k strongest correspondences with respect
to 3DMatch’s matching scores. Then for each RANSAC
iteration, we randomly choose 3 correspondences to esti-
mate a rigid transformation. The final transformation is the
one with the highest number of inlier correspondences —
those whose keypoint pairs are within Scm of each other af-
ter alignment and has a 3DMatch matching score of at least
0.5. We reject the alignment if the final RANSAC transfor-
mation has less than 15 inlier correspondences.

Synthetic dataset. The work of Choi et al. [6] evalu-
ates geometric registration using the synthetic ICL-NUIM
dataset [14]]. Figure 0] shows the results of this evaluation
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Figure 9: Precision and recall vs. matching tolerance 7 be-
tween different methods on the fragment-to-fragment geo-
metric registration benchmark from Choi et al. (the dotted
line marks the RMSE 7 set to compute their reported PR
numbers).

Figure 10: Sample false positive alignments between syn-
thetic fragments from the augmented ICL-NUIM dataset.
This highlights the synthetic nature of the fragments from
the augmented ICL-NUIM dataset.
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Figure 11: Precision and recall vs. matching tolerance 7 be-
tween different methods on a real-world dataset. Methods
with an asterisk are performed using RANSAC on Harris
keypoints.

on 3DMatch and the geometric registration methods pre-
sented in Choi et al. [6]. 3DMatch provides consistently
stronger alignment results, especially when 7 is small, in-
dicating that 3DMatch is more accurate at a fine-grained
level than the other methods. Using Choi et al.’s threshold
at 7 = (.2, 3DMatch surpasses other registration methods
with an average precision of 25.0% and average recall of
60.6%. The precision of all methods is low due to the min-
imal geometric complexity of and large set of duplicated
geometry found within the scenes of the synthetic dataset;
see Figure [T0] for examples.

Real-world dataset. We further evaluate the performance
of 3DMatchagainst other methods for registering fragments
from real-world scans, which have greater geometric com-



plexities compared to the synthetic scenes of the ICL-
NUIM dataset. We form fragments from the test datasets
(Section |4)) and attempt to align non-consecutive pairs of
fragments in each scene. Figure [T1] shows the precision
and recall results against the matching tolerance thresh-
old 7 from Equation E} For Rusu et al., we tuned an
implementation in the Point Cloud Library (PCL), where
the run-time of each fragment comparison was restricted
to be approximately 10s on a single core of an Intel i7-
4820K. We also evaluate over the registration results using
Rusu et al. and Spin-Images as local descriptors for the
same keypoint-based pipeline used by 3DMatchregistration
method. Overall, 3DMatch performs the best on real-world
data; at 7 = 0.2, 3DMatch has a precision of 92.2% and a
recall of 74.0%.

6.4. Scene Reconstruction using 3DMatch

A core challenge in scene reconstruction is loop clo-
sure, where a correspondence needs to be formed between
the same location when viewed from significantly differ-
ent perspectives. Both color and depth information pro-
vide different channels of information that can be used to
detect these long-range correspondences. However, color-
based descriptors, such as SIFT, often fail to find correct
correspondences when there are wide-baseline viewpoint
changes or drastic lighting differences. Figure shows
some challenging loop closure cases that are known to be
difficult for color-based descriptors. We show that our 3D
descriptor is able to correctly align the fragments of these
loop closure instances using geometric information.

Our scene reconstruction procedure is based on a stan-
dard sparse bundle adjustment pipeline [30 [1]]. This
pipeline is widely used to obtain global alignment from a
set of RGB-D frames, generating globally-consistent 3D
reconstructions. The key idea is to minimize the distance
between a sparse set of matched feature points, whose posi-
tions are given in camera space of the corresponding RGB-
D frames. Traditionally, sparse RGB features, such as SIFT
or SURF, are used to establish feature matches between
frames. With our 3DMatch descriptor, we are able to estab-
lish feature matches and formulate the bundle adjustment
problem purely on geometric feature pairs:

frags. corresp.

argming Z Z | Tipir. — Tjpjill3
ik

where T, and T} are poses for fragments ¢ and j while
pir and pjj, represent the corresponding feature pairs be-
tween the two fragments. These correspondences are ob-
tained from aligning all pairs of fragments in the sequence
using the algorithm described in Section

In order to demonstrate the robustness of our descrip-
tor, we use this very simple formulation for reconstruction,

which results in a trivial non-linear least squares solve. Al-
though our reconstruction pipeline is less powerful than the
robust optimization presented by Choi et al. 6], we are nev-
ertheless able to generate globally-consistent alignments in
challenging scenes using geometric information. For the
final reconstruction, we fuse all depth frames using a volu-
metric fusion implementation [24] to generate a dense 3D
reconstruction as shown in Figure

In addition, we show that our descriptor can be combined
with sparse RGB features, which provide additional sparse
correspondences to support the reconstruction process, es-
pecially when there is insufficient geometric information in
the fragments. For instance, as shown in the reconstruc-
tion results in Figure [I3] combining correspondences from
both SIFT and 3DMatch significantly improves the align-
ment quality.

7. Conclusion and Future Work

We have presented 3DMatch, a geometric descriptor
trained from real-world data, and demonstrated its effective-
ness at keypoint matching, fragment alignment, and scene
reconstruction. We plan to make all source code, pre-trained
models, and evaluation benchmarks publicly available.

Paralleling research in RGB image descriptors, we be-
lieve that the trend away from hand-tailored, histogram-
based descriptors and towards data-driven representations
will continue. The growth of both 2D and 3D mapping sys-
tems will create larger databases of scenes annotated with
rich correspondences. These correspondences link the same
spatial location across different sensors, times, and lighting
conditions. Data-driven architectures such as 3DMatch will
continue to benefit from this data, enabling the construction
of powerful descriptors that are robust to these variations.
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