Activity-centric Scene Synthesis for Functional 3D Scene Modeling
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Figure 1: Given a 3D scan of an environment (left), we produce a scene template that encodes where activities can occur and contains
a coarse geometric representation describing the general layout of objects (middle). By instantiating this template, we synthesize many
plausible scenes containing appropriate objects in arrangements that allow the encoded activities to be performed (right). The key idea of
our method is to learn the distribution and arrangements of objects involved in each activity from an annotated 3D scene and model corpus.

Abstract

We present a novel method to generate 3D scenes that allow the
same activities as real environments captured through noisy and
incomplete 3D scans. As robust object detection and instance
retrieval from low-quality depth data is challenging, our algo-
rithm aims to model semantically-correct rather than geometrically-
accurate object arrangements. Our core contribution is a new
scene synthesis technique which, conditioned on a coarse geometric
scene representation, models functionally similar scenes using prior
knowledge learned from a scene database. The key insight under-
lying our scene synthesis approach is that many real-world envi-
ronments are structured to facilitate specific human activities, such
as sleeping or eating. We represent scene functionalities through
virtual agents that associate object arrangements with the activities
for which they are typically used. When modeling a scene, we first
identify the activities supported by a scanned environment. We then
determine semantically-plausible arrangements of virtual objects —
retrieved from a shape database — constrained by the observed scene
geometry. For a given 3D scan, our algorithm produces a variety of
synthesized scenes which support the activities of the captured real
environments. In a perceptual evaluation study, we demonstrate
that our results are judged to be visually appealing and functionally
comparable to manually designed scenes.

CR Categories: 1.2.10 [Artificial Intelligence]: Vision and Scene
Understanding—3D/stereo scene analysis

Keywords: scene synthesis, activities, scene understanding

1 Introduction

Understanding the identity, arrangement, and functionality of ob-
jects in real-world environments is a difficult but essential task for
many applications. This problem is especially hard since a real en-
vironment can only be captured by observations from an incomplete
set of viewpoints, and each observation is limited by occlusions and
sensor quality. Nevertheless, people are able to robustly understand
their surroundings by mapping them to environments they have pre-
viously experienced. Even when we observe only a small part of an
environment, we are still able to effectively interact with since we
rely upon our prior understanding of what objects to expect and
how they are arranged. One significant component of the human
understanding process is to imagine someone performing specific
activities and identify nearby objects in the context of this activ-
ity [Tversky and Hard 2009]. This approach is successful because
many environments we encounter have been designed for human-
centric needs; once we successfully identify that a certain type of
activity can be performed, we can identify and interact with nearby
objects by aligning them relative to the activity.

In contrast to people, computers struggle to understand objects and
their arrangement in 3D environments. One significant problem is
identifying object instances when only part of the object is visible
or when an exact geometric match does not exist in the training
database. A promising research direction to overcome these limita-
tions is to augment low-level geometric features with higher-level
contextual information [Galleguillos and Belongie 2010]. Unfortu-
nately, modeling semantic context in real settings is challenging be-
cause it is difficult to know which contextual relationships between
objects are important. We would like to enable functional parsing
of environments through an activity-centric perspective. Our in-
sight is to use human activities as a hidden variable to represent
contextual relationships between objects. This admits a simple and
sparse scene representation. Our approach is motivated by the fact
that scenes are designed with specific functions in mind. Bedrooms
facilitate sleep, while office environments enable easy access to
desks and computers. Although we evaluate our method on a 3D
scene generation task, we believe an understanding of activities is
fundamental to many applications beyond scene reconstruction, in-
cluding image understanding and robot-human interaction.



In this paper, we anchor an observed scene in a set of activities,
and use associated activity regions as focal points to guide scene
modeling. We take as input an RGB-D scan of an environment and
generate an arrangement of 3D models that allows the same types
of interactions as the scan (see Figure 1). These activity regions
guide scene modeling towards plausible results, especially in the
presence of significant occlusion or noisy data.

In summary, we present a novel activity-centric method for synthe-
sizing scenes that respect the functional and geometric properties
of an input RGB-D scan:

e We propose a scene template as an intermediate representation
encoding functional and geometric properties of a scene.

e We utilize existing methods for action recognition in 3D en-
vironments to build a scene template from a 3D scan.

e We estimate the functional plausibility of an arrangement of
objects using an activity model learned from an annotated 3D
scene and model database.

e We present a method that uses this activity model to synthe-
size plausible scenes respecting the geometric and functional
properties specified in the scene template.

e We evaluate our method against scenes made by people and
prior scene synthesis methods to demonstrate that our ap-
proach produces plausible and functionally similar scenes,
even from noisy and incomplete range data.

2 Related Work

2.1 Action Understanding

As our goal is to reconstruct scenes based on a human-centric view,
it is important to understand how actions influence scene structure.
The human-centric view of environments has a long history, with a
strong connection to cognitive psychology [Gibson 1977; Tversky
and Hard 2009].

In computer graphics and vision, understanding actions has become
a fundamental basis for many research directions. Grabner et al.
[2011] evaluate “chair-ness” by probing environments with a mesh
in a sitting pose. Geometry supporting the posed mesh is assumed
to be chair-like. Fitting skeletal poses, instead of posed meshes, to
3D geometry has been explored by Kim et al. [2014]. This idea has
gained relevance with the feasibility of tracking skeletal poses with
commodity RGB-D sensors [Shotton et al. 2013]. Such pose data
enabled research on the classification of objects and actions in the
context of human activities [Koppula et al. 2013; Wei et al. 2013a;
Wei et al. 2013b]. The key idea of these approaches is the utilization
of temporal features obtained by observing an environment over a
specific period of time.

A particularly relevant line of work hypothesizes the arrangement
of objects based on the plausibility of “hallucinated” skeletal poses
[Jiang et al. 2012; Jiang and Saxena 2013]. Recently, Savva et
al. [2014] generated probability distributions corresponding to like-
lihoods of activities in real and virtual environments. We build on
these techniques, as we predict likely activities for environments
prior to reconstruction. While our method is orthogonal to the spe-
cific activity prediction approach, our implementation uses Scene-
Grok [Savva et al. 2014] as a prior for our functional reconstruction.

2.2 Model Retrieval and Semantic 3D Reconstruction

One way to semantically reconstruct a scanned 3D scene is by re-
trieving models from a shape database. Once objects are retrieved,
higher-level semantic information is drawn from the database and
utilized to interpret the 3D scene. Unfortunately, object recognition

and retrieval based on low-level geometric features — e.g., [Johnson
and Hebert 1999; Lowe 2004; Drost and Ilic 2012] — is challenging
in the context of noisy and unsegmented range data. Recent meth-
ods combine local and global feature descriptors to jointly segment,
retrieve, and align objects; e.g., [Mattausch et al. 2014; Li et al.
2015]. Another direction is to recognize models through machine
learning, where classifiers are used to detect objects based on geo-
metric features. For instance, Kim et al. [2012] learn a deformable
part model from multiple range images, while Nan et al. [2012] use
a random decision forest to classify objects from over-segmented
high-quality range data. Shao et al. [2014], abstract environments
as collections of cuboids, and analyze the scene structure via cuboid
arrangements.

To improve reconstructions, prior work has augmented object in-
stance retrieval with spatial context information. This is particu-
larly relevant if the sensor data is incomplete and noisy. Shao et
al. [2012] semi-automatically obtain semantic regions to drive their
object retrieval algorithm. Chen et al. [2014] learn object relation-
ships from a scene database (cf. Section 2.3) and use Markov ran-
dom fields to perform model retrieval with respect to the learned
semantic context.

As our main goal is to model semantically plausible scenes, our
method is less constrained by the scanned input geometry. Instead
of focusing on object instance recognition, we capture the arrange-
ment and relationship of objects while relaxing the requirement for
exact instance matching.

2.3 Contextual Scene Understanding

Contextual scene understanding has become important for auto-
mated content creation, as well as for the organization and main-
tenance of scene databases. A common way to model the con-
text between objects in a scene is a relationship graph. The core
idea is to encode semantic scene structure in a graph representa-
tion in order to enable data-mining operations, such as comparisons
and database queries [Fisher et al. 2011]. Xu et al. [2014] clus-
ter scene relationship graphs into contextual focal groups, allowing
them to simplify graph connectivity and organize large scene col-
lections much more efficiently. Liu et al. [2014] share the same
goal; they use a probabilistic grammar to obtain consistent graph
hierarchies over large scene collections. Our method extends these
ideas; specifically, we express relationships in the presence of ac-
tivities, and model object relationships indirectly via hidden agent
variables. This allows us to minimize the number of relationships,
as we only consider high-level semantic meaning via the agents,
and avoid the need to recognize object instances to infer scene rela-
tionships.

Fisher et al. [2012] generate synthetic scenes by modeling these
object relationships with a Bayesian network learned from a scene
database and user-provided input examples. Sketch2Scene [Xu
et al. 2013] is another scene synthesis system using simple image
sketches to drive the synthesis algorithm. Though we also use a
scene database for synthesis, we model our scene prior using activ-
ities and condition on real-world RGB-D scans.

3 Algorithm Overview

An overview of our approach is given in Figure 2. The core of our
method is the use of a scene template to serve as an intermediate
representation capturing both the prominent geometric properties
of a scan and the activities that are likely to be performed in the
environment. The scene template represents activities using a con-
tinuous activity map that can be sampled to produce a set of proxy
agents. These are oriented and localized virtual agents who per-
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Figure 2: Starting from a 3D scan, we learn a scene template that describes different activities that can take place in the environment and the
rough geometric layout of the scene. Using an activity model trained from an annotated database of scenes and 3D objects, we can synthesize
many scenes that respect the activity and geometric constraints of the scene template.

form a specific labeled action. We formalize our scene template
representation in Section 4. Our goal is to arrange objects from a
categorized 3D model database to produce scenes that respect the
activity and geometric properties of the scene template.

Given a 3D scan, we first build a corresponding scene template for
the captured environment (Section 5). We use an activity classifier
trained from observations of people in real environments to com-
pute a continuous-valued activity map over the scan for many pos-
sible activities [Savva et al. 2014]. We also capture stable geomet-
ric features of the scan, such as dominant supporting planes and
the rough layout of the room. Section 6 describes how we quanti-
tatively evaluate how similar a synthesized scene matches the geo-
metric features in the scene template.

Our synthesis algorithm relies upon learning an activity model for
each type of activity in the scene template (Section 7). This model
is trained from a database of virtual scenes, each annotated with
agent proxies that represent the presence of an agent performing a
specific activity in the scene along with a set of objects the agent
interacts with while performing that activity; an example is shown
in Figure 3. The activity model also makes use of a 3D model
database annotated with interaction maps. An interaction map for
a model shows the regions on the model surface where specific in-
teractions are required for an activity. For example, Figure 3 shows
the regions on a monitor that need to be visible to an agent for the
monitor to be useful while an agent is using a desktop PC. Our ac-
tivity model is independent of any specific input scan and is trained
as a pre-process over the entire training database.

Given a scene template and a model for each activity, we show how
to synthesize scenes that respect both the geometric and activity
properties specified in the template (see Section 8). We define an
activity scoring function that uses the activity model to estimate
how well each proxy agent in the scene template can perform the
given activity. Activities might be difficult to perform because cer-
tain objects important to the activity are missing (e.g., no monitor
when using a computer), or because they are not positioned or ori-
ented well (e.g., a monitor rotated away from the agent). For syn-
thesis, we start from a blank scene and iteratively insert new objects,
biasing our selection towards objects that increase the combined
geometric and activity scoring functions. We repeat this synthesis
process many times, and choose final results where the geometric
properties of the scan are sufficiently respected and the proxy agents

can effectively perform the target activities.
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Figure 3: Example training scene for the activity model. A “pre-
pare for bed” agent (tan) and a “use PC” agent (red) are labeled
in the scene. All models in the database are labeled with interac-
tion maps indicating different regions on the model an agent would
interact with while performing each activity; here, we visualize the
per-model interaction map annotations on the training scene.

4 Scene Templates

A scene template is a high-level representation of a scene that en-
codes both geometric and activity properties of an environment. We
use a scene template as an intermediate representation between an
input scan and our output object arrangements — once we con-
vert a scan to a scene template, no additional information about
the scan is needed. Scene templates can also be modeled directly
or constructed from other data sources such as labeled 2D images
or textual descriptions. Our scene template is defined over a fixed
rectangle of space with known spatial extents.

4.1 Geometry Representation

We would like our scene template to capture a coarse representa-
tion of the geometric layout of an environment. Our focus is on
directing the synthesized results towards scenes with a realistic lay-
out similar to an observed input while not otherwise restricting the
space of scenes that can be generated. We want to capture broad



Activities Database Instances

Use a desktop computer 42

Eat at a dining table 52
Prepare for bed 16
Sit on a couch 20

Table 1: Summary of the dataset. For each activity, we show the
number of example instances of this activity in the scene database
to learn our activity model (see Section 7).

scene properties such as the presence of furniture or the density and
height of objects on a surface, but not specific properties such as
the brand of a monitor or the title of a book.

Our representation divides the environment into a uniform grid of
vertical columns, each covering 5 cm by 5 cm. Within each column
¢, we store two distances: cs, the height of the highest supporting
plane above the floor, and c,, the height of the highest observed
geometry above the highest supporting plane. A supporting plane
is a surface that supports other objects, such as the surface of a
desk, a bed, or a coffee table. The division into supporting planes
and residual geometry that sits above the supporting plane is useful
for capturing the approximate placement of short objects such as
plates that might otherwise be lost in the relative variation of table
heights. We use T to refer to the desired grid of (cs, ¢) height
values for a scene template 7.

Figure 2 (top middle) visualizes this representation. The blue
columns represent the expected height of a supporting plane in that
region (cs) and the green columns represent the height of residual
geometry (c,) which sits on top of a supporting plane.

Environments generated from the scene template will attempt to
match both the support plane and residual geometry heights for all
vertical columns in the domain. We quantify how well an object
arrangement O agrees with T with a function Pyeo(Oc, 1), as
described in Section 6.

4.2 Activity Representation

We represent activities in a scene template as a set of activity maps
which are continuous distributions defined over the entire 2D floor
rectangle. We use the set of activities given in Table 1. For each
such activity, a scene template defines a dense set of (z, y, 0) acti-
vation samples ranging from 0% (not likely an agent could perform
this activity here) to 100% (extremely likely an agent could perform
the activity). The (z,y, 0) components encode the expected posi-
tion and orientation of the agent’s head while the agent is perform-
ing the activity. This representation may encode several distinct
regions corresponding to different agents, such as a computer lab
with many distinct computer setups. Environments generated from
the scene template will try to position objects such that an agent can
perform the activities specified in the activity maps.

4.3 Sampling Proxy Agents

When working with activity maps, we start by sampling the con-
tinuous activity distribution with a discrete set of proxy agents T'4.
A proxy agent is identified by an activity label and an (z,y, 2, 0)
coordinate in the scene representing the expected position and ori-
entation of the agent’s head. The agent’s head position implicitly
constrains expected positions of body parts (such as the shoulders)
as fixed offsets relative to the agent’s head and face direction. In
Section 7, we quantify how well a proxy agent can act in a given
object arrangement. Importantly, we do not pick a single set of

Input Scan and Action Maps

Sampled Agents

Figure 4: On the left, we show an input scan along with two con-
tinuous activity maps. On the right, we show one sample of discrete
and oriented agents drawn from this distribution.

proxy agents, but instead sample a new agent set each time we syn-
thesize a new scene, as described in Section 8.

To sample proxy agents from our continuous activation samples,
we start by choosing a random sample in the top 10% of sample
activations to be a proxy agent at this location. The height of the
proxy agent is taken as the average height of the activity observa-
tions in the scene database, as described in Section 7.1. To prevent
multiple agents from being sampled too close together, we then ex-
clude all samples within 50 cm of the randomly sampled location.
We repeatedly sample agents from the top 10% of activations until
there are no valid samples left. We determine the orientation of a
proxy agent by integrating the directions of nearby activation sam-
ples weighted by the amount of activation and the distance to the
agent location (20 cm with a linear falloff). We then snap the agent
orientation towards the nearest object support plane, which is de-
termined by the spatial distance between the plane and the agent
location and the deviation to the original agent orientation. Our
complete set of sampled proxy agents is the union of all agents pro-
duced by the activity activation maps for each activity type in the
scene template. Figure 4 shows an example of agent sampling from
a set of activity maps.

5 Analyzing 3D Scans

By analyzing an input RGB-D scan, we can generate a scene tem-
plate that will produce scenes similar in both geometry and func-
tionality to the environment captured by the scan.

5.1 Plane Extraction

We start by extracting a set of dominant planes from the scan’s 3D
point cloud using an existing approach designed for indoor scan
classification [Mattausch et al. 2014]. Figure 5 shows an input scan
and the extracted planes. We then classify each plane into one of
three categories: agent support planes of a particular category, such
as the seat of a chair or sofa where an agent might stand or sit while
interacting with objects, object support planes, such as the surface
of a desk or table which are large surfaces that support many other
objects, and other planes not falling into either category. We clas-
sify each type of plane by simple normal, surface area, and height
heuristics. An object support plane must have a normal within 5
degrees of the gravity vector, a surface area greater than 0.5 m?,
and its centroid must be more than 0.5 m above the floor. For each
category of agent support objects (ex. bed, sofa, and chair), we
compute the observed surface area of these support planes in the
activity database described in Section 7.1 to get a minimum and
maximum observed surface area. We classify a plane as an agent
support plane for the category if it is within 15% of these bounds.



Figure 5 middle-right shows the planes classified as object support
and agent support (chair).

5.2 Geometry from Scans

We use a simple ray-tracing approach to convert our RGB-D scan
into the column-based representation for scene template geometry
described in Section 4.1. For each column in 7T, we shoot a ray
from the ceiling downwards into the scan, recording the first geom-
etry in the 3D mesh that is intersected as well as the height of the
first support plane. Figure 5 (right) visualizes this representation
for the scan shown on the left.

5.3 Activity Retrieval from Scans

As introduced in Section 4.3, we sample proxy agents from con-
tinuous activity maps. We obtain these maps directly from the
scanned input geometry using an action-retrieval approach [Savva
et al. 2014]. To run this method, we associate actions with agent
types and train the algorithm accordingly. For a given RGB-D scan,
we then obtain a probability distribution for each activity type. Each
distribution is represented as a densely-sampled wv map where ev-
ery sample contains an activation probability, and a dominant orien-
tation given by a scene-pose classifier (for details, we refer to Savva
et al. [2014]). In addition, we filter each activity distribution with
the extracted agent support planes (see Section 5.1); i.e., we set the
activation probabilities to zero if the sample is not above an agent
support plane associated with the agent type).

Note that our method is orthogonal to the underlying action retrieval
approach, and could be combined with a different scene categoriza-
tion technique (e.g., Jiang and Saxena [2013]).

6 Geometry Model

To quantify how well a synthesized object arrangement O agrees
with T, we start by computing Og, an analogous grid-of-columns
representation for the synthesized scene. Each object in O comes
from a categorized 3D model database. We identify some of these
categories as being support categories by looking at an existing
scene database (see Section 7.1) and looking for all categories that
have been observed supporting at least two other objects. To com-
pute Og, we shoot a ray for each column from the ceiling down-
ward into the scene, recording the height of the first object of any
type hit as well as the height of the first supporting object hit. This
mimics the method used for 3D scans in Section 5.2, except we
identify supporting objects by category rather than by detecting
dominant horizontal planes.

To compare Tz and Og we average a comparison function for all
columns c:

e (Be)?/o? | o (Aep)? o}

2|TG|

Peeo(Ti,0c) = > M

ceTq

Acs and Ac, are the differences between the supporting plane
height and residual geometry height for column c in T versus Og.
os and o, control how strongly the geometry of the synthesized
scene is penalized for deviating from the scene template; we use
os = 15cm and o = 15cm. Pyeo(Te, O¢) ranges from 0 (no
geometric similarity) to 1 (exact geometric match).

7 Activity Model

We want to estimate how well a given object arrangement supports
each activity map in a scene template. After sampling the activity

map to produce a set of proxy agents (see Section 4.3), we need
to determine how well each proxy agent can execute its labeled ac-
tivity. To accomplish this, we use a corpus of annotated scenes to
train a model for each activity. We use these examples to represent
the expected distribution of objects involved and their expected po-
sition and orientation relative to the agent. Our activity model also
incorporates knowledge of the ways that an agent interacts with
each object while performing the activity. For example, some ob-
jects might have regions that the agent needs to be able to see or
touch.

7.1 Scene and Model Database

For learning the distributions of objects associated with an activity,
we use 100 indoor scenes from Fisher et al. [2012] augmented with
25 scenes to support the activities listed in Table 1. The objects are
arranged in a static support hierarchy, and are grouped into one of
125 categories. We manually augment the database with activity
knowledge by inserting proxy agents into each scene. Each activity
is also annotated with a set of objects in the scene that participate
in that activity. The same object may be used by different agents —
for example, a group of agents that are eating dinner may have their
own chair and plate objects but collectively share the dining table.
Our activity model is broken into two parts: an object occurrence
model and an object interaction model.

7.2 Object Occurrence Model

We use a Bayesian network to model the distribution of objects that
participate in each activity. We follow the learning approach used
for modeling object occurrence in example-based synthesis and se-
mantic modeling [Fisher et al. 2012; Chen et al. 2014]. We assume
each activity instance contains objects drawn independently from
some unknown distribution. For each activity observation in the
database, we count the number of instances of each object cate-
gory involved and represent this as an occurrence vector V in AL
where |C| is the number of categories.

The set of all occurrence vectors is used to learn the structure and
parameters of a Bayesian network using structure learning with
the Bayesian information criterion and dense conditional probabil-
ity tables [Margaritis 2003]. We use the booleanization transform
from prior work on modeling object occurrence in scenes to help
reduce the number of parameters in the conditional probability ta-
bles [Fisher et al. 2012]. Occurrence vectors which contain a never-
before-observed count in a category will receive zero probability —
if an agent has never been observed to use either zero or more than
three monitors at once, such setups will be deemed impossible by
our occurrence model.

There is one such Bayesian network for each activity, which can as-
sign a probability Poceur(a, O, ) to any candidate object collection
O, bound to agent a by first counting the number of instances of
each category to produce an occurrence vector V. This Bayesian
network structure can capture many logical dependencies observed
in the training data, such as a requirement to have either a laptop
or a monitor and keyboard to use a computer. For simple activities
such as an agent preparing for bed, we have often observed it suf-
ficient to simply assume all object categories occur independently,
which is equivalent to a Bayesian network with only the edges due
to booleanization and no additional learned edges.

7.3 Object Interaction Model

For an agent to execute an activity, each object needs to be posi-
tioned such that the agent can easily interact with it. We explicitly
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Figure 5: Scan plane extraction and geometric representation. From left to right: the input scan, the extracted planes, the extracted object
and agent support planes, and the final geometric representation inferred from the scan. Blue columns represent the expected height of an
object support plane and green columns represent the expected height of residual geometry that sits above the supporting plane.
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Figure 6: Object interaction annotations for an alarm clock, a
monitor, a chair, and a laptop.

model the way agents interact with objects by defining a set of in-
teraction maps for each model that represent polygons on the mesh
surface that an agent might interact with in different ways (see Fig-
ure 6). We consider the following types of interaction maps:

e Gaze: Regions that need to be visible to the agent.

e Touch: Regions that the agent needs to touch with its hands.
e Back support: Regions that support the agent’s back.

e Hip support: Regions that support the agent’s hips.

To evaluate how well a candidate object placement supports each
interaction, we start by sampling each interaction map surface into
a discrete set of surface points with associated normals, using a
density of approximately 1 point for every 20 cm? and guaranteeing
at least one point per connected component of the interaction map
surface. Given a candidate placement, we compute the interaction
score for a single point of our four interaction map types as follows:

e Gaze: If the ray from the agent’s head position to the surface
point is obstructed, the score is zero. Otherwise, the score is
max(cos(m — 6),0), where @ is the angle between the surface
normal and the gaze vector from surface point to agent head.

e Touch: The score is 1 — ed if a ray originating from either
the agent’s left or right shoulder to the point is unobstructed;
otherwise the score is 0. d is the distance in meters between
the point and the agent’s closest shoulder, and € = 0.01. This
term means that all else being equal, agents will prefer objects

they touch to be closer to them.

e Back support: The score is max(cos(m — 6),0), where 6 is
the angle between the surface normal and the support vector
from the surface point to the middle of the agent’s spine.

e Hip support: Instead of using a point discretization, an object
has a score of 1 for the hip support interaction if a cylinder
with radius 10 cm centered at the agent’s head pointing down
hits only polygons marked as “hip support” and 0 otherwise.

For gaze, touch, and back support, we further set a point’s interac-
tion score to zero if the spatial offset from the point to the corre-
sponding body part is more than 5% from any observed offset in
one of the training scenes. This captures important properties of
the interaction distribution, such as the expected distance between
a viewer’s eyes and the television screen or between a typist and
the keys on a keyboard. The total interaction score is the average
score over all interaction points. Using this approach, we assign an
interaction plausibility score between 0 and 1 to any agent a and
object o by taking the product of all interaction scores:

Pinteract(a7 0) = H

x€ { gaze,touch,back,hip }

Pi(a,0) 2)

When an interaction type is not supported by an object, it is re-
moved from this equation. The interaction score for a collection of
objects O, bound to an agent a is simply the product of the score
for each object:

}Dinteract(a7 Oa) = H }Dinteract(ay O) (3)
0€0,

Types of interactions. We do not consider many relevant types
of interactions such as “listen” for speakers or “feet” for piano ped-
als. These could be modeled independently, but for simplicity, we
map them onto another interaction type. In our results, the only
instances of this remapping are to represent “listen” and “provide
light” with the “gaze” interaction.

Object orientation. The orientation of most objects, such as
monitors and desks, does not need to be modeled explicitly; incor-
rect orientations can be detected from interaction constraints such
as the inability of the agent to see one side of a monitor or to touch
the drawers of a desk. However, a small number of object categories
such as keyboards have a strong expected orientation relative to the
agent that cannot be inferred from a simple “touch” map over the
object surface. If a keyboard is rotated 180 degrees relative to its
expected orientation, a person can still touch every key of the key-
board but typing is nevertheless much harder for most people to
perform. For objects in these challenging categories, we explicitly
record the orientation of each occurrence of each model relative to



the proxy agent in the scene database. We set Piouen (@, 0) to zero if
an object deviates by more than ten degrees from an observed orien-
tation. For our results, the only categories oriented by observation
are keyboards, computer mice, and silverware.

7.4 Activity Free Space

When acting, an agent needs to have space to comfortably move
around. For example, large obstructions under a desk or table can
make it difficult to maneuver our feet to easily get in and out of a
chair. To represent this expectation of free space, each activity has
an associated free-space region we model as a collection of bound-
ing boxes relative to the agent’s coordinate frame. When synthe-
sizing scenes, objects are not allowed to have any geometry in the
free-space region of any agent. The exception is an object with a
positive hip-support interaction for the agent (ex. a chair or sofa).
We determine the free-space region for each activity by scanning a
real person in a resting configuration during the activity. We then
voxelize the torso and lower body of the scanned skeleton and take
the set of voxels to be the free-space region.

8 Scene Synthesis

Our goal is to generate scenes that exemplify a scene template,
which encodes both the geometry of an input scan (Section 6) and
activities detected in the scan (Section 7). We start by defining
a scoring function for a given arrangement of objects by combin-
ing the terms from sections 6 and 7. Our final pipeline works by
generating many plausible candidate scenes using a simple greedy
approach, choosing high-scoring results from this collection of can-
didate scenes.

8.1 Scoring Function

Our scene template scoring function takes as input a scene template
T and object arrangement O and returns a value between O (totally
dissimilar) and 1 (complete agreement):

Score(T, O) = Pgeo(TG, OG) H }Dinteract(ay Oa) (4)

a€Ty

Here, T4 is the set of proxy agents in the scene template and O, is
the set of objects in O bound to the proxy agent a. Pge, ensures that
the generated scene agrees with the high-level geometric properties
encoded in the scene template. Pinteract asserts that objects needed
for an activity are at locations and orientations where the agent will
be able to interact with them effectively. PFpccur, Which returns a
high score only when each proxy agent in the template has a usable
set of objects bound, does not need to be explicitly modeled in our
scoring function because we will directly sample from the object
distribution for each activity. This ensures that each proxy agent in
the template will have a usable set of objects bound.

8.2 Synthesis Pipeline

We generate scenes that match a scene template by repeatedly gen-
erating candidate scenes using a simple greedy approach, choosing
scenes with the highest score according to Equation 4. To generate a
candidate, we first sample a set of proxy agents from the continuous
action distribution encoded in the scene template using the method
described in Section 4.3. Next, we use the per-activity Bayesian
network trained in Section 7.2 to sample a set of objects to insert
for each agent. This set is represented as a collection of category-
integer pairs indicating the number of each category that should be
present and bound to the agent in the final scene. We then start from
an empty scene and iteratively build up a list of candidate models

and densely-sampled locations to insert them, greedily adding the
best candidate object into the scene. More specifically, a candidate
object is defined by an agent the object belongs to, a scaled model
from the backing model database, and a location and orientation in
the scene where the model will be inserted.

procedure GENERATESCENE(SceneTemplate T)
Scene So < {}
AgentList A < SampleAgents(7T)
fora € Ado
SampledObjects(a) < SampleActivityModel(a)

while RemainingSampledObjects(a € A) # {} do

CandidateObjectList N « {}
fora € Ado

for ¢ € RemainingSampledObjects(a) do

for m € SampleModels(c, k., ) do
for [ € SampleLocations(S;, m, ki) do
N + NU{a,m,l}

Siy1 < S; Uargmax, ¢ Score(T, S; U o)

Figure 7: Pseudocode for generating a candidate scene that con-
forms to a given scene template.

The pseudocode for our synthesis method is given in Figure 7 and
steps of the algorithm execution are visualized in Figure 8. At each
step, we iterate over all possible agents in the template, and for
each agent, we iterate over categories that should be bound to that
agent in the final scene but have not yet been inserted. Within each
category, we randomly sample k,, different models from the back-
ing model database along with a uniform scaling term that converts
the model’s original coordinate axes into physical units. For each
model, we sample the surface of existing objects in the scene for k;
random locations and rotations where this object could plausibly be
placed. A location is plausible if three conditions are met:

e The object must be placed on the surface of a category that
it has been observed on at least once in the training scene
database (e.g., a rug cannot be placed on a table).

e The contact normal between an object and its parent surface
must not deviate more than 5 degrees from an observed con-
tact normal (e.g., mugs cannot be placed on a vertical wall).

e When placed at this location, the object must not collide with
any other object.

We evaluate the change in the scene scoring function for the k;
locations for each of the k,, models for each agent and category.
We then insert the object that yields the greatest increase in score,
stopping when all objects have been added. If no valid object place-
ment can be found or the resulting scene has zero score, the candi-
date scene is rejected. All results in this paper use k,, = 5 and
ki = 10000. Note that inserting an object may affect the inter-
action score of a previously-placed object, such as a picture frame
blocking the visibility of a monitor.

Our final synthesis pipeline simply repeats the per-scene synthesis
process many times, choosing the top-ranked results. This produces
a diverse set of plausible scenes while avoiding local minima which
can occur due to poor activity model sampling (e.g., sampling three
monitors on a desk that can only comfortably fit one monitor) or
a bad model choice (e.g., choosing a dining table model that is
not large enough to comfortably support the given number of din-
ers). We explored other scene sampling approaches, such as using
a Markov Chain Monte Carlo method; however, we found the high
proposal cost to be prohibitive and the chain was extremely slow to
mix [Yeh et al. 2012].
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Figure 8: Visualization of our scene synthesis algorithm. Given a scene template, we first sample a random set of proxy agents and the
objects needed by each agent. We then iteratively insert objects into the scene. The start of an iteration is shown along with three candidate
placements proposing to add a second monitor to the scene. In (A), Pyeo decreases and the interaction score of the first monitor decreases
because its screen is no longer visible by the agent. In (B), Pyeo improves; however, the monitor screen is facing away from the agent and its

PBinteract term is 0. In (C), both Pyeo and Pipterac: improve.

Scene Diversity. For content creation applications, the goal is to
produce a diverse set of results that span the design space of the
problem [Xu et al. 2012]. For our dataset, the key source of diver-
sity comes from sampling a different sets of objects for each agent
with the activity occurrence model in Section 7.2. Additional di-
versity comes from choosing k., to be smaller than the number of
models in the database with a given category. By restricting the
set of models available, the algorithm will be forced to take differ-
ent choices that often have cascading effects on later stages as the
subsequently placed objects are forced to redistribute themselves to
enable agent interaction. If desired, additional control over the di-
versity can be implemented by choosing at each iteration any object
whose score improvement is within D% of the maximum improve-
ment. Our method yields the least diversity with D = 0%, and
as D increases so does the scene diversity at the potential cost of
placing objects at locations that are harder for the agent to interact
with.

Multi-agent objects. Some objects in a scene need to be shared
by many agents, such as diners at a dining table. To accommodate
this, when inserting an object o to a scene we bind it to any agent
a who has a non-zero interaction score for this object according
t0 Pinteract(a, 0). This method works well for many environments,
but can be confused by tightly packed scenes with many similar
and nearby agents, such as restaurants or classrooms. For such
environments, a more effective approach could be to use a hier-
archical scene decomposition to model the way agents cluster into
subgroups [Liu et al. 2014].

Model consistency. When multiple instances of the same cate-
gory occur in a scene, it is sometimes the case that the instances
are consistent (all instances use the same geometric model) or di-
verse (different instances use different models). This is typically a
stylistic choice and does not affect the functionality of the scene. To
model this in our synthesized scenes, for each category we compute
the percentage of training scenes that use a consistent model for this
category. We use the same frequency when determining whether a
category in a modeled scene should use a consistent model.

9 Results and Evaluation

To evaluate our work, we use a Microsoft Kinect sensor to scan a
set of seven cluttered indoor environments that support the activities
listed in Table 1. We use a volumetric fusion approach [NiefSner
et al. 2013] to align scanned RGB-D frames and reconstruct 3D
meshes, which are used as the input of our method (see Figure 9,
left). We then extract scene templates for each environment using

the method described in Section 5 and synthesize 500 scenes from
each scene template.

The time required to synthesize each scene is approximately linear
in the number of objects present in the environment; the student
office depicted in Figure 4 took 41.0 seconds per synthesized scene
on a 4-core Intel i7 CPU. Smaller scenes such as the dining table in
Figure 2 take an average of 15.7 seconds per scene. Over 50% of
the compute time is spent evaluating bounding-volume hierarchy
intersections at each candidate location to verify that it does not
collide with an existing object.

Our scene and model database, as well as the per-scene activity
annotations and the per-model interaction annotations, can be found
on the project website'.

9.1 Synthesis Results

Figure 9 shows five scans along with three of the scenes generated
by our method. Our synthesis algorithm produces a diverse and
plausible set of scenes that emulate the functionality of the scanned
environment. For each agent implied by the scan, we directly syn-
thesize a viable set of objects up to our understanding of each ac-
tivity as encoded in the activity model from Section 7.

Our approach deals well with scenes that mix different types of
activities. For example, in the student office scene in Figure 9, a
couch is present amongst a large number of computer desks. The
algorithm correctly separates the computer agents from the agent
sitting on the couch. Furthermore, although most database scenes
with a couch occur in a living room which also contains a coffee
table, the algorithm does not synthesize a coffee table in front of the
couch. While this relationship is strongly reinforced by the training
examples, the presence of a coffee table is not supported by the
geometric matching term P, for this scan.

9.2 Baseline Synthesis Comparison

To demonstrate the advantage of our activity-centric approach, we
compare our synthesis method against a baseline synthesis algo-
rithm based on previous work that we condition on the geometric
layout of a 3D scan [Fisher et al. 2012]. This method requires a
set of training scenes which contain the desired object distribution.
For scenes containing a single, discrete activity such as the com-
puter desks shown in Figure 10, our scene database already con-
tains many similar scenes. For the larger scenes shown in Figure 9,
to enable a comparison we manually created four additional scenes
with similar object distributions but different object arrangements.

http://graphics.stanford.edu/projects/actsynth/
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Figure 9: Left: input 3D scan. Right: modeling results for different environments using our method.
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Figure 10: Baseline synthesis results. For the two dining scenes
shown, the input scan and results from our method are depicted in
Figure 2.

These scenes were constructed to be as favorable as possible to the
prior method; for example, each training scene created for the “stu-
dent office” scene contains exactly four desks and one couch.

Our comparison implements the example-based arrangement ap-
proach in Fisher et al. [2012]. This method starts by sampling
the total set of objects (the “occurrence” model), then arranging
the objects according to a per-category multivariate-Gaussian score
function S(O) (the “arrangement” model). To support loosely con-
ditioning the generated scene on an input scan, we instead consider
the final arrangement score to be a linear combination of the ar-
rangement score S(O) and the scan-based Ppgeo(O) term described
in Section 6. Because it is required by the baseline method, for
each category we also manually oriented all objects in our database
into a canonical coordinate frame; this information is not needed or
used by out synthesis method.

Figure 10 shows example scenes generated using this baseline syn-
thesis method. The baseline method generates a valid set of objects
and correctly recovers the orientation of some large objects such
as the chairs from the scan geometry, but it still produces many
invalid arrangements and object orientations. Because it fails to un-
derstand how people interact with dining tables it does not position
or orient objects such as silverware and plates well. For the isolated
computer desk scenes, the objects are mostly arranged and oriented
reasonably because the scene is governed by a single, dominant
orientation. However, because this method does not understand
how people interact with computers, the resulting scenes still con-
tain significant errors such as monitors and paintings that cannot be
viewed easily.

9.3 Perceptual Evaluation Study

We use a judgment study to quantitatively evaluate the function-
ality and plausibility of our synthesized scenes compared against
human-made scenes and our baseline synthesis approach. We use
seven indoor scenes including the top four shown in Figure 9. For
each input scan, we then obtained a set of 3D scenes for each ex-
perimental condition:

1. Manually designed: Four students not associated with the
project were presented with a picture of each environment and
the 3D scan and asked to model a functionally similar scene.
Scenes were modeled with the same model database described
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Figure 11: Perceptual evaluation results. We ask a group of users
to evaluate the plausibility and functional similarity to an RGB-D
scan of scenes designed by humans and scenes synthesized by our
method and a baseline method. Here, we show the average rating
the users provided to each experimental condition.

in Section 4.2 and modeling took approximately fifteen min-
utes per scan.

2. Activity-centric synthesis: We sort our 500 synthesized scenes
according to Pgeo(Tc, Og), choosing 20 scenes at random
from the top 100 scenes. This selects synthesized scenes that
respect the geometry of the scan while also choosing scenes
with a diverse set of objects.

3. Baseline synthesis: We synthesize ten scenes use the baseline
approach described in Section 9.2, using the same technique
to generate diverse scenes that also respect the scan geometry.

Twenty students not involved in the study and also separate from
those who modeled scenes were recruited to evaluate each scene
in each condition. They were presented with multiple pictures of
the scan from different angles and asked to evaluate a virtual scene
on its plausibility and functional similarity to the scanned environ-
ment on a Likert scale ranging from 1 (implausible and functionally
dissimilar) to 5 (plausible and functionally similar). We provide the
complete experimental setup for both the scene modeling and scene
evaluation tasks as supplemental materials along with the modeled
and synthesized scenes used for each condition.

The results of this evaluation are shown in Figure 11. As expected,
on average evaluators found the scenes generated by people to be
both plausible and functionally similar. Our algorithm performed
best on single and double dining table scenes, where agents are
well-defined and the expected distribution over the arrangement of
objects is well-captured by our model. In comparison, by not in-
corporating an understanding of activities, the baseline synthesis
algorithm received the lowest rating on these dining scenes. The
baseline method consistently received the lowest scores, failing to
capture the arrangement and orientation of objects in large scenes.

Our synthesized scenes received a functionality and plausibility
score of either 4 or 5 for 76% of user ratings, indicating that users
found them to be of overall high quality. This is valuable for
content-generation tasks, where we would like to be able to gen-
erate large quantities of viable game and film content with little
to no supervision. In comparison, the baseline method received a
score of 4 or 5 only 22% of the time.
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Figure 12: Retrieval results using [Li et al. 2015]. In the second
column, we show the results using a 6,000 model database specifi-
cally tailored to contain the models in the scan. In the third column,
we show the results using our 12,000 model database containing
more general indoor objects. Geometric retrieval methods often
fail when insufficient key points can be extracted (e.g., the round
table and the small items on the table) or the extracted key points
cannot form consistent constellations due to partial scan or occlu-
sions (e.g., the chairs with only the upper parts scanned).

9.4 Geometric Retrieval vs Scene Modeling

Our method uses a simple geometric matching term to capture
the scan geometry. When scan quality is high, it is possible
to instead use a finer-scale geometric matching term to produce
stronger alignment between the generated scene and the provided
scan [Satkin and Hebert 2013; Li et al. 2015]. Similarly, it is possi-
ble for the activity model presented in Section 7 to inform a geomet-
ric retrieval method. To better understand the behavior of geometric
retrieval methods, in Figure 12, we show a geometric retrieval re-
sult on three different input scans. Although it is able to retrieve
some large furniture objects, it is not always successful and is es-
pecially prone to error when the scanned model is not present in
the database or contains smooth, indistinct features such as a round
table. Our method, which focuses on scene modeling instead of ge-
ometric retrieval, is still able to produce a viable scene that roughly
aligns with the scanned geometry. Note that our method is unable to
model parts of the scene corresponding to activities it cannot detect,
such as the cart in the bottom scan.

9.5 Interaction Terms

In Figure 13 we show the effects of removing different interaction
terms from Equation 2. Removing the “gaze” interaction causes
objects such as monitors or speakers to sometimes rotate in ways
that are geometrically consistent but not visible to an agent; simi-
larly, objects such as posters may be occluded by other objects in
the environment. Removing the “touch” interaction causes objects
such as desktop computers to be oriented in unusual ways, or ob-
jects such as mugs to be placed in difficult to reach and occluded
areas. Removing the “hip support” interaction can cause too many
objects to be placed on sittable areas such as couches producing a
scene whose functionalities are inconsistent with those of the input
scan. Removing the “back support” interaction can cause sitting
objects to be oriented in unusable ways.

N

“Hip support” interaction removed “Back support” interaction removed

Figure 13: Interaction map comparison. We show an input scan
and synthesis results with different interaction terms removed. Re-
moving interaction terms causes the resulting scenes to be function-
ally implausible in different ways.

Figure 14: Synthesis results for a scene which contains a laptop,
mouse, and various food items.

9.6 Limitations

The key assumption of our approach is that an environment can be
decomposed into a set of regions where the layout of objects in each
region are strongly influenced by their interactions with a halluci-
nated proxy agent. We can produce good results for scenes where
this assumption holds and where we have good models for the ac-
tivities that take place in each region. For environments where we
do not have a model for all activities, our method simply ignores
these objects. For example, in Figure 1, a clothes hamper and asso-
ciated clothing on the floor of the bedroom is not captured by our
method because this is not one of the activities represented in our
database. The synthesized scenes still support the detected bed and
computer activities.

Sometimes a scene contains a region that does not quantize well
into one of our activities. Consider the environment shown in Fig-
ure 14. This scene contains a mix of objects belonging to both
“dining table” and “use desktop PC” activities, but neither cate-
gorization is entirely appropriate. Our activity detector described
in Section 5.3 successfully detects the agent support plane but our
action classifier returns positive activation for both activity types.



Whether synthesized as a dining scene or as a computer desk scene,
neither result is wholly satisfactory. In practice, many regions are
a composite of multiple types of activities, and the ability to in-
corporate this “weighted activity vector” directly into the synthesis
approach is an interesting avenue of future research.

Our method does not directly model large-scale object layout con-
straints which can cause the synthesized results to be implausible.
Although we use the geometry of a 3D scan to capture coarse global
layout, our approach can still produce scenes that violate many
common design patterns in indoor scenes. Consider the large din-
ing scene shown at the bottom of Figure 9. The synthesized scenes
often separate the tables by a significant gap.

10 Conclusion

We have explored ways to use activities encoded in a scene tem-
plate as a focal point to represent the semantics of 3D scenes. We
believe that a deep understanding of activities is crucial for scene
understanding and reconstruction tasks. Complex activities such as
“cooking fried chicken” cover a wide range of sub-activities and are
done over a broad area of space interacting with potentially hun-
dreds of objects. A kitchen is structured so that these activities
can be easily and efficiently performed. This is consistent across
human-made environments, which are built precisely so that we
can act in them. The activities we have explored are dramatically
simplified compared to their real-life counterparts—the agents are
well-localized and object interactions can be modeled without com-
plex multi-stage dynamics such as opening cabinets or rearranging
furniture. Nevertheless, we feel that our approach serves as a sound
basis upon which to explore extensions that support a more general
class of activities.

We evaluate how well an agent can perform an activity by its abil-
ity to interact with nearby objects in specific ways. Our activity
model is learned from an augmented database of virtual scenes and
each object is manually tagged with the regions that admit differ-
ent types of interactions. The challenge with learning from these
virtual databases is that they are static — the dynamic motion exe-
cuted by agents performing actions in these environments must be
manually approximated and annotated. A crucial long-term goal
is to learn our activity model directly from observation of humans
or other agents. This is challenging because object segmentation,
recognition, and tracking are hard in natural environments. Never-
theless, learning from real observations allows for a more faithful
activity model with a deeper understanding of how activities are de-
composed into actions and the different ways agents interact with
objects. We would like to move beyond the simple set of interaction
types described in Section 7.3 to a richer model of the interaction
between agents and objects.

The desire to generate novel, diverse content occurs in many ap-
plications. One direction that has recently seen growing success is
generating content to train machine learning systems. For exam-
ple, commercial skeleton tracking software works by training on a
large set of synthetic skeletons derived from an underlying model of
human motion [Shotton et al. 2013]. Moving forward, we believe
that many scene understanding systems will rely upon training on
a large, synthetic training set of annotated scenes. To be effective,
these training scenes need to be arranged in plausible configurations
similar to those observed in the real world. Collecting this training
data without scene synthesis is prohibitive, as the cost of arranging
and acquiring real-world data that is well-segmented and annotated
is immense. We believe scene modeling methods such as the one
we present will one day be an effective method to generate training
data for recognition tasks in robotics and vision that deal with the
relationships and arrangements of objects in the real world.
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