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Abstract
The discrete Laplace-Beltrami operator plays a prominent role in
many Digital Geometry Processing applications ranging from de-
noising to parameterization, editing, and physical simulation. The
standard discretization uses the cotangents of the angles in the im-
mersed mesh which leads to a variety of numerical problems. We
advocate use of the intrinsic Laplace-Beltrami operator. It satis-
fies a local maximum principle, guaranteeing, e.g., that no flipped
triangles can occur in parameterizations. It also leads to better con-
ditioned linear systems. The intrinsic Laplace-Beltrami operator is
based on an intrinsic Delaunay triangulation of the surface. We give
an incremental algorithm to construct such triangulations together
with an overlay structure which captures the relationship between
the extrinsic and intrinsic triangulations. Using a variety of exam-
ple meshes we demonstrate the numerical benefits of the intrinsic
Laplace-Beltrami operator.

1 Introduction
Delaunay triangulations of domains in R2 play an important role
in many numerical computing applications because of the quality
guarantees they make, such as: among all triangulations of the con-
vex hull of a set of points in the plane the Delaunay triangulation
maximizes the minimum angle. Many error estimators in finite el-
ement approaches to the solution of partial differential equations,
e.g., are directly related to the minimum angle and are more fa-
vorable if this minimum is maximized (for an extensive discussion
see [Shewchuk 2002]). The construction of such triangulations for
domains in R2 is now standard textbook material and a basic in-
gredient in many meshing algorithms. For immersed surfaces in
R3, which are given as simplicial 2-manifold meshes (possibly with
boundary), the picture is not nearly as clear. Algorithms which
numerically manipulate such meshes are of great importance in
Digital Geometry Processing applications. Examples include sur-
face denoising [Desbrun et al. 1999], thin-shell simulation [Grin-
spun et al. 2003], construction of discrete minimal surfaces [Pinkall
and Polthier 1993], surface parameterization [Desbrun et al. 2002;
Lévy et al. 2002], computation of discrete conformal structures [Gu
and Yau 2003; Mercat 2001], and geometric modeling [Botsch and
Kobbelt 2004b], among many others. Similar to the setting of do-
mains in R2 one also finds that meshes which satisfy an intrinsic
Delaunay criterion give rise to better numerical behavior in all the
above geometry processing examples.

A classic algorithm to convert a given planar triangulation into a
Delaunay triangulation involves edge flipping, whereby an edge
which violates the local Delaunay criterion is flipped until no such
edge remains. In the same vein, one can construct an intrinsic De-
launay triangulation (see Figure 1) of a simplicial surface in R3 by
performing intrinsic edge flips (see Figure 2). Importantly, because
the edge flips are intrinsic the shape of the original embedded mesh
does not change. This notion of intrinsic Delaunay triangulation
(iDT) takes into account only the intrinsic geometry of the mesh,
i.e., the mesh is considered as an abstract surface with a metric that
is locally Euclidean except at isolated points (the vertices of the
mesh) where it has cone-like singularities. The relevant data read
off from the input mesh are the combinatorics of its edge graph as
well as the length of each edge. With this data alone one may now

Figure 1: Left: carrier of the (cat head) surface as defined by the
original embedded mesh. Right: the intrinsic Delaunay triangula-
tion: yellow edges are part of the original and intrinsic Delaunay
triangulation; red edges resulted from flipping; and green edges
denote original edges which are not part of the intrinsic Delaunay
triangulation. Note that the red edges are geodesic lines on the
original surface.

ask of each interior edge whether it satisfies the local Delaunay
condition since the associated predicate can be based solely on the
observed edge lengths and local combinatorics (and thus entirely
on intrinsic data). The intrinsic flip algorithm proceeds as follows:
While there is an edge that violates the local Delaunay criterion,
perform a combinatorial flip on it and update its length. Note that
this procedure does not change the intrinsic geometry of the input
mesh at all. One may visualize the iDT of such a mesh as a graph
drawn on the original simplicial surface, as shown in Figure 1. It
is not hard to see that the intrinsic flip algorithm terminates, thus
producing an intrinsic triangulation with all interior edges satisfy-
ing the local Delaunay criterion [Indermitte et al. 2001]. Recently,
Bobenko and Springborn [2005] have shown that as in the planar
case the iDT is essentially unique and satisfies a global empty cir-
cumcircle property. A technical difficulty that one encounters when
dealing with iDTs is that they are not necessarily regular triangu-
lations. A triangulation is called regular if each triangle is incident
with three different edges and three different vertices. It is called
strongly regular if it is regular and the intersection of two triangles
is either empty or one edge or one vertex, and if the intersection of
two edges is either empty or one vertex. The usual definition of the
term triangulation implies strong regularity. This is too narrow for
our purposes. For example, edges of an iDT may form loops (see
Figure 3). Therefore, we do not require triangulations to be regular.

With an iDT in hand one may define an intrinsic Laplace Beltrami
(iLB) operator [Bobenko and Springborn 2005]. In contrast to the
extrinsic Laplace Beltrami (eLB) operator, which is based on the
original triangulation, the iLB operator has many favorable numer-
ical properties. For example, in the construction of discrete har-
monic parameterizations one can guarantee injectivity of the com-
puted parameterization because a discrete maximum principle holds
for the iLB while this is generally not the case for the eLB. (These
issues with the eLB have been the cause for many proposals to nu-
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Figure 2: Given a pair of adjacent triangles in R3 their intrinsic
geometry can be visualized by isometrically mapping them to the
plane. If the edge is not Delaunay it is flipped inside the original
surface (original edge: green; flipped edge: red). The flipped edge
is a geodesic segment in this surface and the surface remains un-
changed.

merically “fix” the eLB.) More generally, the iLB is numerically
better conditioned than the eLB leading to more efficient appli-
cations in particular when higher powers of the iLB are required.
The iDT is also useful in other settings. For example, Circle Pat-
terns [Kharevych et al. 2006], used in the construction of discrete
conformal maps, require the intrinsic Delaunay property of each
edge. In that setting the use of iDTs leads to results with far lower
quasi-conformal distortion (see Figure 8).

Contributions In this paper we describe an algorithm for the con-
struction of iDTs for immersed simplicial 2-manifold meshes (pos-
sibly with boundary) of arbitrary topology. A first version of the
algorithm performs intrinsic edge flips only and requires little more
than a standard edge based data structure. In some applications one
also requires knowledge of the original (extrinsic) edges crossed by
the intrinsic (geodesic) triangulation edges. This requires the main-
tenance of an overlay data structure. We show that this structure can
be built incrementally during flipping and depends only on combi-
natorial predicates. It is well known that edge flipping can have a
long running time (edge flipping in planar triangulations, e.g., takes
Θ(n2) time). Empirically we find the algorithm to run quite fast
however, and its runtime to be easily dominated by subsequent nu-
merical computing tasks. We present statistics for a variety of in-
put meshes and show, among other observations, that the condition
number of the associated Laplace-Beltrami operator can be notice-
ably reduced when using the iDT. Coupled with the guarantee of
satisfying a discrete maximum principle, this results in more robust
and efficient numerical behavior for a host of DGP applications.

2 Intrinsic Delaunay Triangulations
We begin this section with a brief recall of the relevant intrinsic
geometry of piecewise linearly immersed simplicial meshes, before
describing the edge flipping algorithm without (Section 2.2) and
with (Section 2.3) overlay maintenance.

2.1 Piecewise Flat Surfaces

A piecewise flat surface (PF surface) is a 2-dimensional manifold
equipped with a metric such that every interior point of the manifold
has a neighborhood that is isometric to a neighborhood in the plane,
except for a number of isolated points, the cone points. Each cone
point has a neighborhood that is isometric to a neighborhood of
the apex of a Euclidean cone. Small circles of radius r around a
cone point have length αr with α 6= 2π. The number α is the
cone angle of the cone point (which may be smaller or larger than
2π). Its Gaussian curvature is 2π − α. We always assume that the
boundary of a PF surface, if present, is piecewise geodesic.

A concrete way to construct PF surfaces is through gluing poly-
gons: take a set of planar polygons together with a partial isometric
edge pairing, i.e., a set of pairs of different polygon edges such that
the edges in each pair have the same length and every edge is con-
tained in at most one pair. Gluing the polygons along the paired
edges one obtains a PF surface. The unpaired edges make up the
boundary. We emphasize that the notion of a PF surface belongs
to the intrinsic geometry of surfaces: here we are not interested in
whether or how a PF surface can be isometrically embedded in R3.

When we speak of gluing polygons together, we mean the abstract
construction of identifying corresponding points along the edges.

A possible representation which describes a triangulation of a PF
surface consists of a graph structure to describe an abstract surface
triangulation (which need not be regular) together with a labeling
of the edges by positive numbers signifying edge length. The only
constraint on the edge lengths is that they must satisfy the triangle
inequalities for each face. For if that is the case, one can construct
all the triangles and glue them to obtain a PF surface. All cone
points are vertices of the triangulation. Such a triangulation is a
Delaunay triangulation of a PF surface if for each interior edge
the local Delaunay criterion is satisfied: the sum of the opposite
angles in the adjacent triangles is less than π. For more on Delaunay
triangulations of PF surfaces see [Bobenko and Springborn 2005]
and references therein.

Note: Since a Delaunay triangulation of a PF surface is not nec-
essarily regular, it is essential that the data structure which is used
to represent the abstract surface triangulation can represent non-
regular triangulations. For example, winged-edge, half-edge, or
quad-edge data structures may be used. A data structure based on
triangle-vertex incidences is not suited.

2.2 Intrinsic Delaunay Flipping Algorithm

Any 3D surface mesh with flat faces is intrinsically a PF surface.
In general, every vertex of such a mesh is a cone vertex. Suppose
an immersed surface (in R3) is given in the form of a 2-manifold
triangle mesh. More precisely, we have a 2-manifold complex
K = (V, E, T ) of vertices, edges, and triangles together with the
point positions P (vi) = pi ∈ R3 (one for each vertex vi ∈ V ).
Piecewise linear (PL) interpolation over each triangle then defines
the carrier of the surface. For this surface we seek an iDT. This
triangulation depends only on the complex K and metric data asso-
ciated with each edge eij ∈ E. This metric data is the Euclidean
length L(eij) = lij = ‖pi − pj‖ of each embedded edge eij ∈ E.
The pair (K, L) constitutes the input to the iDT algorithm which re-
turns a complex with corresponding intrinsic lengths (K̃, L̃). Note
that once L is computed P will play no further role in the algorithm.

For each edge in Ẽ we will also report all edges in E crossed by
it (if any). Note that an edge in Ẽ may cross a given edge in E
multiple times.

While K is generally strongly regular, we do not require regularity.
In fact, the output of the algorithm will in general not be regular
(see Figure 3).

identified edge

unfold

valence 3 vertex valence 2 valence 1

cut here to
unfold flip flip result

Figure 3: Even if the input mesh is strongly regular it is quite easy to
arrive at non-regular configurations through intrinsic edge flipping.
Here a vertex of valence 3 is reduced to a valence 1 vertex through
two intrinsic flips (original edges: green; flipped edges: red).

The transformation of (K, L) into (K̃, L̃) is straightforward and
based on the classic edge flipping algorithm:
Require: (K, L)

Ensure: (K̃, L̃) is intrinsic Delaunay
∀e ∈ E : Mark(e)
Stack s← E
while !Empty(s) do
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eij ← Pop(s) and Unmark(eij)
if !Delaunay(eij) then

ekl ← Flip(eij) and compute lkl

for all e ∈ {ekj , ejl, eli, eik} do
if !Mark(e) then

Mark(e) and Push(s, e)
end if

end for
end if

end while
return (K̃, L̃)← (K, L)

The predicate Delaunay(eij) returns true for boundary edges. For
interior edges it checks whether the edge eij is locally Delaunay
using only the edge lengths of the two adjacent triangles tijk and
tlij . The edge is locally Delaunay iff αk

ij +αl
ij ≤ π, where αk

ij and
αl

ij are the angles at k respectively l opposite the edge eij . Using
the Cosine Theorem one may calculate αk

ij + αl
ij as

αk
ij+αl

ij = cos−1

 
l2kj + l2ik − l2ij

2lkj lik

!
+cos−1

 
l2jl + l2li − l2ij

2ljllli

!
.

Alternatively one may compute the cotan weight of the LB operator

wij = 1
2

�
cot αk

ij + cot αk
ij

�
directly from the edge lengths. Using l±±±ijk = ±lij ± ljk ± lki as
shorthand for signed sums of edge lengths around a triangle tijk we
get
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and the analogous formula for 1
2

cot αl
ij . This expression follows

from the half-angle theorem

tan
αk
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2
=

vuut l+−+
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using tan(2x) = 2 tan x/(1 − tan2 x). The edge eij is locally
Delaunay iff wij ≥ 0. This latter implementation of the Delaunay
predicate avoids inverse trigonometric functions. Also, one may
reuse the final weights wij to calculate the iLB operator (see Sec-
tion 3).

The fact that this algorithm terminates is shown in [Indermitte et al.
2001]. The proof is essentially the same as for planar triangulations.
Infinite loops cannot occur because a suitable function on the set of
triangulations decreases with every edge flip. In the case of PF sur-
faces an added complication results from the fact that the number
of triangulations on a fixed vertex set may be infinite. So an addi-
tional requirement for a “suitable function” is that it is unbounded
on any infinite set of triangulations. That the output (K̃, L̃) is
globally intrinsic Delaunay, i.e., that the local Delaunay property
implies a global empty circumcircle property, requires some more
work [Bobenko and Springborn 2005].

2.3 Incremental Overlay

The information contained in (K̃, L̃) is sufficient to assemble the
iLB operator and perform computations with it. In some applica-
tions the resulting values (at vertices) are to be interpolated across
the carrier surface. Recall that the carrier surface is defined through
PL interpolation with respect to the input triangulation. However,
the data arising from a computation using the iLB operator is most

naturally PL interpolated with respect to the iDT. To be able to per-
form both types of interpolation simultaneously, as is required in
texture mapping, for example, one needs a graph structure repre-
senting the overlay of both triangulations K and K̃. We describe
an incremental algorithm which maintains this overlay during flip-
ping.

We maintain a graph structure (e.g., a half-edge data structure)
which describes, at each stage of the flip algorithm, the overlay
of the original triangulation and the current one. The vertices of the
original and of the current triangulation (they have the same vertex
set) are also vertices of the overlay graph. Additionally the overlay
graph contains vertices corresponding to points where an edge of
the original triangulation is crossed by an edge of the current trian-
gulation. These we will not call vertices but crossings. The overlay
graph structure distinguishes between vertices and crossings so that
we can tell them apart. The edges of the overlay graph we will
call segments because they are segments of edges of the original
and current triangulations. Each segment is labeled red, green, or
yellow: green if it is part of an edge that belongs to the original
triangulation but not the current one (we will also call such an edge
a green edge), red if it is part of an edge that belongs to the current
triangulation but not the original one (a red edge), and yellow if it is
part of an edge that belongs to both the original and current triangu-
lation (a yellow edge). Note that from this overlay graph structure
one can reconstruct both the original and the current triangulation.
Green (red) edges correspond to sequences of more than one green
(red) segment, because an edge of the current triangulation that does
not belong to the original triangulation must cross an original edge
(and vice versa). A yellow edge on the other hand corresponds to
a single yellow segment, because such an edge cannot cross any
other edges. Each crossing has four adjacent segments which are
alternatingly colored green and red.

Initially, the original triangulation is also the current one, so it is
also the overlay graph, with all edges being yellow segments. Per-
forming a flip now requires updates of the overlay graph. We will
see that this requires only combinatorial information. After the new
combinatorics are established, the edge lengths can be updated in-
dependently.

Updating the Overlay Topology We illustrate this using the
examples shown in Figure 4. First, consider the flip shown on the
left. The horizontal red edge (consisting of four segments) which is
to be flipped, is removed. This requires merging of pairs of green
segments (previously crossed by the red edge) incident to red/green
crossings. This leaves us with a red quadrilateral (formed by the
two triangles incident on the edge) with five green segments on its
interior. Inserting the (vertical) flipped red edge will lead to some
new crossings with green segments. Importantly, we can tell which
of these green segments will be crossed and in what order: The
green segments that are crossed are those that are incident to the
left as well as right boundary of the quadrilateral. (In this account-
ing the top and bottom vertices do not belong to either boundary.)
This eliminates two of the five segments from further consideration.
The remaining segments are incident to the boundaries in the same
order as they are crossed by the flipped red (vertical) edge. This
is so because there are no vertices in the interior of the quadrilat-
eral and crossings cannot occur between green segments. So we
know which green segments to split and how to insert the flipped
red edge. None of these considerations required any coordinates or
lengths.

The flip shown on the right of Figure 4 illustrates the special case
when a yellow edge is flipped, or, vice versa, a red edge is flipped
onto a green edge. The procedure is the same as described above,
except that flipping a yellow edge does not lead to its removal but
rather only to a color change (making it green). Reversely, if a red
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Figure 4: Maintaining the overlay topology. Left: the common case
when a red edge is flipped and remains red. Right: the special cases
when a yellow edge is flipped, or, reversely, a red edge is flipped
onto a green edge. Each case also illustrates a variety of possible
green/red crossings.

edge is flipped onto a green edge, the result is a yellow edge.

In either example, some or all of the four boundary edges of the
quadrilateral might be yellow instead of red. Such edges do not
contain any crossings. The procedure remains the same. This con-
cludes the description of all possible cases.

Updating Edge Lengths First note that during the algorithm,
lengths of segments are not required, only lengths of edges. If ac-
tual crossing intersection points, e.g., in terms of segment lengths,
are required, one can find these by laying out the quadrilateral hinge
of a given edge. We may think of segment lengths as barycentric
coordinates with respect to their containing edge (and its length).
Assuming that all segment lengths are known before an edge flip,
one can lay out an isometric copy of the red quadrilateral in the
plane and obtain coordinates for the four vertices and all crossings
of green segments with the boundary. These can be used to obtain
coordinates for the new crossings of green edges with the flipped
edge, and thus to calculate the new segment lengths. The layout
process must be able to cope with identified edges/segments or ver-
tices, since the triangulation is in general not regular. In particular
a given vertex in the mesh may have multiple different (u, v) coor-
dinates in the layout.

3 IDT in Applications
The discrete Laplace Beltrami operator is central in applica-
tions ranging from denoising/smoothing (intrinsic mean curva-
ture flow [Desbrun et al. 1999]), to editing (using the bi-Laplace-
Beltrami operator [Botsch and Kobbelt 2004b]), texture mapping
(using a pair of discrete harmonic functions [Desbrun et al. 2002]),
and construction of discrete minimal surfaces [Pinkall and Polthier
1993], to give but a few references (see also the references in [Grin-
spun et al. 2005]). In all of these cases one needs to solve (se-
quences of) linear problems involving a system matrix ∆ with off-
diagonal entries

∆ij = −(cot αk
ij + cot αl

ij)

for edge eij where αk
ij is the angle opposite to edge eij in triangle

tijk (and similarly for αl
ij). The diagonal ∆ii holds the negative

sum of the off-diagonal entries in that row. (We ignore here scaling
factors which arise in various applications.) ∆ is symmetric and
positive definite, given appropriate boundary conditions. These are
typically given as desired values (Dirichlet data) or cross bound-
ary derivatives (Neumann data). Non-Delaunay edges in the mesh
give rise to negative cotan weights, which leads to a loss of the lo-
cal (discrete) maximum principle. One symptom of this is the loss
of injectivity (“flipped triangles”) when computing texture maps.
Such issues are entirely avoided if we use the iLB operator, i.e.,
∆ij depends on the iDT. Note that the number of non-zero entries
in the matrix is the same for both eLB and iLB, thus having no im-
pact on the operations count in a single application of the matrix to
a vector.

Table 1 gives some statistics of the edge flipping algorithm for a
number of representative meshes. Comparing the total number of

Model V flips simple lgst. κi/κe

Cat hd. 131 45 40 3 0.8114
Bny hd. 741 380 275 6 0.6139
Bty. Frk. 1042 560 364 12 0.1841
Hygeia 8268 4017 2861 6 0.1053
Planck 25445 6417 5584 5 0.7746
Bunny 34834 2365 2283 4 0.0758
Camel 40240 17074 12618 22 0.7218
Horse 48485 3581 3127 7 0.6734
Feline 49864 12178 10767 7 0.5746

Table 1: Statistics for some representative meshes. Number of: ver-
tices; edge flips; flipped edges crossing only two original triangles;
maximal number of segments in an iDT edge; and condition number
improvement as ratio for iLB and eLB). All runs were well under 1
second on a 2GHz Athlon.

flips with the number of iDT edges which cross exactly two origi-
nal triangles (“simple”) we see that this simplest case is by far the
most common. The other extreme is the iDT edge consisting of the
most segments, i.e., crossing the longest (“lgst.”) chain of original
triangles. These are generally also short with the notable exception
of the Camel where the longest chain of segments is length 22. An
aggregate measure is the total number of crossings generated for
all iDT edges: Max Planck (7167), Bunny (2434), Camel (25043),
Horse (4027), and Feline (13317). Here the Camel stands out with
more than half as many crossings as original vertices. More typical
are cases such as Horse and Feline. At the extreme are high quality
remeshes such as those of Botsch and Kobbelt [2004a] with rarely
more than a small handful of non-Delaunay edges.

Figure 5 shows a histogram of coefficients for the iLB versus eLB
operator for the Hygeia model (other models have similar his-
tograms). Obviously there are no negative coefficients anymore,
but we also see a noticeable decrease in the number of large coeffi-
cients.
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Figure 5: Histogram of coefficients in the eLB versus iLB operator
for the Hygeia model.

For numerical considerations the most relevant figure of merit is
the condition number of the Laplace-Beltrami operator, which we
evaluate by considering the ratio of iLB (κi) to eLB condition num-
ber (κe). Generally we find an improvement between 20% and
40%, due to the largest eigenvalue being decreased (as predicted
by theory [Rippa 1990]). Notable outliers are the “Beautiful Freak”
dataset [Desbrun et al. 2002], which was specifically engineered to
be challenging (80% improvement) and the Bunny (over 90% im-
provement).

The numerical improvements in the iLB operator over the eLB are
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also noticeable in the quality of discrete harmonic parameteriza-
tions [Desbrun et al. 2002; Lévy et al. 2002; Mercat 2001; Gu and
Yau 2003]. In this case the overlay graph is required to properly in-
terpolate the induced texture mapping functions. Figure 6 shows the
original triangulation (left column) and iDT (right column) for the
“Beautiful Freak” dataset when mapped to the texture plane using
Dirichlet (disk) boundary conditions. The resulting checker board
pattern when mapped onto the surface is shown below. (Note that
because of the Dirichlet boundary conditions we do not expect the
resulting texture to be conformal.) The distortion in each triangle

Figure 6: Original (left column) and iDT (right column) of the
Beautiful Freak dataset (Dirichlet boundary conditions). Texture
plane image and resulting checker board mapping onto the surface.

can be visualized by plotting the ratio of largest to smallest singular
value of the Jacobian. In the case of conformal parameterizations
this ratio can be as low as unity. Figure 7 compares the results
for original triangulation (left column) and iDT (right column) with
Dirichlet (top) boundary conditions to the disk (see Figure 6) and
natural boundaries (bottom). As expected the distortion is overall
lower for natural boundaries, but even in that case there is still a
marked difference between original triangulation and iDT.

The lowering of distortion is also noticeable in other parameteri-
zation applications. Kharevych et al. [Kharevych et al. 2006] used
circle patterns to compute discrete conformal mappings for embed-
ded meshes. Briefly, in this approach discrete conformal mappings
for triangle meshes (of arbitrary topology) are computed via tri-
angle circumcircles and the angles they make with one another at
shared edges. A requirement of the underlying theory is that all
these angles be in [0, π]. While this can be enforced through clip-
ping illegal values to the nearest legal value, a better approach is
to change the combinatorics of the triangulation so that it is iDT.
Figure 8 compares the distortion for two datasets when using the
original triangulation (left column) and iDT (right column).

4 Conclusion
Given a triangle mesh annotated with lengths for every edge (as-
suming these lengths satisfy the triangle inequality) an intrinsic
Delaunay triangulation is well defined and can be found with the
help of a simple and low cost edge flipping algorithm. If explicit
representations of the iDT edge crossings are required, an overlay
graph can be incrementally maintained, using only combinatorial
considerations. For applications which require a discrete Laplace-

-   3

-   1

-   2

Figure 7: Comparison of distortion (ratio of large to small singu-
lar values of Jacobian) between original triangulation (left column)
and iDT (right column) for Dirichlet (top row) and natural (bottom
row) boundary conditions.

Beltrami operator (e.g., denoising, parameterization, editing, sim-
ulation), defining it over the iDT has numerical advantages from
improved condition numbers to lower error in the computations,
and a reduced need for special case handling.

Clearly an (embedded) mesh which is intrinsically Delaunay to be-
gin with is most desirable. It would be interesting to explore this as
a constraint in remeshing algorithms, be they for static, or dynam-
ically deforming, surfaces. Finally, we mention the challenge of
making the algorithm robust. While we have not experienced any
problems in our experiments, correct execution (and termination) of
the implementation of the algorithm may require more than simple
floating point arithmetic.
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