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Abstract
When rendering objects with hardware tessellation, back-facing patches should be culled as early as possible to
avoid unnecessary surface evaluations, and setup costs for the tessellator and rasterizer. For dynamic objects the
popular cone-of-normals approach is usually approximated using tangent and bitangent cones. This is faster to
compute, but less effective. We present a novel approach using the Bézier convex hull of the parametric tangent
plane. It is much more accurate, and by operating in clip space we are able to reduce the computational cost
significantly. As our algorithm vectorizes well, we observe comparable test times with increased cull-rates.

1. Introduction

Hardware tessellation of patch primitives, possibly animated
or generated on the fly [LS08], is now a part of the real-
time rendering pipeline and supported by commodity graph-
ics hardware. A compact geometric patch description is held
in fast on-chip cache, and repeatedly evaluated in parallel to
generate a dense triangulation of the patch, ready for imme-
diate consumption by the rasterization stage.

On current hardware back-facing triangles can be culled
to avoid unnecessary rasterization and pixel shading. How-
ever, if the plane normals of all generated triangles for
a given patch point away from the viewer, considerable
amounts of computation are wasted for surface evaluation
and triangle setup. In this paper we explore the feasibility
and performance of back-patch culling. That is, we perform
a culling test on entire patch primitives earlier in the pipeline,
to avoid computations that happen before rasterization.

This is not a new idea, but to date only low order ap-
proximations have appeared [SAE93,KML95]. This is likely
due to the limited compute resources of previous gener-
ation graphics processors. As pointed out by Kumar and
Manocha [KM96], patch culling is a trade-off between ef-
ficiency: how much computational effort is needed to reach
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a culling decision, and effectiveness: how many patches are
actually culled.

We present a novel approach, based on the parametric
tangent plane of a patch to accurately partition the space of
eyepoint positions into front-facing, back-facing, or silhou-
ette regions. As shown in Figure 1, this is more effective than
previous methods.

Operating in clip space simplifies our test considerably,
and all steps vectorize very well. Our computation times are
comparable to existing approaches, but the increased effec-
tiveness gives us a performance advantage as patch tessella-
tion density increases.

2. Previous Work

A viewer cannot possibly see back-facing polygons of a
closed surface, and back-face culling is a standard tech-
nique used by GPUs to quickly identify and remove them.
To avoid calculating the dot-product between plane normal
and viewing direction for each polygon, hierarchical ap-
proaches cluster polygons by normal and cull entire polygon
groups [KMGL96]. This concept can be transferred to para-
metric surfaces, where back-patch culling removes an entire
patch before it is tessellated into polygons.

NCONE: In a preprocess, Shirman and Abi-Ezzi [SAE93]
determine the normal patch, N(u,v) = ∂B(u,v)/∂u ×
∂B(u,v)/∂v, for a given Bézier patch and compute its
bounding cone-of-normals (apex : l, axis : a, angle : α).
During runtime, for eyepoint e the vector v = (e− l)/‖e− l‖
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a) b) c) d)

Figure 1: The killeroo (a, 11532 Bézier patches), is rendered with different strategies for back-patch culling. For each algorithm
we visualize wasted computations: areas processed by the tessellator but back-facing and hence not visible; less area is better.
The cone-of-normals (b, 3697 patches culled) is effective, but costly for dynamic scenes. Its approximation from tangent and
bitangent cones is faster to compute, but less precise (c, only 2621 patches culled). Our approach is faster than the cone-of-
normals, and more effective (d, 4604 patches culled).

is used in the simple test v · a ≤ sin(α) to determine if the
patch can be culled safely. The bound is comparably tight
and the runtime test fast, but the calculation of the normal
patch is expensive. This is not a problem for static models,
but a draw back for patches that are animated or generated
on the fly.

TCONE: In a different context Sederberg and Mey-
ers [SM88] construct a similar cone-of-normals by combin-
ing the cones derived from tangent and a bitangent patches.
This results in coarser bounds but is faster to compute. Later
Munkberg et al. [MHTAM10] approximate the construction
of tangent and bitangent cones in order to fit the algorithm
onto a modern GPU with hardware tessellation. They per-
form the calculations in the constant hull shader and set
the tessellation factors of back-facing patches to zero in or-
der to cull them. While they describe a general strategy to
bound displaced Bézier patches, it is important to note that
their GPU implementation only considers constant displace-
ments. Therefore, the back-patch culling part of their algo-
rithm is essentially a faster approximation of Sederberg and
Meyers [SM88].

The work of Kumar et al. [KML95] focuses on NURBS
models. For each surface patch, they compute a bounding
box for the normalized control vectors of the normal patch.
At runtime, the vertices of this bounding box are tested
against the viewing direction to see if all surface normals
point away from the viewer. If so, then the patch is back-
facing and culled. This is similar to the cone-of-normals ap-
proach, but does not take into account that rays from the eye
to points on the patch may differ from the view direction.

3. Parametric Tangent Plane

In this section, we develop the key geometric concepts be-
hind our algorithm and introduce the parametric tangent
plane. We work with homogeneous vectors in R4, and main-
tain a distinction between points, represented by row vec-
tors, and planes represented by column vectors. We note the
distinct transformation rules

q = p ·P and s = P−1 · t

for points p and q, and planes s and t, given the 4×4 trans-
formation matrix P.

We focus on widely used bicubic Bézier patches, but ex-
tending our ideas to other polynomial patch types could be
done in a similar fashion. A (rational) bicubic Bézier patch
is defined by

B(u,v) = B3(u) ·


b0 b1 b2 b3
b4 b5 b6 b7
b8 b9 b10 b11
b12 b13 b14 b15

 ·B3(v),

where u,v ∈ [0,1]2, Bd
i (t) =

(d
i
)
(1− t)d−it i are the degree

d Bernstein basis functions, and b j ∈ R4 are homogeneous
3D control points. The parametric tangent plane T (u,v) of
B(u,v) satisfies B(u,v)

∂

∂u B(u,v)
∂

∂v B(u,v)

 ·T (u,v) =

 0
0
0

 .
We can compute T (u,v) directly as

T (u,v) = cross4
(

B(u,v), ∂

∂u B(u,v), ∂

∂v B(u,v)
)
, (1)

where cross4() is the generalized cross product of 3 vectors
in R4, see Appendix A. For bicubic B(u,v), the parametric
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tangent plane is a polynomial of bidegree 7 and can be writ-
ten in Bézier form as

T (u,v) = B7(u) ·


t0 t1 · · · t6 t7
t8 t9 · · · t14 t15
...

...
. . .

...
...

t48 t49 · · · t54 t55
t56 t57 · · · t62 t63

 ·B
7(v),

where the ti form an 8×8 array of control planes. Each ti
results from a weighted sum of cross4() products among the
control points of B(u,v).

Note that T (u,v) being of bidegree 7 is less by one in both
parametric directions than expected from adding the poly-
nomial degrees of inputs to equation (1). This is easily veri-
fied with symbolic algebra software, but can be traditionally
proven using properties of DeCastlejau’s algorithm [FH00].
We have not seen the object that we are calling the para-
metric tangent plane formally defined or used in previous
work. We acknowledge the strong probability that the para-
metric tangent plane has a classical definition, but we have
not found one.

4. Visibility Classification

We use the generic term visibility here to mean that a point
on an oriented surface can be seen from a given eyepoint. We
do not consider the effects of occlusion, self or otherwise.
Our goal is to classify entire surface patches, with respect to
a given eyepoint, as front-facing, back-facing, or silhouette.
We first note an optimization that will significantly reduce
the computational cost of our algorithm; we do this in the
context of familiar triangle culling.

4.1. Triangle Culling

Given a triangle defined by points v0,v1, and v2, its oriented
spanning plane is t = cross4(v0,v1,v2). We say that triangle
v0v1v2 cannot be seen from eyepoint e, if e lies in the nega-
tive half-space defined by t. We express this as a dot product,
if e · t < 0 then triangle v0v1v2 is back-facing. Conversely, if
e · t > 0 we say that triangle v0v1v2 is front-facing. Other-
wise if e · t = 0 then triangle v0v1v2 appears edge-on; we
classify such triangles as silhouette.

Note that this visibility classification does not depend on a
coordinate system. Given the composite world, viewing, and
perspective transform P that maps world space to clip space,
we can write

e · t = e · I · t = (e ·P) ·
(

P−1 · t
)

= f · s,

where f and s represent the transformations of eyepoint e
and plane t to clip-space, respectively. By convention f =[

0 0 α 0
]

in clip-space, so that f · s = α sz, where
sz is the z component of s, and α is of known sign. This
means that in clip-space, visibility classification can be done
by simply checking the sign of sz. So instead of computing

the plane containing triangle v0v1v2 in world space and dot-
ting the result with e, we only need to compute the z compo-
nent of the plane containing the transformed vertices in clip
space. Similarly for patch culling, we only need to compute
the clip-space z component of the parametric tangent plane.

4.2. Patch Culling

We classify the visibility for a patch B(u,v) using its para-
metric tangent plane T (u,v), u,v ∈ [0,1]2, with respect to
homogeneous eyepoint e using the Continuous Visibility
function:

CVis(B,e)=


back-facing, if (e ·T (u,v) < 0) , ∀ u,v ∈ [0,1]2,
front-facing, if (e ·T (u,v) > 0) , ∀ u,v ∈ [0,1]2,
silhouette, otherwise.

A similar viewing space back-patch condition appears in
[KM96]. Though equivalent, our classification is more gen-
eral in that it is invariant to projective transformation. Com-
puting CVis(B,e) precisely will require costly iterative tech-
niques to determine the roots of a bivariate polynomial. In-
stead, we compute a more practical discrete variant, based
on the Bézier convex hull of the scalar valued patch

e ·T (u,v) = B7(u)·


e · t0 e · t1 · · · e · t6 e · t7
e · t8 e · t9 · · · e · t14 e · t15

...
...

. . .
...

...
e · t48 e · t49 · · · e · t54 e · t55
e · t56 e · t57 · · · e · t62 e · t63

·B
7(v).

Patch visibility classification reduces to counting the
number of negative values, Ncnt, produced by taking the 64
dot products e · ti using the Discrete Visibility function:

DVis(B,e) =


back-facing, if (Ncnt = 64) ,
front-facing, if (Ncnt = 0) ,
silhouette, otherwise.

It is important to note that the classification produced by
DVis(B,e) is a conservative approximation of CVis(B,e):
Sign differences among the Bézier coefficients are a neces-
sary, but not sufficient condition for determining the pres-
ence of a root. Therefore, it is possible for DVis(B,e) to
classify a front or back facing patch as silhouette in error.
While we can construct such cases, they seem to be rare in
practice, and as demonstrated in Section 7, we are able to
cull significantly more patches than previous techniques.

5. Serial Algorithm

Using symbolic algebra software, we expand equation (1)
for the parametric tangent plane and find its Bézier represen-
tation. Each Bézier coefficient ti is the result of a weighted
sum of cross4() products among the control points of the
bicubic patch B(u,v)

ti = · · · + wgt · cross4(b j,bk,bl) + · · ·
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For each of these cross4() products, we extract a destination
index i, and source indices j,k, and l, as well as the corre-
sponding scalar weight wgt. These values will be the same
for all bicubic Bézier patches, and we place them in a header
file with format

uint idx[4][] = {{i1, j1, k1, l1},
...
{im, jm, km, lm}};

float wgt[] = {w1, ..., wm};

For the bicubic Bézier case, we require 516 cross4() prod-
ucts. We hence omit listing the values here, but include the
defining header file as supplemental material and will make
it available online.

As noted earlier, we operate in clip space, and thus only
need the z component of the parametric tangent plane. Using
the predetermined indices and weights, the serial algorithm
to compute this is

for (uint k = 0; k < 516; k++)
t[idx[k][0]] += wgt[k]

* cross4Z(b[idx[k][1]],
b[idx[k][2]],
b[idx[k][3]]);

where float4 b[16] contains the values of the
patch control points after transformation to clip space,
cross4Z(), computes just the z component of cross4(), see
Appendix A, and float t[64] will contain the z compo-
nents of the control planes, all initialized to zero.

6. Parallel Algorithm

Creating a parallel version of the parametric tangent plane
algorithm is relatively straightforward, though a little care
is needed to avoid write hazards. The first observation is,
that each weighted cross4() product is independent of every
other. So our strategy will be to have each thread in a group
compute such a weighted cross4() product, and add its result
to a target location in shared memory.

There are 516 weighted cross4 products, but only 64 tar-
get locations. Allocating more than 64 threads per patch will
guarantee a write hazard, since a single target location will
simultaneously be written to by more than one thread. Allo-
cating exactly 64 threads would not be efficient, since the
distribution of weighted cross4() products is non-uniform
over the 64 target locations, so many threads will be idle
after only a few computations. This distribution is illustrated
in the matrix below:

1 2 4 5 5 4 2 1
2 4 8 10 10 8 4 2
4 8 11 17 17 11 8 4
5 10 17 21 21 17 10 5
5 10 17 21 21 17 10 5
4 8 11 17 17 11 8 4
2 4 8 10 10 8 4 2
1 2 4 5 5 4 2 1


.

Each entry of this matrix shows the number of times

the corresponding target location is accessed by the 516
weighted cross4() products. By partitioning the target loca-
tions into 4× 4 blocks as shown above, and summing the
blocks we get the following much more uniform distribution

32 33 33 32
33 31 31 33
33 31 31 33
32 33 33 32


This suggests a strategy where we allocate 16 threads per
patch, and each thread is responsible for the 4 correspond-
ing target locations of the 8×8 target array. Each thread will
need to loop 33 times, compute a weighted cross4() product,
and add the result to a target shared memory location. After
reordering the array elements within idx and wgt accord-
ing to this load distribution, the parallel code to compute the
parametric tangent plane looks like

// ceil(516 / 16) = 33 iterations max.
for (uint k = threadIdx; k < 516; k += 16)

t[idx[k][0]] += wgt[k]

* cross4Z(b[idx[k][1]],
b[idx[k][2]],
b[idx[k][3]]);

The final step is counting the signs of t[64] using a sim-
ple parallel reduction strategy. We include this code as sup-
plemental material.

7. Results and Discussion

To evaluate our approach we extend the SimpleBezier ex-
ample from the DX11 SDK. As real world applications will
spend additional resources to determine tessellation factors,
or construct tangent patches and evaluate those, this serves
as a lower bound for the performance gains expected due
to the better cull precision. We are mainly interested in dy-
namic surfaces, and hence only use the Bézier control points
as input for the cull tests for each frame.

In contrast to Munkberg et al. [MHTAM10], we imple-
ment our cull tests using DX 11 compute shaders, and feed
the decision into the constant hull shader using a small tex-
ture. This gives us more flexibility and is considerably faster,
as the constant hull shader seems to execute only a single
thread per patch and multiprocessor. Also, the performance
difference between TCONE and NCONE is much less dra-
matic than reported earlier; we attribute this difference to
a combination of implementation details and more recent
hardware. For TCONE and NCONE we use 1 thread per
patch and 128 patches per block. For OUR test we use 16
threads per patch and 8 patches per block. Those settings
were determined empirically to give the best performance.

The effectiveness of back-patch culling strongly depends
on the used model and viewpoint. Our test culls more
patches than the previous methods for any view. To quan-
tify the improvement, we determine the number of culled
patches for 10 k random views, and list the average cull-rates
for three popular models in Table 1.
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BigGuy MonsterFrog Killeroo
(3570) (5168) (11532)

TCONE 1260 (35%) 1911 (37%) 3790 (33%)
NCONE 1601 (45%) 2286 (44%) 4685 (40%)
OURS 1729 (48%) 2478 (48%) 5206 (45%)

Table 1: Average cull-rate for 10 k random views. Our
method consistently performs best, and culls close to 50%
of the patches.

For a particularly challenging view of the killeroo, shown
in Figure 1, we measure the total time per frame for differ-
ent tessellation factors, and graph it in Figure 2. We need
0.76 ms per frame to cull 4604 patches. This is faster than
NCONE, which needs 0.86 ms to cull 3697 patches. For tes-
sellation factors larger than 8 the additional cull precision
pays off, and our time per frame is lower than with TCONE,
which needs 0.36 ms, but only culls 2621 patches.

These timings seem counterintuitive, as the arithmetic
cost of our algorithm is roughly 10 to 20 times higher than
that of NCONE and TCONE. However, both algorithms re-
quire many registers, limiting the number of active blocks
per multiprocessor. In our method each individual thread
needs few registers, and shared memory is naturally used
very efficiently. As result we have much more active threads,
but a comparable number of patches per multiprocessor, and
hence similar computation times.

Aside from performance and precision advantages, our
classification technique is projectively invariant, and we sup-
port rational bicubic patches directly. Further, by count-
ing positive values (Pcnt) among the 64 dot products
in DVis(B,e) and changing the back-facing condition to:
if(Pcnt = 0), we can correctly classify degenerate patches
with collapsed edges, e.g., the top of the Utah teapot.
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Figure 2: Time per frame for Figure 1 using different tessel-
lation factors. The rendering times for the other models and
views behave similar. Time in ms on an Nvidia GTX 480.

8. Conclusion and Future Work

We presented a novel strategy to cull back-facing patches,
to avoid unnecessary work in the hardware tessellator. We
demonstrated its feasibility for bicubic Bézier patches, but
we are not limited to this patch type. The calculations vector-
ize very well, and compared to the popular cone-of-normals
approach it is both more effective and more efficient on cur-
rent hardware. Compared to the fast approximation using
tangent and bitangent cones it is about 2x slower, but the
better cull-rate pays off quickly as tessellation density in-
creases.

In addition to back-patch culling, we feel that our precise
visibility classification technique could be useful for other
applications as well. One area we plan to explore is better
handling of adaptive tessellation for silhouette patches, as
these are generally the areas where most over-tessellation
occurs.

Culling parametric surfaces with displacement mapping
is a hard problem, and we did not address it in this pa-
per. However, we believe that merging our ideas with
the Taylor approximations of Hasselgren and Akenine-
Möller [HMAM09] will be interesting.
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Appendix A: The 4D Cross Product

We define the function cross4(a,b,c) =
[

x y z w
]T

as:

x = det

 ay by cy
az bz cz
aw bw cw

 , y =−det

 ax bx cx
az bz cz
aw bw cw

 ,
z = det

 ax bx cx
ay by cy
aw bw cw

 , w =−det

 ax bx cx
ay by cy
az bz cz

 .
Geometrically,

[
x y z w

]T is the oriented plane
that spans homogeneous points a,b,c ∈ R4.
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