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Abstract

We present a new method for the global registration of
several overlapping 3D surfaces sampled on an object. The
method is based on the ICP algorithm and on a segmenta-
tion of the sampled points in an optimized set of z-buffers.
This multi-z-buffer technique provides a 3D space parti-
tioning which greatly accelerates the search of the nearest
neighbours in the establishment of the point-to-point corre-
spondence between overlapping surfaces. Then a random-
ized iterative registration is processed on the surface set.
We have tested an implementation of this technique on real
sampled surfaces. It appears to be rapid, accurate and ro-
bust, especially in the case of highly curved objects.

1. Introduction

A single scan of a complex 3D object is in general not
sufficient to fully describe its surface because of the pres-
ence of occluded parts. Additional scans from different
view points are thus required to recover the occluded parts
and improve the surface description. To reach these dif-
ferent view points, we often loose the exact position of a
reference frame bound to the object because of imprecise or
non-measured mechanical motion of the scanner or manual
modification in the fixation of the object. The problem is
then to integrate these multiple partially overlapping scans
so that they all match together precisely.

The registration of overlapping sampled surfaces with-
out feature extraction has been explored by many re-
searchers [4, 6, 15, 11, 12]. The widely used approach is
based on the ICP (Iterative Closest Point) algorithm [4]. It
corresponds to the minimization of a mean square distance
between two sets of matched points. It is an iterative op-
timization technique which proceeds in two steps: i) the

0-8186-7943-3/97 $10.00 © 1997 IEEE

113

determination of a point-to-point correspondence between
two overlapping surfaces, ii) the estimation of the best rigid
transformation which puts the second surface in registration
with the first one. This last optimization problem has been
well resolved by Horn [8] and Faugeras {7] using an elegant
quaternion technique. It is the determination of the point-
to-point correspondence which requires the highest compu-
tation cost in the matching algorithms.

Most of the previous methods register only two surfaces
at a time. To register together more than two overlap-
ping surfaces, Kamgar-Parsi ef al. [9] have proposed an
approach using a dynamic system for the 2D registration
of multiple overlapping range images. Recently an exten-
sion of this approach has been proposed by Stoddart and
Hilton [14] for the 3D registration of multiple free-form sur-
faces. Two other recent papers have proposed an extension
to the ICP algorithm for matching simultaneously several
3D surfaces [3, 13]. These multi-surface matching tech-
niques provide a better global registration by distributing
the residual errors more homogeneously.

In this paper we propose also a method based on the ICP
algorithm for the global matching of several overlapping 3D
digitized surfaces. Its main interest is in the first step of the
algorithm where all the overlapping parts of the digitized
surfaces are segmented in a set of optimized z-buffers by
using Gauss spheres. This space partitioning strongly accel-
erates the point-to-point correspondence between all pairs
of overlapping surface parts. In the second step, we use
for the global registration, an iterative optimization process
which is similar to the one proposed by Bergevin ez al. [3].
As for all the methods based on the ICP algorithm, the ini-
tial positions of the surfaces need to be close enough for
the registration to work properly. If not, a quick interactive
registration has to be preliminary performed [1].

A z-buffer partitioning of the 3D space already greatly
accelerates the determination of the point-to-point corre-



spondence between two surfaces [1]. However, the prob-
lem of choosing the best direction of projection for the z-
buffer is not obvious when the shape of the overlapping
part of the two surfaces is strongly bent. In such a case
the use of a single z-buffer appears already inappropriate.
This problem becomes clearly critical when we have to reg-
ister a greater number of partially overlapping surfaces. Our
multi-z-buffer technique provides an efficient solution to
this problem. One of its principal properties is to quickly
detect all the overlaps and to allow the registration process
to concentrate on them even when the surfaces overlap each
other only to a very small extent.

However, for the z-buffer or multi-z-buffer technique to
work properly, we have to assume that the surfaces have
been sampled with a sufficiently high and homogeneous
density. This condition is not too strong a limitation as
nowadays the available range finders provide high density
data.

The remainder of this paper is organized as follows. Sec-
tion 2 recalls how a single z-buffer can greatly accelerate an
ICP algorithm. Then the registration of two surfaces based
on their segmentation into an optimized set of z-buffers is
presented in section 3. In section 4 we describe a general-
ization of this technique to solve the problem of the global
registration of a large set of partially overlapping sampled
surfaces. Finally, experimental results are shown in sec-
tion S.

2. ICP algorithm acceleration by using a
z-buffer

The ICP algorithm [4] estimates a rigid transformation
for matching two sets S; and S; of 3D unstructured points.
The first step of the algorithm consists of establishing the
correspondence between the points of Sy and S by finding
for each point of Sy the closest point of S, to form a pair.
Variants to this approach estimate a point to surface dis-
tance by using as additional information the normals at the
points. The second step is the estimation of the rigid trans-
formation that minimizes the mean square distance between
the pairs of corresponding points. The two steps of the ICP
algorithm are iterated until convergence of the registration
process. Without any other knowledge on the data, the first
step has a complexity which is quadratic in the number of
points. It is then computationally very expensive especially
when we have to process several tens of millions of points
as we do.

In order to accelerate the ICP algorithm and by assuming
that the density of the 3D points is homogeneous enough,
we have proposed a method based on a twin z-buffer struc-
ture which provides us with an explicit space partition-
ing [1]. It is similar to two depth images, one per set of
points, and allows us to apply 2D image processing tech-
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niques on the 3D data. The correspondence between the
two sets of 3D points can then be efficiently obtained by
using the 2D connectivity of the twin z-buffer cells.

Figure 1. Two renderings of an ancient coin
before (left) and after (right) the mono-z-buffer
registration.

To build the twin z-buffer structure, we first chose a di-
rection of projection and two orthogonal directions. We
then compute the minimal box aligned with these directions
and which includes S7 U Ss. The direction of projection and
the width and height of the minimal enclosing box define
the orientation and size of the twin z-buffers. We partition
each set by projecting its points in the cells of the associ-
ated z-buffer. We keep only one point per cell, the nearest
one along the direction of projection, and we store all its
geometrical information. This selection allows us, by ad-
justing the size of the cells where data are oversampled, to
save memory space and to reduce CPU time for solving the
surface correspondence problem.

Then, to match a point Py in celly (w, k) of the first z-
buffer, we look for the closest point P> of P; belonging to
an (n x n) window centered on cells(w, h) of the second
z-buffer. This way the ICP algorithin is heavily accelerated.
To reinforce its accuracy and robustness, we have added two
matching criteria: a minimal density of points to test inside
the (n x n) window and a minimal distance to be satisfied
by P1 Pz.

This approach works well especially when the overlap
between the two surfaces is sufficiently planar as illustrated
in the example of figure 1. In the case of strongly curved
overlaps, the experience shows that the matching algorithm
does not converge properly because the digitized surfaces
are not uniformly resampled in the twin z-buffer structure.
To improved this approach we propose in the following sec-
tion a multi-z-buffer technique which produces a more ho-
mogeneous resampling as illustrated in Figure 2.



Figure 2. The resampling of a curved surface
is better in several adapted z-buffers (right)
than in only one (left).

3. Registration of two surfaces using multi-z-
buffers

In the above technique with a single twin z-buffer struc-
ture, the direction of the projection is chosen interactively.
In a multi-z-buffer approach the determination of these di-
rections must be automated. The knowledge of the oriented
normal of the object surface at each sampled point is then
needed [2]. The registration is still processed in two stages.
First, multi-twin z-buffers are optimized in order to effi-
ciently define only the overlaps of the surfaces; this is ob-
tained by clustering the normal directions through a Gauss
sphere tessellation. Then the registration process is iterated
while the correspondence problem is rapidly solved inside
each individual twin z-buffer structure.

3.1. Surface segmentation by using the Gauss
sphere

The goal of this stage is to segment the overlaps of the
sampled surfaces into flat enough regions, each of them hav-
ing normal directions remaining approximately constant.
We then associate to each region, a z-buffer perpendicular
to its principal normal direction.

The remainder of this section is organized as follows.
First, the estimation of an oriented normal at each sampled
surface point is addressed in section 3.1.1. Then we explain
in section 3.1.2 how the surfaces are segmented by a Gauss
sphere. Finally, the optimization of the twin z-buffer set
which entirely covers the overlaps of the two surfaces is
described in section 3.1.3.

3.1.1. Normal estimation

In the case of range image data, an estimation of the nor-
mal direction at each sampled point can be easily obtained.
But when using a laser plane range finder which is swept
along the surface of the object with a combination of trans-
lation and rotation , the data can not always be structured
as a range image. However the sequential acquisition of
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planar curves after small motions allows us to quickly de-
fine a neighborhood around each data point and to estimate
its normal vector onto this neighborhood. The geometric
discontinuities of the surface are first detected by adapting
to our data a previous algorithm developed for range im-
ages [5]. Then the normal direction estimation is done by
avoiding crossing over these discontinuities.

3.1.2. Tessellation of the Gauss sphere

The Gauss sphere is a unit sphere on which are mapped
all the oriented normals of a 3D surface. It offers a good
way to segment the surface into flat regions according to its
normal orientations. This segmentation can be obtained by
using a tessellation of the Gauss sphere into small homoge-
neous patches and by doing a classification of these patches
whatever the object complexity.

A method to tessellate homogeneously and symmetri-
cally the Gauss sphere is to project on it a unit cube sub-
divided in rectangular patches following a tan(6) law along
its edges, 6 € [—%, %] [10]. The projected patches have
nearly the same area and provide a regular tessellation on
the Gauss sphere. The main advantage of this tessellation
is to allow a quick localization of a given normal. The unit
cube face pointed by the normal is determined by simple
logical tests on the three normal coordinates. Then the lo-
calization of the Gauss sphere patch containing the normal
is obtained by using a look up table on quantified values of
the two normal coordinates associated to this face.

Figure 3 shows an example of the Gauss sphere tessella-
tion into 216 patches, the cube edges being subdivided into
6 pieces.

Figure 3. Tessellation of the Gauss sphere
(right) by the projection of a unit cube (left)
subdivided into 216 patches

3.1.3. Optimization of the twin z-buffer set cover-
ing the surface overlaps

The determination of the multiple twin z-buffers cover-
ing the overlaps of two surfaces 57 and 53 is based on the
segmentation of each sampled surface in a Gauss sphere.
We assume first that S and Sy are roughly in registration.



If not, a quick interactive registration has to be preliminary
performed [1].

Let G517 and G55 denote the Gauss sphere associated to
Sy and S5 respectively. If a patch p of (7S and its twin
patch p in GS, are both non-empty, they contain normals
belonging to two parts s} and s} of .S and S, respectively.
s} and sb may overlap. An overlapping test is processed
after projection of their 3D points in a plane perpendicular
to the normal defined at the center of patch p. If the min-
imal enclosing boxes of the projections of s} and s§ over-
lap each other, a twin z-buffer {zbf%,, zbf5, } is affected to
patch p. Its dimensions are deduced from the intersection
of the two minimal boxes while its orientation D? is the av-
erage of the normals of s} and s}. A pseudo code of the
algorithm is presented in figure 4. This multi-z-buffer ap-
proach allows an efficient selection of subsets of 5; and S
which are likely to overlap. It reduces strongly the number
of points to be considered for the correspondence problem
and it subdivides it into sub-problems, one per twin z-buffer.

Procedure Gauss-Sphere(S)
Return GS = J, sp
Where s* = {/*points € S associated to patch p}*/
/*and p € 1 .. Gauss-sphere-patch-number*/

Procedure Multi-Zbuffer(GSy, (G52)
FOR p € 1 .. Gauss-sphere-patch-number
IF (s #0 AND 5 #0){
DP = Average-Orientation(s" | J s5);
eb = Min-Enclosing-Box(s}, Dry;
ebg = Min—Enclosing—Box(st_;, 51’);
overlap = eb] N eb};
IF (overlap # 0) {
zbf?, = Create-Zbuffer(overlap, D¥  s°);
zbfy, = Create-Zbuffer(overlap, D7",s§); 1}

Figure 4. Creation of multiple twin z-buffers
on the overlaps of surfaces 5; and 5,

3.2. Iterative registration

After the determination of the optimal set of twin
z-buffers which include the surface overlaps, the sampled
points are projected into their respective z-buffers and even-
tually clipped. The registration is then processed as follows:
for each twin z-buffer structure a point-to-point correspon-
dence is quickly established as detailed in section 2. The
couples of matched points are stored in a list L common to
the full set of twin z-buffers. Then the rigid transformation
from surface S» to surface S7 is optimized by minimizing
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the mean square distance between the matched points of list
L. The quaternion technique [8] is used for this purpose.

The points of the surface S» are then transformed ac-
cording to this rigid transformation and all the z-buffers as-
sociated to S» are updated. The matching operation is then
iterated until convergence. A pseudo code of the algorithm
is presented in figure 5.

70 inity k= 0;  /initialization™/

G S1=Gauss-sphere(S1); GSo=Gauss-sphere(T°(S1));
Multi-Zbuffer(GS1, G S3);

REPEAT UNTIL convergence {

k=k+1,

L =EMPTY; /*list initialization®/

IF(zb L, exists) /*and thus zbfF, %/ {
z-buffer-fast-matching(zb f§,, zb f1,);
update-matching-list(L); }

T = Optimal-rigid-motion(L);

TF =T x T+,

Update-all-non-Empty-Zbuffers zb 5, with T*(s5), }

Figure 5. Iterative registration of S, to 5;

4. Extension to a global registration of N sur-
faces

When we have N surfaces to register simultaneously,
N > 2, the problem becomes more global. We first show
the need and the usefulness of a global registration in sec-
tion 4.1. Then we propose in section 4.2 an extension of
the multi-z-buffer technique for a global registration of N
surfaces.

4.1. Interest of a global registration

The method described in section 3 allows the registration
of digitized surfaces with complex shapes, but only two at
a time. In practice when we have to digitize an object with
a complex shape, we need to scan it from many points of
view and the problem then is to register all together the re-
sulting sampled surfaces. We can sequentially run the above
registration by matching two by two the different surfaces.
However the pairwise registration of several tens of scans
is not convenient. Pairing off the overlapped surfaces is an
easy but very tedious task. Furthermore, a strategy should
be defined by the operator to choose the surface registra-
tion order. The accuracy of the final registration depends
on this choice and the residual errors after a sequence of
pairwise registrations can be heterogeneously distributed.
Despite the accuracy of the individual pairwise registration,
the surface of the whole object may remain badly registered



in same places. A typical illustration of this situation is
the registration of a closed string of digitized surfaces as
shown in figure 6. The schematic object illustrated in fig-
ure 6(left) is composed of six surfaces (51, ..., Sg) shaded in
light gray. The dark gray area represents the surface over-
laps (O13, Oas, ..., O¢1). In figure 6(right) the arrows indi-
cate that the successive pairs have been sequentially regis-
tered. The residual error of each individual pairwise regis-
tration can be low but unfortunately we frequently observe a
propagation and a cumulation of the registration error such
that when overlap Os¢ has been successfully registered the
closing overlap Og; may present large discrepancies be-
tween surfaces Sg and S, sometimes much larger than at
the initialization step.

023 0

012

Figure 6. Error propagation in closed string
of surface.

Thus it would be much more efficient to register the dig-
itized surfaces simultaneously in order to keep the residual
errors of the registration homogeneously distributed.

4.2. Global registration algorithm

Inspired by the work of Bergevin et al. [3], we have ex-
tended the previous pairwise registration based on multi-z-
buffer to a global registration. Given a set of N surfaces
scanned on a 3D object, we chose without loss of general-
ity one of them as a master (Sp) and the others as slaves
(51,59, ..., Sn—~1). The reference frame of the master sur-
face Sy is then defined as the world reference frame. Thus
the registration process must determine (N — 1) rigid trans-
formations corresponding to the motion of each slave into
the master reference frame.

As in the pairwise registration, the first step in the global
registration is the determination and the optimization of the
twin z-buffer set covering all the mutual overlaps by using
the Gauss sphere technique. We proceed as follow. First
each sampled surface S;, i € {0,.... N'},is segmented into
a Gauss sphere G.S; as explained in section 3.1.2 and the
minimal enclosing box in each patch p of (5; is com-
puted.Then for each patch p we compare two by two the
minimal enclosing boxes which are not empty. Let us as-
sume that it is the case for patch p in .S; and GS;. Then

the two parts s} and s% of S; and S overlap in patch p.
We then define a twin z-buffer {2bf};, 2bf};} whose dimen-
sions and dircction are determined as in section 3.1.3. At
the end of this process only parts of the surfaces overlap-
ping two by two are conserved. All the sampled points of
the isolated surfaces are removed.

The second step is the iteration of the registration pro-
cess itself. At each iteration k a rigid transformation T}* is
optimized for each slave surface S;, 7 € 1..N. The match-
ing point list L of S; is updated by quickly matching, in
the appropriate twin z-buffers, .5; with its overlapping sur-
faces. The rigid transformation T is obtained by applying
the quaternion technique [8] to list L. The position of \5; is
then corrected and all the z-buffers associated to S; updated.

Our global registration algorithm differs from Bergevin’s
by the way the rigid transformations are applied. In
Bergevin’s algorithm, at each iteration & each slave surface
is matched with all the others first. Then the rigid trans-
formations are simultaneously applied to the slave surfaces
only at the end of the iteration. In our method each slave
surface is immediately transformed when its rigid transfor-
mation has been estimated. This way, the convergence is
accelerated. In order to not favour any slave surface, their
registration order is randomly defined at each iteration. The
pseudo-code of this algorithm is shown in figure 7.

FORi € 0.V {
set TZ-O; /initial transformations; Ty = 1%/
G'S; = Gauss-Sphere(T? (Si)); }
FORi€0..(N—1)
FORj €. N
Multi-Zbuffer(G'S;, G S;);

k=0 /*iteration number */
REPEAT UNTIL convergence {
k=k+1;
FOR i € 1..N, in random order {
L =EMPTY; /*list initialization™/

FOR j € 0.N,j#i
IF(:bfi]} exists) /*and thus zbfﬁ */{
z-buffer-fast-matching(zb fi, zbf5;
update-matching-list(L); }
T = Optimal-rigid-motion(L);
Tik =T x T;k—l’_
Update-all-non-Empty-Zbuffers zb f{; with TF(sE), } }

Figure 7. Global registration algorithm

5. Experimental results

The above registration technique has been applied to data
obtained from different objects scanned with a Kréon In-
dustrie laser range finder. The different scans were coarsely



matched using an interactive tool developed for this pur-
pose.

Figure 8. Four different scans of a vibraphone
bar and their overlapping relationship.

A vibraphone bar is used to illustrate the problem of the
registration of a closed string of scanned surfaces. Fig-
ure 8 shows four different scans (51, 52, .53, 54) of the vi-
bréphone bar. The arrows indicate the overlapping relation-
ship between scans. We have applied to this set of scans
both the pairwise registration and the global registration.

The pairwise registration is processed to match S5 to Sy,
S5 to S, and Sy to S;. The result of the integration of Sy
and S3 which are not directly matched together is rendered
in figure 9. An artifact is clearly perceptible in this render-
ing. This mismatching is more visible when we extract the
slide corresponding to the white dashed line. This slide is
shown in figure 10. The shift present in the zoomed part is
about 0.2 mm.

Figure 9. Result of the pairwise registration.

Such artifact is eliminated by applying the global regis-
tration technique as shown in figure 1 1. A slide at the same
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Figure 10. Zoomed slide after pairwise regis-
tration.

localization is shown in figure 12. We notice that all scans
are well matched.

Figure 11. Two different views after global reg-
istration.

The evolution of the residual errors of the global registra-
tion is shown in figure 13. After 10 iterations the residual
errors are already well distributed and the convergence of
the process is nearly reached.

The time needed to optimize the rigid transformations
depends on the number of scans, the number of surface
points and the distribution of the overlaps. For vibraphone
bar, the 4 scans contain about 620,000 points each. Each it-
eration took about 160 seconds on a Sun SPARC-2000 ma-
chine. The root mean square error for the 4 scans is 0.049
mm after 25 iterations.

The bust shown in figure 15 is a difficult object to scan
because of the presence of strong concavities. It needed as
many as 60 different scans containing more than 11 million
points. Some of the parts of the object are illustrated in

figure 14. The scans were registered with the pairwise tech-

nique, so some artifacts are still present in figure 15. We



Figure 12.
tion.

Zoomed slide after global registra-
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Figure 13. Global registration convergence.

are now experimenting global registration on such kinds of
data.

6. Conclusion

We have proposed a global registration method which
can be used for a large set of digitized surfaces scanned on
an object. It is based on a multi-z-buffer technique which
concentrates on the mutual overlaps of the digitized sur-
face. It allows us a strong reduction of the computation for
the point-to-point correspondence problem. Experimental
results demonstrate that the proposed registration method
can match different parts of a wide variety of complex 3D
objects in a reasonable time. The registration technique
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presented in this paper may find applications in computer
graphics, electronic storage of 3D objects, rapid prototyp-
ing and reverse engineering.
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Figure 14. Some pieces of a Greek bust mosaic (Hygia, Dion Museum, Greece).

Figure 15. Three different views of the Greek bust after the registration of 60 scans.
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