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help to identify occlusion. The ASSET-2 system will be integrated
with a structure-from-motion system which recovers world structure
in a static environment. ASSET-2 will be used to segment out and
track moving vehicles, and the static part of the scene will then be
tracked by the structure-from-motion system.
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Registering Multiview Range Data to
Create 3D Computer Objects

Gérard Blais and Martin D. Levine

Abstract—This research deals with the problem of range image regis-
tration for the purpose of building surface models of three-dimensional
objects. The registration task involves finding the translation and rota-
tion parameters which properly align overlapping views of the object so
as to reconstruct from these partial surfaces, an integrated surface repre-
sentation of the object.

The approach taken is to express the registration task as an optimiza-
tion problem. We define a function which measures the quality of the
alignment between the partial surfaces contained in two range images as
produced by a set of motion parameters. This function computes a sum
of Euclidean distances between a set of control points on one of the sur-
faces to corresponding points on the other. The strength of this approach
resides in the method used to determine point correspondences across
range images. It is based on reversing the rangefinder calibration proc-
ess, resulting in a set of equations which can be used to directly compute
the location of a point in a range image corresponding to an arbitrary
point in three-dimensional space.

A stochastic optimization technique, very fast simulated reannealing
(VFSR), is used to minimize the cost function.

Dual-view registration experiments yielded excellent results in very
reasonable computational time. A multiview registration experiment was
also performed, but a large processing time was required. A complete
surface model of a typical 3D object was then constructed from the inte-
gration of its multiple partial views. The effectiveness with which regis-
tration of range i can be accomplished makes this method attrac-
tive for many practical applications where surface models of 3D objects
must be constructed.

Index Terms—Range, multiview, 3D, image registration, simulated
annealing, surface models, suface integration, rangefinder calibration.

I. INTRODUCTION

Given N views of an object in a scene, each one describing the 3D
structure of the object as seen from a particular viewpoint. We wish
to find N rigid motion transformations Ty, T, ..., Ty that specify the
true positions of the rangefinder with respect to a unique frame of
reference (arbitrarily chosen and usually the frame of one of the
views). Suppose that each range view i(i = 1, ..., N) consists of a set
of 3D points S; expressed in the coordinate frame of the rangefinder.
The transformation 7; transforms the points S; of range image i into a
new set of points S; = T(S;) in which the 3D coordinates of the points
are expressed in a unique coordinate frame. By transforming the sets
of points of all N range views, we can generate a new set of 3D points
which is the union of all transformed sets S, S/, ..., Sy, namely

N N
§=VT(S)= s
i= i=

This new set of points represents the surface boundary model of the
object defined by all the views.

A novel approach for solving this problem of range image regis-
tration is presented in this paper. It is a relatively simple method and
robust to noise in the range data and positioning errors in the me-
chanical apparatus used for data acquisition. For example, the
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method is suitable for use with an eye-in-hand system. In this situa-
tion, the rangefinder is attached to the end of a robot manipulator
which is generally known to be a rather sloppy absolute positioning
device.

To achieve accurate registration, a cost function is defined which
indicates the quality of registration between two range views by a
sum of distances between corresponding points in each view. The
range views are registered by determining the 3D rigid transformation
which minimizes the cost function. The novelty of this approach is a
method for reversing the calibration process of the rangefinder which
permits point correspondences between range views to be computed
directly. This results in an extremely fast method for computing the
distance between range views, as required by the evaluation of the
cost function. Stochastic search is used to find the transformation
which minimizes the cost function in a reliable manner, even in the
presence of the multiple local minima that always characterize the
cost function.

The methods used for range image registration can be divided into
two main categories. The first avoids the registration problem alto-
gether by relying on precisely calibrated mechanical equipment to
determine the motion transformation between views. The second
category involves methods that derive the registration transformation
between range images from the information contained in the range
images and other information provided by the acquisition system [1],
[31, [51, [6], [9], [12], [13]. In most cases, a coarse estimate of the
transformation between each pair of range views is part of the avail-
able information.

In Section II, the essential aspects of our registration method are
presented and registration is formulated as an optimization problem.
Section III discusses the testing of the method by performing various
registration experiments. Finally, Section IV offers some concluding
remarks.

II. REGISTRATION USING INVERSE CAMERA CALIBRATION
A. Registration Method Overview

In this research, we have used range images of maximum size
256 x 256. In order to derive the 3D coordinates of each sampled
surface point, the rangefinder is calibrated before data acquisition so
that, given the index i and j in the rectangular array for a given point,
and given the depth measured for the point, its coordinates (x, y, z)
with respect to the camera’s reference frame can be computed di-
rectly. If one thinks of each image point as being sampled by a differ-
ent laser ray, then the indices i and j would specify which ray sam-
pled each point.

The principal idea behind our method is to reverse this process so
that the indices are computed from the coordinates by inverse cali-
bration. This inverse calibration permits us to match points across
range views. Given a transformation 7 from range image one to range
image two, a 3D point (x, y, z) in range image 1 is transformed to
(',y’,') in image two’s reference frame. Using the inverse calibration
we are able to determine directly the indices (i, j) of the ray in image
two closest (Euclidean distance) to that transformed 3D point. Since
every point in a range image is obtained by sampling the surface with
a different ray, the point in image two associated with the (i, j) ray is
thus taken as the corresponding point.

To perform the registration, control points (pixels) are selected
from the first range view by uniform subsampling. These are mapped
by a rigid 3D transformation T into the second view’s reference
frame. Each transformed control point is then associated with a point
in the other view. This point-to-point correspondence is directly es-
tablished through the inverse calibration process. A distance measure,

based on a sum of Euclidean distances between the transformed con-
trol points of the first view and their respective corresponding points
in the second view, is computed. The objective is to find that trans-
formation 7 which minimizes this distance measure. A transformation
estimate T,, obtained from the acquisition apparatus, is used to con-
strain the number of possible transformations. Thus, a finite search
space is delimited around the estimate T,. Only those transformations
inside this search space are considered as potential solutions for the
registration. The inverse calibration process is discussed in detail
in [2].

By minimizing the sum of Euclidean distances between all control
points in one view and their respective corresponding points in the
other, the distance between these views is minimized. Since the sum
of distances is a minimum when surface regions that are common to
both views coincide, we can conclude that the views are registered.
The sum of Euclidean distances is the basis for a cost function used
by an optimization algorithm. This cost function will be described in
detail in Section II.B.

B. Registration as Optimization

Let S, be a set of control points taken from the total set of points
in the first view. S,, obtained by uniform subsampling, is a subset of
all the sampled points in that view. Let T be the transformation which
takes a point in the first view and expresses it in the reference coordi-
nate frame of the second. If p is a point in the first view, then T(fl)
is the same point expressed in the second view’s coordinate frame.
We specify a rigid 3D transformation by six motion parameters, con-
sisting of three translations #,, ¢, and £, (which define d ) and three
rotation angles ry, ry and r, (which define R). T(f)) is simply given by

T(p)=Rp+d %))

Let C( ) be the correspondence function defined by the camera’s
inverse calibration equations. If q is a point whose coordinates are
expressed in the second view’s coordinate frame, then C((']) is the
point in the second view whose associated ray is closest to point q .
The inputs to the function are the coordinates (x, y, z) of a 3D point.
From these coordinates, the indices i and j of the closest ray in the
second range image are found using the inverse calibration equations.
The result is the 3D point in the range image at location (i, j). It is
possible that the indices i and j found by the inverse calibration
equations do not represent any valid point in the range image. This
would be the case if the indices i and j represented a datum point that
has been discarded during the preprocessing of the range images.
Also, because a range image has a maximum of 256 by 256 sampled
points, it is possible that the values of ¢ and j computed from the in-
verse calibration equations are outside the allowable range of the in-
dices, which must be between 1 and 256. In such cases, C( ) would
return undefined as a result to indicate that no correspondence has
been found. Given a transformation 7, we define a cost function for T
as follows (see [2] for details.):

cos(T) =Y., d(T(p).C(T())) 1))
pes;

where d( ) is the 3D Euclidean distance (L, norm) between two
points. The cost function is an indication of the registration quality of
the transformation T. The greater the accumulated distance between
points in the views due to a transformation, the higher the cost of this
transformation will be. Therefore, the transformation yielding the
best registration of the range images will be the one with the lowest
cost. An optimization search can then be applied to find the transfor-
mation 7 which minimizes this cost function.
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When the function C(7(p)) finds no corresponding point for a
given control point in S, the L, norm is undefined. In this case we
arbitrarily set the distance function d( ) to 0.

Another issue is improper point correspondences between two
range views; this can occur at the edges of the object. If the distance
between the points in such a correspondence is very large, it will
detrimentally affect the value of the cost function. Therefore, we limit
the effect of the Euclidean distance by introducing a threshold 7 as
follows [7]:

|y~ pa| : if B, is defined and |p, — p,|| < T
d(p,,p,) =1t ; if p, is definedand B, - 5,|>7 (3)
0 ; if p, is undefined

Because the distance measure returns O when no correspondence
point is found, a transformation minimizing the number of corre-
spondences would yield a minimum cost value. However, this is un-
desirable since very poor transformations will likely yield very few
correspondences by definition. To alleviate this problem, the sum of
the distances can be normalized by the number of correspondences.
Let S(T) be the set of all control points for which a correspondence
exists under the transformation 7. We redefine the cost function as
follows:

Dges, AUT(0).C(7(5))
s.(7)|

There still exists a problem with the cost function defined in this
way. Because no penalty is assigned to transformations yielding few
correspondences, the cost function will nevertheless be a minimum
when no correspondences are established between views. This issue
can be handled by enforcing an overlap factor Q between views. The
overlap generated by a transformation 7 is simply the total number of
correspondences [|S«(T)|| divided by the total number of control points
|ISJl- Because of the threshold 7, and because control points without
correspondences result in a distance value for d( ) of 0, it is clear that
no transformation can yield a cost value greater than the cardinality
of S, times the threshold value 7. This idea is used to set the maxi-
mum value of the cost function. With this in mind, we redefine the
cost function as follows:

cost(T) = €]

Y, ATE.CTE) e ”Syfé?um
cost(T) = ”Sc(T)" ¢ (5)
7| if SC(T)”<Q
5.

Note that by establishing point-to-point correspondence across
range images using the inverse camera calibration equations, we in
fact compute the sum of the distances between the two range views in
the direction of the rays. This is different from the intuitive way of
evaluating distance, where the distance between a point on a surface
to the other surface is taken as either the perpendicular distance or
the distance to the closest point. One may argue that these give better
indications of the distance between two views. However, as optimi-
zation progresses, and the registration between the two views im-
proves, the distance along the scan lines will approach the perpen-
dicular distance.
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III. EXPERIMENTS AND RESULTS

This section presents some of the experiments conducted in con-
junction with this research. A brief description of the experimental
setup and the data acquisition process is given in Section IILA.

Considerable experimentation was carried out to determine the
characteristics of the cost function. For most range images tried, these
usually indicated the presence of a single global optimum surrounded
by multiple local optima. As a consequence, to ensure successful
minimization for many different types of object surfaces, it became
evident that we had to rely on a robust search method. A conven-
tional gradient descent approach would be inadequate! Thus very fast
simulated annealing (VFSR), a stochastic optimization method, was
used to minimize the cost function [8]. See [2] for a detailed discus-
sion of the search parameters used for VFSR and the values of these
parameters yielding optimum performance for registration.

Section IIL.B. presents various dual-view registration experiments.
Each consists of the registration of two range views obtained by
sampling an object from two different viewing positions. Finally, a
multiview registration experiment is presented in Section III.C. The
notion of local/global optimization arising when registering multiple
views of an object is examined and a solution is presented.

A. Experimental Setup and Data Acquisition

An eye-in-hand system was used for the acquisition of the range
images. It consisted of a rangefinder camera attached to the end effec-
tor of a PUMA 560 robot arm. The robot is inverted and mounted on
the ceiling to permit easier positioning of the camera for viewing ob-
jects at various angles.

An alternate method was a turntable. While maintaining the
rangefinder camera in a fixed position, a precision turntable was used
to accurately rotate objects so that sampling them from different
viewpoints could be achieved. The position of the turntable can be
specified as an absolute angular value in degrees.

We have determined by experimentation that the sampling error of
the laser rangefinder is Gaussian distributed and that a linear relation-
ship exists between the average sampling error (average of the abso-
lute values) and the object distance [2]. In most experiments con-
ducted for this research, data acquisition was performed with the
rangefinder at a distance of around 40 centimeters from the object,
sometimes more depending on its size and shape. At this distance the
average error in the measured distance of a sampled point is ap-
proximately 0.625 millimeters.

With this in mind, a range surface can be seen as a perfect 3D rep-
resentation of the surface of an object plus some added noise. The
latter is Gaussian distributed with a standard deviation proportional
to the object distance. When registering two range views, we there-
fore expect the minimum average Euclidean distance between corre-
sponding points in each view to be twice the mean absolute sampling
error (the errors in each view get added). The cost function computes
an approximation to this average distance. Therefore, when two
views are properly registered, we would expect the minimum cost
function value to be around 1.25 millimeters, which is twice the mean
absolute error for an object scanned at a distance of 40 centimeters.

Before registration, it was necessary to preprocess by computer
each of the range images. This was done using simple segmentation
to remove the background level and any spurious large impulses.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 17, NO.

8, AUGUST 1995 823

Fig. 1. Composite image of four different dual-view registration experiments.
Figs. 1a and 1b show two views of a teapot before (related by the transforma-
tion estimate) and after registration (related by the optimum transformation
found by the algorithm), respectively. Similarly, Figs. 1c and d, e and f, and g
and h show the registration of two views of a metal pipe, fruits, and a model
car, respectively.

Fig. 2. This figure illustrates the problem arising when registering multiple
views without performing global optimization. Local optimization is per-
formed to register range views two at a time. In Fig. 2a we observe that, al-
though the fit between consecutive views is optimized, the first (shown as a
grid) and last view are poorly registered. Fig. 2b shows the same group of
registered range views seen from the side, illustrating the gap between the
views more clearly. Fig. 2c is an enlarged portion of Fig. 2b, emphasizing the
large distance between the first and last view.

(@) (b) ©)

Fig. 3. This figure shows the results obtained when registering multiple views
using global optimization. Six range views were registered simultancously.
The result is shown seen from above (Fig. 3a) and from the side (Fig. 3b).
Fig. 3c is an enlargement of a section of Fig. 3b illustrating how closely the
first (shown as a grid) and last view are registered.

B. Dual-View Registration Experiments

This section presents various experiments realized with the regis-
tration algorithm described previously. All experiments involve regis-
tering two range views obtained from different 3D objects.These are
shown in Fig. 1. The range views of the metal pipe, the fruits and the
model car (Figs. Ic, d, ¢, f, g, and h, respectively) were acquired with
the eye-in-hand robot system. This indicates the ability of the regis-
tration algorithm to handle the usually large errors occurring in the
initial transformation estimate obtained with such a positioning sys-
tem.

C. Multiview Registration

The most straightforward way of performing the registration of
multiple views of a 3D object is to register the views in pairs. How-
ever this is not globally optimal and even small errors at each regis-
tration tend to accumulate to produce a large total error. To avoid this
problem, the views can be registered simultaneously and the error
between the first and last views can be taken into proper considera-
tion. Of course, this makes more sense from a theoretical point of
view as well.
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A multiview registration experiment was performed for the owl
figurine using a total of six range views. Data acquisition was per-
formed with the precision turntable. The object was rotated by 60 de-
grees between views. Fig. 2 illustrates the problem arising when the
range views are registered two at a time.

Fig. 3 shows the result obtained when global optimization is per-
formed to register the six range views. The results obtained with
global registration are clearly superior to pairwise local registration.
We can now see that the first and last views are properly registered.

IV. CONCLUSIONS

This paper presents an approach for the registration of range im-
ages. The method relies on formulating the registration task as an op-
timization problem by defining a cost function which measures the
quality of registration between two range views. To do this for a
specific rigid 3D transformation, the cost function evaluates the sum
of Euclidean distances between control points in one view after
transformation and finding corresponding points in the other view.
Point correspondence between range views is rapidly established by
computationally inverting the set of rangefinder calibration equations
before the experiments are initiated. The claim of novelty for this ap-
proach is based on this latter aspect. The results achieved clearly in-
dicate the accuracy of the method.
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CASM: A VLSI Chip
for Approximate String Matching

Raghu Sastry, N. Ranganathan, and Klinton Remedios

Abstract—The edit distance between two strings ai, ..., am and by, ..., by
is the minimum cost s of a sequence of editing operations (insertions, de-
letions and substitutions) that convert one string into the other. This pa-
per describes the d and impl ation of a linear systolic array
chip for computing the edit distance between two strings over a given al-
phabet. An encoding scheme is proposed which reduces the number of
bits required to represent a state in the computation. The architecture is
a parallel realization of the standard dynamic programming algorithm
proposed by Wagner and Fischer, and can perform approximate string
matching for variable edit costs. More importantly, the architecture does
not place any constraint on the lengths of the strings that can be com-
pared. It makes use of simple basic cells and requires regular nearest-
neighbor communication, which makes it suitable for VLSI implementa-
tion. A prototype of this array has been built at the University of South
Florida.

Index Terms—Edit distance computation, string-to-string correction
problem, very large scale integration (VLSI) implementation, systolic al-
gorithm, special purpose architecture, hardware algorithm.

1. INTRODUCTION

In approximate string matching, also known as the string-to-string
correction problem, a similarity measure called the edit distance
needs to be computed between two strings. This distance is computed
using three editing operations, substitution, deletion, and insertion.
Each of these operations has a cost associated with it. The objective
of approximate string matching is to determine the minimum cost re-
quired to transform one string into another using these: three editing
operations.

String comparison is an important task in many disciplines. It has
applications in information retrieval, pattern recognition [4], [9],
[12], error correction, molecular genetics [7], {17], and text search
and edit systems [2}, {18]. Recent advances in Very Large Scale Inte-
gration (VLSI) technology have made the development of special
purpose architectures and hardware algorithms for complex, compu-
tationally intensive algorithms possible. The attributes of parallelism,
concurrency, pipelining, modularity and regularity have become
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