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Optimal Registration of Object Views
Using Range Data
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Abstract—This paper deals with robust registration of object views in the
presence of uncertainties and noise in depth data. Errors in registration
of multiple views of a 3D object severely affect view integration during
automatic construction of object models. We derive a minimum
variance estimator (MVE) for computing the view transformation
parameters accurately from range data of two views of a 3D object.
The results of our experiments show that view transformation
estimates obtained using MVE are significantly more accurate than
those computed with an unweighted error criterion for registration.

Index Terms—Image registration, view transformation estimation, view
integration, automatic object modeling, 3D free-form objects, range data.

*

1 INTRODUCTION

AN important issue in the design of 3D object recognition systems is
building models of physical objects. Object models are extensively
used for synthesizing and predicting object appearances from de-
sired viewpoints, and also for recognizing them in many applica-
tions, such as robot navigation and industrial inspection. It becomes
necessary on many occasions to construct models from multiple
measurements of 3D objects, especially when a precise geometric
model such as a CAD description is not available and cannot be
easily obtained. This need is felt particularly with 3D free-form ob-
jects, such as sculptures and human faces, that may not possess sim-
ple analytical shapes for representation. With growing interest in
creating virtual museums and virtual reality functions such as walk-
throughs, creating computer images corresponding to arbitrary
views of 3D scenes and objects remains a challenge.

Automatic construction of 3D object models typically involves
three steps:

1) data acquisition from multiple viewpoints,

2) registration of views, and

3) integration.
Data acquisition involves obtaining either intensity or depth data of
multiple views of an object. Integration of multiple views is depend-
ent on the representation chosen for the model and requires knowl-
edge of the transformation relating the data obtained from different
viewpoints. The intermediate step, registration, is also known as the
correspondence problem [1], and its goal is to find the transformations
that relate the views. Inaccurate registration leads to greater diffi-
culty in seamlessly integrating the data. It ultimately affects surface
classification, since surface patches from different views may be
erroneously merged, resulting in holes and discontinuities in the
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merged surface. For smooth merging of data, accurate estimates of
transformations are vital. In this paper, we focus on the issue of
pairwise registration of noisy range images of an object obtained
from multiple viewpoints using a laser range scanner.

We derive a minimum variance estimator to compute the trans-
formation parameters accurately from range data. We investigate
the effect of surface measurement noise on the registration of a pair
of views, and propose a new method that improves upon the ap-
proach of Chen and Medioni [1]. We have not seen any work that
reports, to date, establishing the dependencies between the orienta-
tion of a surface, noise in the sensed surface data, and the accuracy
of surface normal estimation, and how these dependencies can affect
the estimation of 3D transformation parameters that relate a pair of
object views. We present a detailed analysis of this “orientation ef-
fect” with geometrical arguments and experimental results.

2 PREvIOUS WORK

There have been several research efforts directed at solving the
registration problem. While the first category of approaches relies
on precisely calibrated data acquisition devices to determine the
transformations that relate the views, the second kind involves
techniques to estimate the transformations from the data directly.
The calibration-based techniques are inadequate for constructing a
complete description of complex-shaped objects, as views are re-
stricted to rotations or to some known viewpoints only, and, there-
fore, the object surface geometry cannot be exploited in the selec-
tion of vantage views to obtain measurements.

With the second kind, interimage correspondence has been es-
tablished by matching the data or the surface features derived
from the data [2]. The accuracy of the feature detection method
employed determines the accuracy of feature correspondences.
Potmesil [3] matched multiple range views using a heuristic search
in the view transformation space. Though quite general, this tech-
nique involves searching a huge parameter space, and, even with
good heuristics, it may be computationally very expensive. Chen
and Medioni avoid the search by assuming an initial approximate
transformation for the registration, which is improved with an
iterative algorithm [1] that minimizes the distance from points in a
view to tangential planes at corresponding points in other views.
Besl and McKay [4], Turk and Levoy [5], and Zhang [6] employ
variants of the iterated closest-point algorithm. Blais and Levine [7]
propose a reverse calibration of the range-finder to determine the
point correspondences between the views directly, and use stochas-
tic search to estimate the transformation. These approaches, how-
ever, do not take into account the presence of noise or inaccuracies in
the data and its effect on the estimated view-transformation. Our
registration technique also uses a distance minimization algorithm to
register a pair of views, but we do not impose the requirement that
one surface has to be strictly a subset of the other. While our ap-
proach studies, in detail, the effect of noise on the objective function
[1] that is being minimized and proposes an improved function to
register a pair of views, Bergevin et al. [8], [9] propose to register all
views simultaneously to avoid error accumulation due to sequential
registration. Haralick et al. [10] have also showed that a weighted
least-squares technique is robust under noisy conditions under vari-
ous scenarios, such as 2D-2D, 3D-3D image registration.

3 A NONOPTIMAL ALGORITHM FOR REGISTRATION

Two views, P and Q, of a surface are said to be registered when any
pair of points, p and q, from the two views representing the same
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object surface point can be related to each other by a single rigid 3D
spatial transformation 7, so that ¥p € P, 3q € Q such that|| 7p — q ||
=0, where 7Tp is obtained by applying the transformation 7 to p,
and 7'is expressed in homogeneous coordinates as a function of
three rotation angles, ¢; £ and y about the x, y, and z axes, respec-
tively, and three translation parameters, f,, ty and t,. The terms
“view” and “image” are used interchangeably in this paper. The
approach of [1] is based on the assumption that an approximate
transformation between two views is already known, and the goal is
to refine the initial estimate to obtain more accurate global registra-
tion. The following objective function was used to minimize the
distances from surface points in one view to another iteratively:

¢ =Y (T, 5), <1>
i=1

where 7% is the 3D transformation applied to a control point p; €
P,i=1 .. N at the kth iteration, [, = (a| (p; —a)x n, = 0} is the

line normal to P at p;, qf.‘ = (T kli) N Q is the intersection point of

surface Q with the transformed line T I n: is the normal to Q at

k k L

qf, 5 = {s’ n,. -(q; —s) = 0} is the tangent plane to Q at qf, and

d, is the signed distance from a point to a plane as given in (2).
Note that “-” stands for the scalar product and “x” for the vector

product. Fig. 1 illustrates the distance measure d, between surfaces
Pand Q.

(b)

Fig. 1. Point-to-plane distance: (a) Surfaces P and Q before the trans-

formation 77 at iteration k is applied; (b) distance from the point p; to
the tangent plane S,k of Q.

This registration algorithm thus finds a 7 that minimizes ¢

using a least-squares method iteratively. The tangent plane Sf
serves as a local linear approximation to the surface Q at a point.
The intersection point qf.‘ is an approximation to the actual corre-

sponding point ¢; that is unknown at each iteration k. An initial 7’
that approximately registers the two views is used to start the it-

erative process. The signed distance d,, from a transformed point
Tp; p; € P to a tangential plane Sf € Q is given by
i = Ax+By+Cz+D

ST 2)
A"+ B +C
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where Tp; = (z, ¥, z)T and Sik = (A, B,C,D) define the trans-
formed point and the tangential plane, respectively. Note that
= v z)T is the transpose of the vector (x, y, z). By minimizing the
distance from a point to a plane, only the direction in which the
distance can be reduced is constrained. The convergence of the
process can be tested by verifying that the difference between the
errors ¢ at any two consecutive iterations is less than a prespeci-
fied threshold. The line-surface intersection given by the intersec-

tion of the normal line [; and Q is found using an iterative search
near the neighborhood of prospective intersection points.

4 REGISTRATION AND SURFACE ERROR MODELING

Range data are often corrupted by measurement errors and, some-
times, lack of data. The errors in surface measurements of an object
include scanner errors, camera distortion, and spatial quantization,
and the missing data can be due to self-occlusion or sensor shad-
ows. Due to noise, it is generally impossible to obtain a solution
for a rigid transformation that fits two sets of noisy three-
dimensional points exactly. The least-squares solution in [1] is
nonoptimal, as it does not handle the errors in z measurements,
and it treats all surface measurements with different reliabilities
equally. Our objective is to derive a transformation that globally
registers the noisy data in some optimal sense. With range sensors
that provide measurements in the form of a graph surface z = f{x, ),
it is assumed that the error is present along the z axis only, as the x
and y measurements are usually laid out in a grid. There are dif-
ferent uncertainties along different surface orientations, and they
need to be handled appropriately during view registration. Fur-
thermore, the measurement error is not uniformly distributed over
the entire image. The error may depend on the position of a point,
relative to the object surface. A measurement error model dealing
with the sensor’s viewpoint has been previously proposed [11] for
surface reconstruction, where the emphasis was recovering straight
line segments from noisy single-scan 3D surface profiles.

In this paper, we show that the noise in z values affects the es-
timation of the tangential plane parameters differently depending
on how the surface is oriented. Since the estimated tangentfial
plane parameters play a crucial role in determining the distance d,
which is being minimized to estimate 7, we study the effect of
noise on the estimation of the parameters of the plane fitted and
on the minimization of d,. The error in the iterative estimation of T~
is a combined result of errors in each control point (x, y, z)T from
view 1 and errors in fitting tangential planes at the corresponding
control points in view 2.

4.1 Fitting Planes to Surface Data with Noise

Fig. 2 illustrates the effect of noise in the values of z on the esti-
mated plane parameters. For the horizontal plane shown in
Fig. 2a, an error in z (the uncertainty region around z) directly
affects the estimated surface normal. In the case of an inclined
plane, the effect of errors in z on the surface normal to the plane is
much less pronounced as shown in Fig. 2b. Here, even if the error
in z is large, only its projected error along the normal to the plane
affects the normal estimation. This projected error becomes
smaller than the actual error in z as the normal becomes more and
more inclined with respect to the vertical axis. Therefore, our hy-
pothesis is that, as the angle between the vertical (Z) axis and the
normal to the plane increases, the difference between the fitted plane
parameters and the actual plane parameters should decrease.

We carried out simulations to study the actual effect of the
noise in the z measurements on estimating the plane parameters
and to verify our hypothesis. The conventional method for fitting
planes to a set of 3D points uses a linear least-squares algorithm.
This linear regression method implicitly assumes that two of the
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Fig. 2. Effect of noise in z measurements on the fitted normal: (a) when
the plane is horizontal; (b) when it is inclined. The double-headed ar-
rows indicate the uncertainty in depth measurements.

three coordinates are measured without errors. However, it is
possible that, in general, surface points can have errors in all three
coordinates, and surfaces can be in any orientation. Hence, we
used a classical eigenvector method (principal components analy-
sis) [12] that allows us to extract all linear dependencies.

Let the plane equation be Ax + By + Cz+ D=0.Let X; = (x, v, z),
i=1,2, ., n be a set of surface measurements used in fitting a
plane at a point on a surface. Let

oy oz 1
A=z % 2] @)
Y Y, 7, 1

andh=(A B, C D)T be the vector containing the plane parame-
ters. We solve for the vector k, such that ||Ah|| is minimized. The
solution of / is a unit eigenvector of A"A associated with the

smallest eigenvalue. We renormalize h, such that (A4, B, C)T is the

unit normal to the fitted plane, and D is the distance of the plane
from the origin of the coordinate system. This planar fit minimizes
the sum of the squared perpendicular distances between the data
points and the fitted plane, and is independent of the choice of the
coordinate frame.

In our computer simulations, we used synthetic planar patches
as test surfaces. The simulation data consisted of surface meas-
urements from planar surfaces at various orientations with respect
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Fig. 3. Effect of i.i.d. Gaussian noise in z measurements on the plane:
(a) estimated using eigenvector approach; (b) estimated using linear
regression.

to the vertical axis. Independent and identically distributed (i.i.d.)
Gaussian and uniform noise with zero mean and different vari-
ances were added to the z values of the synthetic planar data. The
standard deviation of the noise used was in the range 0.001-0.005 in.,
as this realistically models the error in z introduced by a Technical
Arts 100X range scanner [13] that was employed to obtain the
range data for our experiments. The planar parameters were esti-
mated using the eigenvector method at different surface points,
with a neighborhood of size 5 x 5. The error Eg, in fitting the plane
was defined as the norm of the difference between the actual nor-
mal to the plane and the normal of the fitted plane estimated with
the eigenvector method. Fig. 3a shows the plot of L, versus the
orientation (with respect to the vertical axis) of the normal to the
simulated plane at different noise variances. The plot shows Eg
averaged over 1,000 trials at each orientation.

It can be seen from Fig. 3a that, in accordance with our hy-
pothesis, the etror in fitting a plane decreases with an increase in
the angle between the vertical axis and the normal to the plane.
When the plane is nearly horizontal (i.e., the angle is small), the
error in z entirely contributes to Eg as indicated by Fig. 2a. The
error plots for varying amounts of variance were observed to have
the same behavior with orientation as shown in Fig. 3a. Similar
curves were also obtained with a uniform noise model [14]. These
simulations confirm our hypothesis about the effect of noise in z
on the fitted plane parameters as the surface orientation changes.
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We repeated the simulations using the linear regression
method to fit planes to surface data. We refer the reader to [14] for
details. Fig. 3b shows the error L between the fitted and actual
normals to the plane at various surface orientations when i.id.
Gaussian noise was added to the z values. Our hypothesis is well
supported by this error plot also.

4.2 Proposed Optimal Registration Algorithm

Since the estimated tangential plane parameters are affected by the
noise in z measurements, any inaccuracies in the estimates, in turn,

influence the accuracy of the estimates of d,, thus affecting the
error function being minimized during the registration. Further,

errors in z themselves affect d, estimates (see (2)). Therefore, we

characterize the error in the estimates of d; by modeling the uncer-
tainties associated with them using weights. Our approach is inspired
by the Gauss-Markov theorem [15], which states that an unbiased
linear minimum variance estimator of a parameter vector m when y =

f(m) + J, is the one that minimizes (y — £(m))" F;l(y — f(m)), where
é;, is a random noise vector with zero mean and covariance matrix

I';. Based on this theorem, we formulate an optimal error function
for registration of two object views as
row oo
et =Y —d(T"p,sf), @)
i=1 0y,

where 625 is the estimated variance of the distance d,. When the

reliability of a z value is low, the variance of the distance o‘i is
5

large, and the contribution of 4, to the error function is small, and
when the reliability of the z measurement is high, Gﬁs is small, and

the contribution of d; is large; 4, with a minimum variance affects
the error function more. One of the advantages of this minimum
variance criterion is that we do not need the exact noise distribu-
tion. We only require that the noise distribution be well-behaved
and have short tails. In our simulations, we employ both Gaussian
and uniform noise distributions to illustrate the effectiveness of
our method. We need to know only the second-order statistics of
the noise distribution, which, in practice, can often be estimated.

4.3 Estimation of the Variance ois
We need to estimate o to model the reliability of the computed

d; at each control point, which can then be used in our optimal
error function in (4). Let the set of all the surface points be denoted
by P, and the errors in the measurements of these points be de-
noted by a random vector €. The error g;, in the distance com-

puted is due to the error in the estimated plane parameters and the
error in the z measurement, and, therefore, is a function of P and e
Since we do not know e, if we can estimate the standard deviation
of e 2 (with € as a random vector) from the noise-corrupted surface

measurements P, we can use it in (4).

4.3.1 Estimation of ois Based on Perturbation Analysis

Perturbation analysis is a general method for analyzing the effect
of noise in data on the eigenvectors obtained from the data. It is
general, in the sense that errors in x, y, and z can all be handled.
This analysis is also related to the general eigenvector method that

we studied for plane estimation. The analysis for estimating G;S is
simpler if we use linear regression method to do plane fitting [14].

Since we fit a plane with the eigenvector method that uses the
symumetric matrix C = A" A computed from the (x, y, z) measure-
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ments in the neighborhood of a surface point, we need to analyze
how a small perturbation in the matrix C caused by the noise in
the measurements can affect the eigenvectors. Recall that these
eigenvectors determine the plane parameters (A4, B, C D)T, which,
in turn, determine the distance d,. We assume that the noise in the
measurements has zero mean and some variance, and that the
latter can be estimated empirically. The correlation in noise at dif-
ferent points is assumed to be negligible. Estimation of correlation
in noise is very difficult, but, even if we estimate it, its impact may
turn out to be insignificant. We estimate the standard deviation of
errors in the plane parameters and in d, on the basis of the first-order
perturbations, i.e., we estimate the “linear terms” of the errors.

Before we proceed, we discuss some of the notational conven-
tions that are used: I, is an m X m identity matrix; diag(s, b)is a2 x 2
diagonal matrix with 4 and b as its diagonal elements. Given a
noise-free matrix A, its noise-matrix is denoted by A, and the
noise-corrupted version of A is denoted by A(e) = A + A, The
vector § is used to indicate the noise vector, X(€) = X + 8. We use
T" with a corresponding subscript to specify the covariance matrix
of the noise vector/matrix. For a given matrix A =[4; A, - A,] a
vector A can be associated with it as

A thus consists of the column vectors of A that are lined up together.

As proved in [16], if C is a symmetrical matrix (ATA) formed
from the measurements and  is the parameter vector (A, B, C, D)T
given by the eigenvector of C associated with the smallest eigen-

value, say A;, then the first-order perturbation in the parameter
vector h is given by

S, = HAHTAATAh, (5)
where

A=diagl0, (d — A, (g ~A) ™ (A — Ay ), ©)

and H is an orthonormal matrix, such that

H'CH = diaglAy, 4y, Ay Jo). )
A, is a 4 X 4 noise or perturbation matrix associated with ATA I

A ;, can be estimated, then the perturbation &, in h can be esti-
mated by a first-order approximation as in (5).

We estimate A ; =~ from the perturbation in the surface meas-
urements. We assume, for the sake of simplicity of analysis, that

only the z component of a surface measurement X; = (x;, v; zi)T has

errors, with this general model. This analysis is easily and directly
extended to include errors in x and y if their noise variances are
known.

Let z; have additive errors §, for 1<i<n We then get

0 0 0
A = 5, 8, ~ &, | ®)
0 - 0

If the errors in z at different points on the surface have the same
variance ¢, we get the covariance matrix

L= sziag(Pl,Pz, =, P), &)

where P, 1 <i<n, is a4 x 4 submatrix:
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Now, consider the error in k. As stated before, we have
8, = HAH'A , h= HAH'[ AL B, (I, DL . 2GS, . (11)
In the above equation, we have rewritten the matrix A, asa

vector & ; and moved the perturbation to the extreme right of
the expression. Then the perturbation of the eigenvector is the

linear transformation (by matrix G,) of the perturbation vector

8 . .Since wehave I' . (= I“i), we need to relate 6 ; to § .
aTa A aTa A

Using a first-order approximation [16], we get

A, =AM +AA. (12)

. T TA .
Letting A" = [’ij] =[A; A, --- A ], we write
SATA G TASAT’ (13)

where GATA is easily determined from the equation GATA = [F]1+I[G;l,

where [F;1 and [G;] are matrices with 4 x n submatrices F; and Gy,
respectively; Fj; = a;l), and Gy is a 4 x 4 matrix with the 1th column

being the column vector A; and all other columns being zero. Thus,
we get

A
6, = GhSATA = GhGATAéAT Dh5AT. (14)

Then the covariance matrix of 4 is given by
T,=D,l,.D;. (15)

The distance d; is affected by the errors in the estimation of the
plane parameters, = (A B, C D) and the z measurement in
(x;, ¥y 2 ) Therefore, the error variance in d; is

k=
A
A,
2 od, dd, dd, odd, o, <[ 32 1
o, =|7A 7 ¢ b & | TlX|5 | 19
o,
D
ads
Loz |
The covariance matrix I';, is given by
r, 0
rhz=[0’1 62]. (17)

Once the variance of d,, O'ﬁs is estimated, we employ it in our

optimal error function:

(18)

i 4T, S;)-

1:1 dg

4.3.2 Simulation Results
Fig. 4a shows the plot of the actual standard deviation of the dis-

tance d, versus the orientation of the plane with respect to the ver-

tical axis. Note that the mean of 4, is zero when the surface points
are in complete registration and when there is no noise. We gener-
ated two views of synthetic planar surfaces, with the view trans-
formation between them being an identity transformation. We
experimented with the planar patches at various orientations. We
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added uncorrelated Gaussian noise independently to the two

views. Then, we estimated the distance d, at different control
points using (2) and computed its standard deviation. The plot
shows the values averaged over 1,000 trials. As indicated by our

hypothesis, the actual standard deviation of d, decreases as the
planar orientation goes from horizontal to vertical. As the variance
of the added Gaussian noise to the z measurements increases, & 4

also increases. Similar results were obtained when we added uni-
form noise to the data [14].
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Fig. 4. Standard deviation of d, versus the planar orientation with a
Gaussian noise model: (a) actual Oggs (b) estimated Og, using the

perturbation analysis.

We compared the actual variance with the estimated variance of
the distance ((16)) in order to verify whether our modeling of er-
rors in z values at various surface orientations is correct. We com-

puted the estimated variance of the distance d, using our error
model using (16) with the same experimental setup as described
above. Fig. 4b illustrates the behavior of the estimated standard

deviation of d, as the inclination of the plane (the surface orienta-
tion) changes. A comparison of Figs. 4a and 4b shows that both the
actual and the estimated standard deviation plots have similar be-
havior with varying planar orientation, and their values are propor-
tional to the amount of noise added. This proves the correctness of
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our error model of z and its effect on the distance d,. Simulation
results, when we repeated the experiments to compute both the
actual and the estimated o, using the planar parameters estimated

with the linear regression method, were similar to those shown in
Fig. 4. This also demonstrates the important fact that the method
used for planar fitting does not bias our results.

5 VIiEw REGISTRATION EXPERIMENTS

In this section, we demonstrate the improvements in the estima-
tion of view transformation parameters on real range images using
our MVE. We will henceforth refer to Chen and Medioni’s tech-
nique [1] as the C-M method. We obtained range images of com-
plex objects using a Technical Arts laser range scanner. We per-
formed uniform subsampling of the depth data to locate the con-
trol points in view 1 that were to be used in the registration. From
these subsampled points, we chose a fixed number of points that
were present on smooth surface patches. The local smoothness of
the surface was verified using the value of residual standard de-
viation resulting from the least-squares fitting of a plane in the
neighborhood of a point. A good initial guess for the view trans-
formation was determined automatically when the range images
contained the entire object surface and the rotations of the object in
the views were primarily in the plane. Our method is based on
estimating an approximate rotation and translation by aligning the
major (principal) axes of the object views [14]. Figs. 5a and 5c de-
pict the two major axes of the objects. We used this estimated
transformation as an initial guess for the iterative procedure in our
experiments, so that no prior knowledge of the sensor placement
was needed. Experimental results show the effectiveness of our
method in refining such rough estimates. The same initial guess was
used with the C-M method and the proposed MVE. We employed
Newton’s method for minimizing the error function iteratively.

In order to measure the error in the estimated rotation pa-
rameters, we utilize an error measure that does not depend on the
actual rotation parameters. The relative error of rotation matrix R,

Eg is defined [16] to be E; = “ﬁ - R”/”R”, where R is an estimate

of R. Since RI = R, the geometric sense of Ey is the square root of
the mean squared distance between the three unit vectors of the
rotated orthonormal frames. Since the frames are orthonormal,

E, = +/(dx* + dy* + dz*) /{3 . The error in translation, E, is defined
R ¥ ¢

as the square root of the sum of the squared differences between

the estimated and actual ¢, #,, and #, values.

5.1 Resulis

Fig. 5 shows the range data of a cobra head and a Big-Y pipe. The
figure renders depth as pseudo intensity, and points almost verti-
cally oriented are shown darker. View 2 of the cobra head was
obtained by rotating the surface by 5° about the X axis and 10°
about the Z axis. Table 1 shows the values of Ey and E, for the co-
bra views estimated, using only as few as 25 control points. It can
be seen that the transformation parameters obtained with the MVE
are closer to the ground truth than those estimated using the un-
weighted objective function of the C-M method. Even when more
control points (about 156) were used, the estimates using our
method were closer to the ground truth than those obtained with
the C-M method [14].

We also show the performance of our method when the two
viewpoints are substantially different and the depth values are
very noisy. Fig. 5 shows two views of the Big-Y pipe generated
from the CAD model. The second view was generated by rotating
the object about the Z axis by 45°. We also added Gaussian noise
with mean zero and standard deviation of 0.5 mm to the z values
of the surfaces in view 2. Table 2 shows Ey and E, computed with

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 19, NO. 10, OCTOBER 1997

@ (b) () (d)

Fig. 5. Range images and their principal axes: (a) View 1 of a cobra
head; (b) View 2 of the cobra head; (c) Big-Y pipe data generated from
its CAD model; (d) View 2 of Big-Y pipe.

TABLE 1
ESTIMATED TRANSFORMATION FOR THE COBRA VIEWS
Parameters Actual C-M MVE
value method
o (degrees) 5 0.2857 4.5241
B (degrees) 0 -2.225 0.0143
v(degrees) 10 12.9741 | 10.3811
t, (inches) 0 0.9429 0.6684
1, (inches) 0 0.3483 0.0217
t, (inches) 0 0.2263 —-0.2976
Er 0.0848 0.0087
E, 1.0303 0.7319

154 control points. It can be seen from these tables that the trans-
formation matrix, especially the rotation matrix, obtained with the
MVE is closer to the ground truth than that obtained using the C-M
method. The errors in translation components of the final trans-
formation estimates are mainly due to the approximate initial
guess. Our method refined these initial values to provide a final
solution very close to the actual values. Our method also handled
large transformations between views robustly. With experiments
on range images of facial masks, we found that even when the
depth data were quite noisy owing to the roughness of the surface
texture of the objects and also due to self-occlusion, more accurate
estimates of the transformation were obtained with the MVE.
When the overlapping object surface between the views is quite
small, the number of control points available for registration tends
to be small, and, also, in such situations, the MVE has been found
to have substantial improvement in the accuracy of the transfor-
mation estimate. Note that measurement errors are random, and
we minimize the expected error in the estimated solution. How-
ever, our method does not guarantee that every component in the
solution will have a smaller error in every single case.

TABLE 2
ESTIMATED TRANSFORMATION FOR THE BIG-Y VIEWS
Parameters Actual C-M MVE
value method
o (degrees) 0 1.2636 0.6061
S (degrees) 0 2.0151 1.1914
y(degrees) 45 44.4674 | 44.7786
t, {inches) 0 0.0163 0.0006
t, (inches) 0 0.1314 0.0845
t, (inches) 0 0.0438 0.0376
Er 0.0348 0.0193
E; 0.1395 0.0925

We also used the MVE for refining the pose estimated using
cosmos-based recognition system for free-form objects [14]. The
rotational component of the transformation of a test view of Vase2
(View 1 shown in Fig. 6a) relative to its best-matched model view
(View 2 shown in Fig. 6b) was estimated using surface normals of
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Fig. 6. Pose estimation: (a) View1 of a vase; (b) view2; (c)-(f} model view registered with the test view of Vase2 at the end of the first, third, fourth,
and fifth iterations; (g) registered views at the convergence of the algorithm.
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Fig. 7. Registration of views of Phone: (a) View 1; (b) view 2; (c)-(f) model view registered with the test view of Phone at the end of first, second,
third, and fourth iterations; (g) registered views at the convergence of the algorithm.

corresponding surface patch-groups determined by the recognition
system. A total of 10 pairs of corresponding surface patch-groups
was used to estimate the average rotation axis and the angle of
rotation. These rotation parameters (r = (0.005288, —0.004433,
0.024552) and @=0.180429 radians) were used to compute the 3x 3
rotation matrix, which was then used as an initial guess to register
the model view (View 2) with the test view (View 1) of Vase2 us-
ing the MVE. We note here that the computational procedure for
MVE was augmented using a verification mechanism for checking
the validity of the control points during its implementation [17].
We derived the results presented in this section using this aug-
mented procedure. Figs. 6¢, 6d, 6e, and 6g show the iterative reg-
istration of the model view with the scene view. It can be seen that
the views are in complete registration with one another at the end
of seven iterations.

Fig. 7 shows the registration of a model view with a scene view
of Phone through several iterations of the algorithm. The registra-
tion scheme converged with the lowest error value at the sixth
iteration. It can be seen that, even with a coarse initial estimate of
the rotation, the registration technique can align the two views
successfully within a few iterations. Given a coarse correct initial
guess, registration, on the average, takes about 30 seconds to reg-
ister two range images whose sizes are 640 x 480 on a SPARCsta-
tion 10 with 32MB RAM.

5.2 Discussion

In general, all the orientation parameters of an object will be im-
proved by the proposed MVE method if the object surface covers a
wide variety of orientations, which is true with many natural ob-
jects. This is because each locally flat surface patch constrains the
global orientation estimate of the object via its surface normal di-
rection. For example, if the object is a flat surface, then only the
global orientation component that corresponds to the surface
normal can be improved, but not the other two components that
are orthogonal to it. For the same reason, the surface normal of a
cylindrical surface (without end surfaces) covers only a great circle
of the Gaussian sphere, and, thus, only two components of its
global orientation can be improved. The more surface orientations
that an object covers, the more complete the improvement in its
global orientation can be, by the proposed MVE method. An
analysis of the performance of the MVE and unweighted registra-
tion algorithms with surfaces of various geometries can be found
in [14].

When more than two views have to be registered, our algo-
rithm for registering a pair of object views can be used either se-
quentially (with the risk of error accumulation) or in parallel, e.g.,
with the star-network scheme [9]. Note, however, that we have not
extended our weighted approach to the problem of computing the
transformation between n views simultaneously. When there is a




1138

significant change in the object depth, the errors in z at different
points on the surface may no longer have the same variance; the
variance typically increases with greater depth. In such situations,
our perturbation analysis still holds, except for the covariance
matrix T’ r in (9). The diagonal elements of this matrix will no

longer be identical, as we assumed. Each element, which is a
summary of the noise variance at the corresponding point in the
image, must reflect the combined effect of variation due to depth,
measurement unreliability due to surface inclination, etc., and,
therefore, a suitable noise model must be assumed or experimen-
tally created.

6 SUMMARY

Noise in surface data is a serious problem in registering object
views. The transformation that relates two views should be esti-
mated robustly in the presence of errors in surface measurements
for seamless view integration. We established the dependency
between the surface orientation and the accuracy of surface nor-
mal estimation in the presence of error in range data, and its effect
on the estimation of transformation parameters with geometrical
analysis and experimental results. We proposed a new error
model to handle uncertainties in z measurements at different ori-
entations of the surface being registered. We presented a first-
order perturbation analysis of the estimation of planar parameters
from surface data. We derived the variance of the point-to-plane
distance to be minimized to update the view transformation dur-
ing registration. We employed this variance as a measure of the
uncertainty in the distance resulting from noise in the z value, and
proposed a minimum variance estimator to estimate transforma-
tion parameters reliably. The results of our experiments on real
range images have shown that the estimates obtained using our
MVE generally are significantly more reliable than those com-
puted with an unweighted distance criterion.
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