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Registration and Integration of Multiple
Object Views for 3D Model Construction

Chitra Dorai, Member, IEEE, Gang Wang,
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Abstract—Automatic 3D object model construction is important in
applications ranging from manufacturing to entertainment, since CAD
models of existing objects may be either unavailable or unusable. We
describe a prototype system for automatically registering and
integrating multiple views of objects from range data. The results can
then be used to construct geometric models of the objects. New
techniques for handling key problems such as robust estimation of
transformations relating multiple views and seamless integration of
registered data to form an unbroken surface have been proposed and
implemented in the system. Experimental results on real surface data
acquired using a digital interferometric sensor as well as a laser range
scanner demonstrate the good performance of our system.

Index Terms—Automatic 3D object modeling, free-form objects,
registration, view integration, range images, digital interferometry.
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1 INTRODUCTION

THERE is growing interest in transforming images to models, i.e.,
to construct geometric and descriptive models of 3D objects from
sensed data for applications ranging from part inspection and
manufacturing to surgical planning and entertainment industries.
Models of existing objects may be unavailable because

1) CAD techniques were not used to create the objects or
2) use of the original CAD models is prohibited due to pro-
prietary reasons.

Accurate models of existing free-form objects are required in
emerging applications such as object animation and visualiza-
tion in virtual museums and vision augmented environments.
Another industrial application that is of major interest to us is
image tiling and assembly for automated inspection of in-situ
engine components whose surface information is acquired from
various viewpoints using optical phase-measuring interferome-
try systems [1].

Automatic object model construction involves:

1) acquiring many object views,

2) registering the views, and

3) integrating and building geometric models of the data.

Data acquisition involves obtaining either intensity or depth data
of an object from multiple viewpoints. In this paper, the term data
refers to surface depth measurements that can be obtained using a
laser range scanner or an interferometric sensor. Since accurate 3D
spatial relations between different object views may not be easily
and directly obtained in many situations, during registration,
transformations that relate the views need to be determined to
bring the object regions that are shared between them into align-
ment. Integration merges data from multiple views using the
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computed view transformations such that a single surface repre-
sentation is created in a unique coordinate frame.

In this paper, we describe a complete system for registering
and integrating multiple views of an object. New techniques for
solving key problems, such as robust estimation of transforma-
tions relating multiple views and seamless integration of regis-
tered data to form an unbroken surface, have been proposed and
implemented in our system. Our technique [2] registers object
views pairwise in the presence of uncertainties and noise in sur-
face data, and allows data to be obtained from any viewpoint
without the need for a control device with six degrees of freedom
of motion. The view integration scheme uses a weighted averaging
technique for merging the registered views together to result in a
smooth surface. Our system has been tested on depth data ob-
tained using digital interferometry techniques as well as laser
range scanners. Experimental results on real complex object sur-
faces demonstrate the feasibility of our system.

2 PREVIOUS WORK

Many current research efforts approach object model construction
via view registration and integration. Techniques to solve the reg-
istration problem fall into two categories:

1) the first kind [3], [4], [5] relies on precisely calibrated data
acquisition devices to determine the transformations that
relate the views and

2) the second involves developing techniques to estimate the
transformations from the data directly [6].

The first type is often inadequate to construct a complete descrip-
tion of complex shaped objects because views are restricted to
rotations or to some known viewpoints only. Therefore, we cannot
make use of the object surface geometry in the selection of ob-
server viewpoints to obtain measurements. The second category is
general and involves searching a huge parameter space, and even
with good heuristics, it may be computationally very expensive.

Chen and Medioni avoid the search in the view transformation
space by assuming an initial approximate transformation for reg-
istration, which is improved with an iterative algorithm [7] that
minimizes the distance from points in a view to tangential planes
at corresponding points in other views. Besl and McKay [8] pro-
pose an iterative closest point algorithm for registration which re-
quires the specification of an appropriate procedure to find the
closest point on a geometric entity to a given point. Registering
sparse range data has also been proposed as a motion estimation
problem [9], although the algorithm has not been tested on real
surface data. The view integration technique described by Soucy
and Laurendeau [10] assumes that reliable view transformations
are available and proceeds by building a set of triangulations with
the subsets of the common surface segments between all pairs of
views, and connecting them to output a global triangulation. Mar-
tin Rutihauser et al. [11] also start with triangulated surfaces but
employ a modified Kalman estimator to merge the triangulations
robustly. Blais and Levine [12] employ a combination of reverse
calibration and stochastic search to estimate the pairwise view
transformation. While most techniques attempt to register views
sequentially, Bergevin et al. [13], [14] and Shum et al. [15] propose
to register multiple views simultaneously. A related system for
registration and integration of object views [16] uses a varjant of
the iterated closest point algorithm [8]. Qur registration technique
also uses a distance minimization algorithm to register a pair of
views, but we do not impose the requirement that one surface be
strictly a subset of the other. Another example of a reverse engi-
neering system is REFAB [17] that allows an interactive specifica-
tion of the types and locations of features in a mechanical part and
generates the parameterizations of features to be converted into a
usable CAD model.
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Fig. 1. Overview of an automatic 3D object model construction system.
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Fig. 2. Four different views of an angel sculpture obtained using a pro-
totype fiber-optic projected fringe system designed and built at NASA
Lewis Research Center.

3 SYSTEM OVERVIEW

Our multiview integration system consists of several stages of
processing as shown in Fig. 1. Details of each stage are presented
in the following sections.

3.1 Data

Interferomietric data was used in our study in addition to the data
obtained used a laser range scanner because it is representative of
data encountered in many industrial applications. Fig. 2 shows the
data obtained from a fiberoptic projected-fringe system [1]. Surface
data is rendered as pseudo intensity in Fig. 2 and points almost ver-
tically oriented are shown darker. Projected fringe interferometers
are characterized by the tradeoff between high accuracy and meas-
urement area; the width of the measured area can only be up to
2,000 times larger than the depth resolution. Hence, for large objects,
multiple views are required to get complete surface information.

3.2 Preprocessing

In order to improve the accuracy of registration and data integra-
tion, some preprocessing is required to remove the noise in the
input images. We have implemented two preprocessing steps:

(a) (b)

Fig. 3. Preprocessing of surface data.. (a) Angel-C after removal of
isolated pixels. (b) After median filtering.

1) removal of isolated pixels and
2) removal of noise through median filtering.

Experimental results indicate that a combination of these two preproc-
essing steps improves the accuracy of integration results noticeably.
The isolated pixel removing algorithm first segments the input
range images into multiple connected regions and calculates the size of
each connected region in units of pixels. It then removes all those iso-
lated patches whose areas are less than a pre-defined threshold. For
the angel images, the threshold was set to 10 percent of the number of
pixels in each image. Fig. 3a shows the result of this processing step.
We adopted the median filtering technique for noise removal as it
does not lose much surface detail while smoothing the input images.
Experimental results show that applying a median filter to input
range images after the removal of isolated pixels can remarkably
improve the accuracy of image registration. The number of iterations
required to achieve convergence during the iterative registration of
views also decreases noticeably. Fig. 3b shows the result of a 3 x 3
median filter applied to the range image after the removal of isolated
pixels. There was not much difference observed in the accuracy of
the registration results when the window size of the filter was larger.

3.3 Registration of Views

Given a pair of range images P and Q (different views of the same
3D object), the goal of a registration algorithm is to find the best
rigid transformation 7 that relates P and Q. These two views are
said to be registered if the relation Tp = q holds for any pair of
points (p, q), p € P, q € Q, where p and q represent the same sur-
face point. View P is referred to as the source image, and view Q,
the destination image. An enhanced adaptation of the iterative dis-
tance minimization technique proposed by Chen and Medioni [7]
is employed in our system to register a given pair of object views
from their surface data directly.

3.8.1 Pairwise View Registration

The approach of Chen and Medioni [7] is based on the assumption
that an approximate transformation between two views is already
known, i.e,, data from the views are approximately registered, and
the goal is to refine the initial estimate to obtain a more accurate
global registration. Nearly all distance minimization algorithms
suppose that a coarse initial estimate of the transformation is ei-
ther available from the knowledge of positions of the sensor or
estimated using other feature-based techniques. Given two object
views P and Q and a set of N points called the control points in P,
Chen and Medioni [7] used the following objective function to
estimate the view transformation 7= (¢, §, 7 t,, t,; t,) by iteratively
minimizing the distances from the control points to the surface Q:

e = idf(if Pt N=z3, )
i=1

where T is the 3D transformation applied to a control point p; & P
at the kth iteration, I, = {a ‘ (p;~a)xn, = 0} is the line normal to
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Fig. 4. Correspondence of control points. (a) Smooth surface. (b) Rough surface.

Patp, q' = (T kli) N () is the intersection point of surface Q with
K

o is the normal to Q at qf,

the transformed line T°*I, n|

sk = {s ‘ n’;i (qiC - s) = 0} {(where ‘' stands for the scalar product

1
and ‘X’ for the vector cross product.) is the tangent plane to Q at q:,‘

and d, is the signed distance from a point to a plane.
The registration algorithm thus finds a transformation 7 that
iteratively minimizes ¢ using a least squares method. The tangent

plane S serves as a local linear approximation to the surface Q at
point g;. The intersection point qf is an approximation to the ac-

tual corresponding point q; which is unknown at each iteration k.
An initial transformation 7’ that approximately registers the two
views is used to start the iterative process. By minimizing the dis-
tance from a point to a plane, only the direction along which the
distance can be reduced is constrained. The convergence of the
process can be established by verifying that the difference between
k \ M L
the errors ¢ at any two consecutive iterations is less than a pre-

specified threshold. The point of intersection of the normatl line [;
and the surface Q is determined using iterative search near the
neighborhood of a prospective intersection point computed using
a reverse calibration procedure [2].

3.3.2 Verification of Control Point Correspondences
Given a set of control points in the source image, finding their cor-
responding control points accurately in the destination image is one
of the core tasks of the registration algorithm. The effectiveness of
the algorithm for establishing the correspondence depends upon
the following two factors:

1) the accuracy of the initial transformation that drives the it-

erative process and
2) the smoothness of the surfaces to be registered.

If the initial estimate is accurate and the object surfaces are
smooth, most corresponding control points found by our tech-
nique are reasonable approximations to the true corresponding
control points (see Fig. 4a). However, if the initial guess is not ac-
curate, or the surface of the object is noisy and rough, many corre-
sponding control points found may be far away from the actual
corresponding control points (see Fig. 4b). In both the cases, n, is
the surface normal to the surface P at control point p,; and q, is the
intersection of n, with the surface Q. Therefore, q, would be con-
sidered the corresponding control point of p,. S is the tangential
plane of Q estimated at the point q, and q; is the true corre-
sponding point to p; on the surface Q. The distance between q;
and p; is ds(’Ik Ps SF) desired in the registration algorithm de-
scribed in Section 3.3.1, and would be minimized by the iterative
process. On a smooth surface, the approximate corresponding
point, q, and the true corresponding point, q; can lie closer to each

other as shown in Fig. 4a whereas if the surface is noisy, they may
be far away from one another as shown in Fig. 4b. Any inaccuracy
in establishing the correspondence of control points leads to inac-
curate estimation of d; and hence the transformation parameters.
We have designed a verification mechanism to check the validity
of the corresponding control points found by the algorithm and in
our system, only valid corresponding control point pairs are em-
ployed to update the transformation matrix.

The correctness of the correspondences of control points can be
verified by the distance constraint imposed by rigid transformations.
Given control points p; and p, on the surface P, and the corre-
sponding control points q; and q, on the surface Q, the constraint

i 1 -pall=a:-all
holds for all rigid transformations. Otherwise, (p;, q;) and (py, qp)
cannot be valid control point pairs at the same time and thus, (py, q;)
and (p,, q,) are not compatible with each other. Two pairs of control
points (py, q;) and (p,, q,) are defined to be compatible if and only if

o~ pof - Ja: - _, @)
max("p1 -2l . - ‘12")

where # is a predefined threshold (10 percent in our implementation).
Given two object views (surfaces) P and Q and a control point
set {p1, Py - P} where p; lies on P, the “approximate” corre-
sponding control point set {q, q -, q,} is first determined at
each iteration. The following method is used to check the corre-
spondence of control point pairs (p; q;) for eachie {1, 2, --- n}, and
those found to be invalid are removed:
1y Foranyi je {1,2 ---, n}, and i #j, check whether the control
point pairs (p; q;), (p; g;) are compatible with each other
based on (2).
2) Remove the control point pair (p; q;) that is incompatible
with the most number of control point pairs.
3) Iterate steps (1) and (2) until

i) all the remaining control point pairs are compatible
with each other, or

ii) up to a preset maximum (50 percent of 1) number of
pairs is removed, or

iii) the number of remaining control points is less than a
predefined threshold (20 in our system).

Compared with the technique of Chen and Medioni [7], the
improved algorithm augmented by the control point verification
step was found to provide more accurate results as demonstrated
by our experiments.

~t <

3.4 Seamless Integration of a Pair of Views

Given a pair of registered views, one of the goals in designing an
integration algorithm is that the assembled data should be as
smooth as possible without any loss of details present in the origi-
nal raw data. Given the fact that there can be some imprecision in
the estimated view transformation parameters obtained in the
registration stage, and that the input data may be noisy, it is not
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(a)

(b)

Fig. 5. Comparison of integration algorithms. (a) Integration using simple averaging. (b) integration using weighted averaging.

quite easy to achieve this goal. Although a smoothing algorithm
appears to be necessary to smooth the integrated data, surface
details may be lost during blurring.

We have proposed and implemented a weighted averaging al-
gorithm to integrate two registered range images. In order tfo
compare the effectiveness of the weighted averaging algorithm, a
simple (unweighted) averaging algorithm was also implemented.
Fig. 5 illustrates both the integration algorithms. In Fig. 5, only a
part of the surfaces P and Q that are to be integrated is overlap-
ping. Plane S is an arbitrary plane that is parallel to the Z axis.
Curves P’ and @ are the intersections of surfaces P and Q with
plane S, respectively.

With the simple averaging algorithm, the depth value of each
pixel in the merged image is calculated by averaging the depth
values of the corresponding pixels in the source image P and the
destination image Q, as shown in Fig. 5a. The drawback of this
method is that it cannot guarantee the smoothness of the depth
values on the view boundary. Fig. 7a shows the resultant image
derived from assembling Angel-C and Angel-D by using the sim-

Fig. 6. Weighted averaging method..

ple averaging algorithm. It demonstrates that the simple averaging
algorithm cannot result in smooth integrated views.

The weighted averaging algorithm, on the other hand is de-
vised to deal with this problem. Each pixel in the input image is
associated with a weight, which is essentially the distance of the
pixel to the nearest boundary. As shown in Fig. 5b, a smooth trans-
formation of data can'be achieved on the view boundary by cal-
culating the depth value in the merged image using the weighted
averaging algorithm. Fig. 6 provides the details of the weighted
averaging algorithm. Pixel m lies on the boundary of object P and
S is the background. In our implementation, the weight associated
with m is set to be 1. The nearest boundary pixel to pixel » in Fig. 6
is m, which is 3 pixels to the right and 1 pixel above 7. Then, the
weight of n is computed as 1 + 3 = 4. Note that the weights associ-
ated with all the background pixels are defined to be 0. For any
pixel x that is part of the visible surface of the object, its weight
Wix) is recursively defined as:

Wix) = Jmin )(W(zz) +1), (3)

where the function N{x) returns the neighborhood of pixel x. In
our experiments both four-neighborhood and eight-neighborhood
schemes were tested. Since there was no noticeable difference
found in the integration results, only those results obtained using
the four-neighborhood based scheme are reported in this paper.

Once the weight associated with each pixel in the overlapping
regions of both the source and destination images is determined, the
depth value Z, of any pixel g in the integrated image is calculated
based on the equation:

_ZXW(s)+Z, x W(d)
( W) +W@ 7

4)
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(b)

Fig. 7. Integration of Angel-C and Angel-D. (a) Result of simple averaging. (b) Result of weighted averaging.

where s and d are the corresponding pixels of g in the source and
destination images, respectively. Fig. 7b shows a marked improve-
ment in the result of our weighted averaging algorithm over that
of the simple averaging algorithm shown in Fig. 7a. The merger of
views, Angel-E and Angel-F obtained using the weighted integra-
tion scheme is shown in Fig. 8.

3.5 Multiple View Integration

We have also devised a technique to assemble a simple 3D model
of an object from its multiple views by integrating the information
present in all the views so that new object views can be generated
from this 3D model. Given multiple views {S;, S,,-- S,} and the
cotresponding transformation matrices {77, 75, - 7,} that relate
these views to one another, a 3D model can be constructed as a 3D
point set in the following manner:

M, = U(TI ° Si) )
i=1

in which §; is the set of 3D points obtained from the range image
of the ith view. However, this method has a severe drawback.

Consider points {pil,piz,u-pik}, p; € Sij=1,2, - k that repre-
7

sent the same point p; on the object surface visible in multiple

views. These points after the transformation, may not map to a

single surface location since the transformation matrix 7; esti-

mated at the registration stage may not be very accurate. In other

words, points T] op;,j=1,2, - k may not reside exactly at the
]

Fig. 8. Integrated view of Angel-E and Angel-F.

same 3D location. Therefore, inconsistencies may be introduced in
the resultant surface model. To avoid this problem, we decompose

the Cartesian 3D space into multiple equal-sized voxels {Vi;}. For a
given voxel V;, we obtain a single 3D point py; that represents all
the points that fall into Vi

D = ZVpeSp,-}-k (P) xPp
ik W
ZVPESPijk (P)

where Sp = {p | p e My, p e Vy3} and W(p) is the weight associated
with point p. Note that each point (pixel) in an input range image is
associated with a weight, which is essentially the distance of the pixel
to the nearest boundary. The resultant surface model is M,, = {pz}.

Once the 3D model M,, is obtained, a user can visualize the ob-
ject from various new viewpoints. For a given viewpoint, there
exists an equivalent transformation R = {a, 8, ¥ £, ,, t,}, based on
which a rigid transformation matrix T can be computed. The visi-
ble point subset V,,, ¢ T o M,, can be determined based on the
depth value of each point in 7o M,

)

4 EXPERIMENTAL RESULTS

We tested the performance of our prototype system on surface data
obtained using a Technical Arts White laser range scanner available at
Michigan State University and a digital interferometric sensor avail-
able at NASA Lewis Research Center. We registered and integrated
the angel images shown in Fig. 2 successfully using the pairwise inte-
gration scheme to obtain the final integrated view shown in Fig. 9.

In order to compare the registration accuracy of our algorithm
with the registration algorithm [7] proposed by Chen and Medioni,
we used the same input images for both the algorithms. Table 1
shows the registration results in which Angel-C and Angel-D were
used as the source and destination images, respectively; the initial
guess was set to (o =0, =0, y=-15, £, =-35,{,=1, ¢ =-05) by

Fig. 9. Result of merging all angel views.
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TABLE 1
REGISTRATION RESULTS

Registration with preprocess- | without preproc-
method ing and control essing and control

point verification point verification
3D a=3.692 a=3.6922
transformation B=-1.7056 f=-1.0148
parameters y=-14.5857 v=-14.8978

‘ f,=-8.3472 t,=-3.3511

t,=1.2833 t,=1.3246

t,=-0.5704 t,=-0.5207
Registration error, 5, | 0.0374 0.0515

visually inspecting the two views. When the range images contain
the entire object surface and the rotations of the object in the views
are primarily in the plane, then a good initial guess for the itera-
tive algorithm can be determined automatically. We compute the
approximate rotation and translation from the major (principal)
axes of the object from the range data [2] to serve as an initial
guess for our iterative registration procedure, since we assume
that'we do not have the prior knowledge of the sensor placement.
If computational time is not a constraint on the system’s perform-
ance, a reasonable estimate of the initial transformation can be ob-
tained using genetic algorithms or simulated annealing techniques.

All rotations shown in Table 1 are measured in degrees and all
translations as well as the registration errors are in centimeters.
Our iterative registration scheme reached convergence after four
iterations. With the Chen and Medioni method, the results im-
proved gradually during the first five iterations; however, the
result of the sixth iteration became worse than that of the fifth.
This oscillatory behavior is often observed when the iterative pro-
cedure is near the final convergence. Table 1 shows only the result
of the fifth iteration of Chen and Medioni’s method. By using the
verification of control point correspondences (Section 3.3.2), our
system avoids the oscillation of values of the transformation pa-
rameters.

In all our experiments, we used registration error (§,) as an in-~
dication of the accuracy of registration. It was computed as the
average distance from the surface of the source image to the desti-
nation image in the direction of the Z axis, once the source image
has been transformed using the transformation parameters deter-
mined by the registration process. In most cases, only parts of the
source and destination images are overlapped. Therefore, §, is cal-
culated only in the overlapping regions: The value of §, is primar-
ily determined by two factors:

1) the accuracy of registration error and
2) the noise in the input images.

Although it is difficult to quantify the contribution of each factor
-to the final value of 8, it can still be used to compare the relative
merits of different registration techniques, since the noise in the
input images is the same. In the case of angel images, the distance
between the two eyes is about 1.2 cm (140 pixels) and the range
image of Angel-D spans about 1.4 cm of depth. The error in regis-
tering Angel-C and Angel-D is about 3 percent of the depth span
(about 4 pixels). Results from comparisons using images of different
objects indicate that accurate registration results from our improved
registration method lead to better integration of data especially
when the input images are complex and noisy. These tests also
show that our method requires a fewer number of iterations to
achieve convergence. Given a coarse correct initial guess, our sys-
tem usually takes about 30 seconds to register two range images
whose sizes are 640 x 480 on a SPARCstation 10 with 32MB RAM.
By registering and integrating nine different views of a wooden
Buddha sculpture shown in Fig. 10, a 3D surface model was ‘con-

Fig. 10. Nine views used to reconstruct a 3D surface model of the
Buddha.

Fig. 11. Four new views generated using the reconstructed 3D model
of the Buddha.

structed which allows a user to rotate and view the Buddha from
new viewing directions (see Fig. 11) which are distinct from those
that were used to generate the input data. The thickness of the
laser beam generated by the range scanner is about 3mm. As a
result, many of the fine details on the head of the Buddha were
lost or were not measured accurately while acquiring the data
using the Technical Art White scanner. This loss of detail cannot
be properly compensated during the construction of the 3D sur-
face model. Thus, on the resultant 3D surface model, there are a
few small “holes” (black pixels) on the Buddha’s head. The input
views contain altogether 142,448 3D surface points and each pixel
in an image represents an actual size of 0.026” x 0.045”. The voxel
size selected was 0.04” during view integration. The resultant suz-
face model contains 47,720 3D points. These experimental results
demonstrate that our system is capable of seamlessly merging
surface information from multiple range images. We believe that
our system is of practical value for many applications due to its
accuracy and robustness.

5 DISCUSSION

When multiple object views are registered and integrated in
stages, the entire 3D model can be constructed easily. However,
this approach may lead to accumulated regjistration errors. A pos-
sible way to avoid this accumulated registration error is to register
and integrate all the views simultaneously using a star network [13],
[14] supplemented by our improved registration technique.
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During view registration, the extent of surface overlap directly
influences the number of corresponding points that can be estab-
lished for the control points and thus the accuracy of the estimated
transformation. With very small overlapping regions in the views
registered, our system could only retain a few corresponding pairs
- that were used in estimating the transformation. If acquiring data
is not a problem, many closely overlapping views can be obtained
and the transformation accuracy can be improved. Our system is
not limited to any fixed number of views; however computational
costs will place practical limits.

The voxel size employed during integration was approximately
that of the smallest pixel. We have not experimented with the ef-
fect of varying grid location or voxel size; we anticipate that rais-
ing this size will result in over-smoothing of the surface, thus los-
ing details of surface discontinuities, and lowering the voxel size
will result in the retention of too many noisy surface points. We
have tested our registration algorithm using simulated noise with
standard deviation ranging from 0.001 to 0.005 inch, which realis-
tically models the error in z introduced by a Technical Arts White
scanner that was employed to obtain the range data for our ex-
periments. The performance of the algorithm was satisfactory un-~
der these conditions.

6 SumMARY

We have proposed and implemented a complete prototype system
for registering and integrating multiple 3D object views from
range data which can then be used to construct geometric models
of the objects. We have employed an improved registration tech-
nique to compute the view transformation relating a pair of views.
Our experimental results illustrate that by combining preprocess-
ing techniques such as removal of isolated pixels and median fil-
tering, and by enhancing the performance of the registration algo-
rithm with the verification of control point correspondences, the
accuracy of view registration results can be improved noticeably.
A weighted integration algorithm was proposed to result in

smoothly merged surfaces. We have demonstrated that it is feasi- -

ble to integrate surface data of any complex shaped 3D object from
its multiple views accurately.
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