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Abstract

Registration and integration of measured data of
real objects are hecoming important in 3-D modeling
for computer graphics and computer-aided design. We
propose a new algorithm of registration and integra-
tion of multiple range images for producing a geomet-
ric object surface model. The registration algorithm
determines a set of rigid motion parameters that reg-
ister a range image to a given mesh-hased geometric
model. The algorithm is an integration of the wterative
closest point (ICP) algorithm with the least median of
squares {LMS or LMedS) estimator. After registra-
tion, points in the Input range image are classified
into inliers and outliers according to registration er-
rors between each data point and the model. The
outliers are appended to the surface model to be used
by registration with the following range images. The
parts classified as inlier by at least one registration re-
sult is segmented out to be integrated. This process
consisting of registration and integration is iterated
until all views are integrated. We successfully experi-
mented with the proposed method on real range image
sequences taken by a rangefinder. The method does
not need any preliminary processes. like smoothing or
trimming of isolated points. hecause of its robustness.

1 Introduction

The problem of registration and integration of mul-
tiple range 1nages is oune of the most importaut prob-
lems in 3-D shape analysis, especially in the appli-
cations of computer graphics. computer-aided design
and numerical simulation. A range image usually lacks
data of the points hidden behind objects or of the
points that are out of the field of view of the sen-
sor. It is usually difficult to measure the whole surface
of an object at one time. thus the multiple measure-

ment 15 necessary.  Lhe multiple views of an object
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arce acquired by moving (rotating) the sensor around
the object or by moving the object in front of the
fixed sensor. Even though the motion is controlled,
it may not be so accurate as the range wmeasurement.
The coordinate system of each set of measured data is
sensor-centered. Therefore. in order to integrate mul-
tiple range images. we first have to represent all data
in the object-centered coordinate system. This is what
we call registration. and a number of researches have
been done on this topic [1].

Besl and McKay([2] proposed the wterative closest
point (ICP) algorithm. This algorithi estimates a set
of rigid motion parameters that register a data shape
to a model shape. This method works well as long as
all data point has its corresponding model point. This
method is affected by outliers like noise and occlu-
ston. espectally when we apply the method to multiple
range images. Masuda and Yokoya [3] have proposed
a robust method for registering a pair of dense range
images. which is an integration of the ICP algorithm
with random sampling and the least median of squares
(LMS or LMedS) estimator. The LMS estimator gives
an estimation that winimizes the median of squared
residuals, while the standard least squares (LS) esti-
mator gives an estimation that minimizes the sum of
squared residuals. The LAIS estimator is more robust
than the LS estimator in that the LMS estimator is
not affected by outliers of up to 50%..

This paper proposes a new method of integrating
multiple range images to coustruct a geometric surface
model and of registering a range image to the model.
Comparing to the other published works [4. 5]. the
proposed method employs general and strong statisti-
cal concept of robust regression and outlier detection,
The registration method (Section 2) determines a set
of rigid motion parameters that registers a range im-
age to a triangulated model. The method iterates the
process of random sampling. estimation of motion pa-
rameters by the ICP algorithm (Section 2.2) and de-



termination of the best estimation (Section 2.4). Our
integration method first classifies the range data into
wnliers and outliers(Section 3.1). Then the classifica-
tion result is used to integrate two models (Section
3.2). One model is an accumulation of all the input
range images to be used in registration. The other is

an integrated wode] that contains ouly inliers. This.

model is common to at least two range images. We ex-
perimented our algorithm on a sequence of real range
images (Section 4).

2 Registration of Range Data and Ge-
ometric Model

A range image is a set of 3-D coordinates R =
{r(u)|u € U} where each element is given by r(u) =
(ri(u),r2(u). ry(u)) and a point in the 2-D image
plane is denoted as u = (uj.up) € U. The set U
denotes the set of regular pixels on which 3-D coordi-
nates of measured points are given.

We represent a set of 3-D rigid motion parameters
by a 3-D congruent transformation that consists of a
3 x 3 rvotation matrix R and a 3-D translation vector
tas T = {R.t}. A rigid motion of a 3-D point @
is given by a lincar transformation as T(xz) = Rz +
t. The transformation of a set of points X = {x} is
represented by T(X) = { Rz + t}.

We use triangulation as a geometric model to be
registered with range images. Triangulation repre-
sents a surface as a set of triangles, and it is oue of
the most popular surface models. The registration
problem addressed is to estimate a 3-D rigid motion
parameters which matches a range image to a trian-
gulated model.

2.1 Overview of the algorithm

The registration uses the LMS estimation to deter-
mine the rigid motion parameters Ty g between the
range image R and the triangulated model A. The
motion Ty vy is initialized and then updated to the
motion best so far evaluated in each trial. At the end
of all trials. Tas satisties the LMS condition. Our
registration process LMS(R. T ys.A) 1s carried out
as follows:

1. Imitialization of Ty \ig. 11— MS(R. T npg. ).

2. Steps 3 -6 are repeated taking n from 1 through
Nr. where Ny osignifies the nunber of trials.

3. A set of Ny points I’ is extracted from R at ran-
dom: P« RS{R.Ng).

4. The point set P is used by the ICP algorithm with
the triangulated model A to estimate the motion
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parameters: Ticp — ICP(P. Tas. A).
. The estimated motion is evaluated by m
MS(R. Tcp. D).

6. If i < i, update Tins < Tiep and o — m,

—

(1]

The motion T s finally minimizes the median of
squared residuals MS(R. Tycp.A) for all Ticp esti-
mated by the ICP algorithm at each iteration. The
following sections describe the detail of the algorithm.

2.2 ICP algorithm

The ICP algorithm [2] estimates rigid motion pa-
rameters between paired 3-D shapes. This algorithm
is composed of two procedures: one generates tew-
porary correspondences and the other estimates the
motion using a unit quaternton from the point corre-
spondences. These two procedures are iterated until
two given shapes are registered by the estimated trans-
formation.

We apply the ICP algorithm using the set of Ny
poiuts I selected by the random sampling as the data
shape and the triangulation A as the model shape.
The motion estimate of the ICP algorithm Tycp is
initialized by the motion T ns in Section 2.1 that
1s evaluated best so far during preceding trials. Each
point p € P is transformed to Tycp(p). then it is tem-
porarily paired to its closest point in the model ¢ € A,
and a set of Ny points ' = {c} = C(T1cp(P).A) is
determined. The point sets P and €' are used to esti-
wate the new rigid motion parameters Ticp using the
quaternion represeutation. then the motion parame-
ters Tcp 1s updated. These procedures are iterated
uutil Tyep(P) converges to C'. The ICP algorithm
ICP(P, Tcp.A) is summarized as follows:

1. Initialization: &k «— 1. T\¢p «— Tras. do — .

2. The point correspondence is established: ¢ «—
C(Ticp(P). A).

3. The motion between paired points is determined
using the guaternion representation: Ticp
Q(P.C).

4. (1;( Lo ([(Tl('p(P)_.C').

Steps 2 4 are repeated until dp_) — dy < 70 -

creasing k — k4 1.

—

(1]

It is proven that the sequence of mean squared errors
dy = d(T1¢p(P).C") decreases monotonically[?]. The
iteration is terminated if d; does not change more than
the threshold value 7 which is made dimensionless by
the approximate data size o.



Figure 1: Modified k-d tree to search the closest tri-
angle. Each node represents a set of triangles. which
is divided in two sets along one of & coordinates. The
two boundaries are determined: the maximum coor-
dinate of tlhe lower set and the minimum of the higher
set. The houndaries hierarchically determine the cir-
cumscribing rectangular space of containing triangles.

2.3 Closest triangle search

The closest point on the triangulation is determined
by searching the closest triangle using k-d tree (Figure
1). The k-d tree is a binary tree which is efficiently
used in the algorithm to scarch the closest point in
the k-dimensional space [6]. Each node in this tree
has two subnodes whose boundary bisects the space
along one of the k axes. thus selecting one side of
the boundary induces the reduction of the rectangular
space to be searched. We extended this tree structure
to search the closest triangle. A triangle occupies its
own size in space. thus we store two boundaries: max-
imum boundary of lower subset and minimum bound-
ary of higher subset. To find the closest triangle from
a point. we first search the triangle surrounded by the
same boundaries where the point exists by selecting
the more appropriate subnode. Then the subnode not
searched yet is tested recursively as long as its bound-
aries are within the minimum distance so far encoun-
tered.

The distance from a point to a triangle is uniquely
determined. Let the point be denoted by p and three
vertices of the triangle be represented by vy, v,. v3.
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The condition that the closest point ¢ is within the
triangle is ¢ = v, + tyvy + tyvg. where ¢y, 5,3 are
weights satisfying ¢, + ) +t3 = 1 and ¢, 2 0.4, 2
0.t3 > 0. These weights are calculated as:

ti = [np—vyp—vsl/lInl
tr = [n.p—vsp—vl/|n|.
ty = [np-vi.p-wlllnl

wheren = (v —vy) x (v —vy) = v XV +vy XV3+
vy X v, and [ -] signifies the scalar triple product.
If at least one of the three weights is negative. the
closest point locates on the side of the triangle. For
example. if t; < 0. the closest point is on the segment
between the vertices v, and vy. and the weights are
determined as:

ty = 0.
ty = (vz—v:;)~(p—vx)/!|vz~v:«I12-
ts = (v2—vy)-(vy—p)/|lv2 — vs|”.

If t, < 0 in addition. the closest point coincides with
the vertex vy. and the weights are reconsidered as t; =
ty = 0.3 = 1. We determine the distance from a point
to the triangulated model as the distance to the closest
point on the closest triangle.

2.4 Evaluation of estimated motion

We have described the motion estimation by the
ICP algorithm. which uses the points selected by the
random sampling. Then we evaluate the estimated
motion parameters and find the best.

Each point » of the range image R is transformed
by the motion T to T(r). The closest point ¢ from
a transformed point T(7) is searched on the triangu-
lated model ¢ = C(T'(r). A), then the distance from
T(r) to ¢ is determined. We calculate the distance
from each transformed point in R to its closest point
c in the model\, and then evaluate the goodness of
the motion T by the median of those distances. which

is represented as

MS(R.T.\) = /med ||T(
TER

A motion Tyep is estimated in each trial, and we find
the motion Ty from one of the T¢ps that gives the
minimum MS through Ny trials.

Using all the points in the evaluation is computa-
tionally expensive. We implemented a two-stage eval-
uation to reduce the computation cost. At first. we do
an approximate evaluation with sampled points from
the range image (for example. 256 points from the



original points were used in our experinments). and
ounly if this approximate evaluate is better than the
best evaluate so far, we invoke the complete evaluation
with all the points. The update of the best evaluate
1s determined only by the complete evaluate.

3 Integration of Range Images

3.1 Classification of range data into in-
liers and outliers

We classify the points in the range image R into
two categories: enliers and outliers. A point 7 is clas-
sified as #nlier if the transformed point T(7) is closer
to the triangulation model A than the distance thresh-
old 8. The remainders are outliers. The outliers may
contain measuremelit errors, or they appear by the
wotion from the occluded region or from outside of
the sensing arca. or they lost the correct correspon-
dence that were occluded by the motion. or they move
differently from the object we are segmenting out as
inliers. We represent the classification results as Rna
for inliers and R % for outliers. The threshold value
6 1s determined by 2.56. where & signifies the stan-
dard deviation of residuals estimated in a robust way

as & = 1.4826MS(R. T 5. A)|[7).

3.2 Integration of multiple-view range
images

By applying the registration and segmentation al-
gorithin to multiple-view range images R'(1 < t <
Ng). we coustruct a geometric model using only reli-
able points extracted from these range images as in-
liers.

We first generate a initial triangulated model from
the first range image R', and we determine the mo-
tion parameters T,(2 < ¢t < Ny) that make match
the range image R' to the model, then we update
the model every time we register a new range image.
We keep two models internally. Oue is the integrated
model @ that contains only inliers. whose matching er-
ror is guaranteed. The other is the accumulated model
U that contains all the points once appeared includ-
ing outliers. This model is used by registration. and
the part once classified as outliers can he re-classified
as inliers in the registration with a new view. These
models are constructed incrementally as bhelow.

Initialization: U «— A(R'). Q — 0. T; — {I.0}.
Steps 3 5 are repeated taking ¢ from 2 to Ng.
Registration: T, — LMS(R'.T,. ).

Update Integrated Model: 2 «— QUA((RL;)

= W

rﬂ)'
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Figure 2: Nine frames of the NRCC range image se-
quence.

5. Update Accumulated Model: § — U A(H"q(—;).

4 Experimental Results

We applied the proposed method to a sequence of
real range images. This data set was measured by us-
ing the NRCC (National Research Council of Canada)
rangefinder. The NRCC range image is a scalar-valued
256 x 256 array containing vertical height values. Each
pixel has width of 0.5mm in both horizontal and verti-
cal coordinate directions. and the height resolution is
50pm [8]. Figure 2 shows nine sequential input range
images with shading. The object is a model of a grip
for a space robot arm that is a construct of a ciren-
lar plane. three supports, and a rod with a spherical
Lead. Occlusion is caused by the projections such as
the rod and the supports. and truncation happens at
the upper limit of the measurable domain.

The final integration result is illustrated in Fig-
ure 3. The registration and segmentation successfully
extracted the inliers from the accumulated model U.
The occluded part under the support and behind the
rod was recoustructed from multiple views, The inte-
grated model finally consists of 101153 triangles.

This result was obtained with Ny = 10 and Nt =
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Figure 3: Integration of a sequence of NRCC range im-
ages. The left image illustrates the integrated model
Q. Each gray scale signifies the index of the source
range image whose inliers are detected and appended
to the model. The right image illustrates the accumu-
lated model . The white part is the original model
generated from the first range image and the parts
with gray scale are appended outliers detected by reg-
istration. The integrated model € does not include
outliers one can find in the accumulated model U.

200, which were fixed for all the registration. The fi-
nal residuals MS(R!, TpLus. U2 < t < 9) for each
range images were 69.1pm, 68.9pm. 77.9pm, 66.4pm.
60.2pm, 60.0pm. 57.0pm and 57.1pm respectively.
These residuals are comparable to the measurement
accuracy of the rangefinder. The median of residuals
drops fast at the beginning of trials. but more trials
are necessary to make the registration more accurate.
If there is the desired accuracy. the trials can be ter-
minated if it is satisfied.

The computation time required by each registration
varied from 9 minutes to 17 minutes, and 11 minutes
on the average. Total computational time to integrate
all 9 images was about 2 hours by a single-processor
workstation (HP Apollo 9000 Model 735) whose per-
formance is reported as 40 MFLOPS on the double-
precision Linpack benchimark.

5 Conclusion

We have proposed a new method for registration
and integration of multiple-view range images for con-
structing a 3-D geometric model.  The registration
method is an integration of the ICP algorithm with the
random sampling and LMS estimator. The segmenta-
tion classifies cach point in an input range image into
inliers and outliers. Finally, we constructed a data
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set of the object using ounly the inliers from multiple
views. To reduce the computational cost for search-
ing the closest triangle. we introduced the modified
k-d tree representation. We have successfully exper-
imented with the proposed method on a sequence of
real range images. The cxperiments showed that the
method could determine motion parammeters in the ac-
curacy nearly the same as that of the measurement.
In future work. we intend to develop an integration
method that generates mote sophisticated models like
optimized triangular mesh or higher order geometric
models.
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