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Abstract

In many areas of science, engineering, medicine, and especially in the field of robotics, there
is a need to establish a spatial mapping between two or more 3-dimensional (3-D) shape rep-
resentations of an object. Theregistration problemis concerned with finding a spatial trans-
formation which best aligns two object representations. Once this mapping is established, a
variety of tasks can be performed using the aligned object representations including model-
based localization, 3-D object recognition, real-time pose tracking and multi-modality sen-
sor fusion.

The research goals of this dissertation are the design, implementation and validation offast
and accurate methods for performing 3-D shape-based registration. Fast registration is
achieved via speed enhancements to an existing registration method (the iterative closest
point algorithm). The implemented enhancements increase registration speeds by a factor of
nearly two orders of magnitude, and the resulting speeds are much higher than those previ-
ously reported in the literature. The ability to perform high-speed registration enables com-
pletely new registration applications. For example, this dissertation describes a system for
tracking the position and orientation of arbitrarily-shaped objects at speeds of roughly 10 Hz
using a high-speed range finder.

The majority of this dissertation focuses on the problem of achieving and ensuring high
accuracy shape-based registration. This goal is addressed via two processes: intelligent data
selection and online accuracy estimation. Intelligent data selection is based on the observa-
tion that all data are not equally beneficial for performing accurate registration. Judicious
selection and careful collection of a limited amount of data can result in better registration
accuracy than random use of larger amounts of data. In this dissertation, two techniques are
proposed for performing intelligent data selection: an optimization process (Constraint Syn-
thesis), and a numerical analysis method which provides a criterion measure for the optimi-
zation process (Constraint Analysis). Registration experiments demonstrate that data
configurations which are automatically synthesized using these methods can significantly
increase registration accuracy.

A fundamental problem in registration is knowing whether an estimated transformation sat-
isfies accuracy requirementsat the time of registration. A conventional root-mean-squared
error, coupled with the criterion measure from constraint analysis provides the ability to
estimate true registration accuracy online. This estimate can be used to guide the online col-
lection of registration data by determining when additional data are required to satisfy accu-
racy requirements.

While there are many areas to which registration can be applied, the chosen domain for this
dissertation is medicine, and most of the results are presented in the context of computer-
assisted surgery. Despite the specific nature of the chosen application area, the underlying
ideas and methods have application to a broad range of registration problems.
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1

Chapter 1

Introduction

In many areas of science, engineering, medicine, and especially in the field of robotics, there
is a need to establish a spatial mapping between two or more 3-dimensional (3-D) shape rep-
resentations of an object. Theregistration problemis concerned with finding a spatial trans-
formation which best aligns two object representations. Once this mapping is established, a
variety of tasks can be performed using the spatially aligned object representations. Exam-
ple tasks involving registration include:

• Model-based localization: given a geometric model of an arbitrarily-shaped object and
the specification of a particular point (or set of points) within this model, it is possible to
accurately locate the desired point(s) on the correspondingphysical object. To perform
this task, the geometric object model must be spatially registered to the physical object.

• 3-D object recognition: in the field of computer vision, the problem of recognizing and
locating an object from 3-D image data has been well researched. A central component in
many approaches to this problem is performing 3-D registration.

• Real-time pose tracking: tracking the pose (position and orientation) of arbitrarily-shaped
objects in real-time requires the ability to perform registration at very high speeds.

• Multi-modality sensor fusion: in certain areas, complementary sensor data describing an
object is available from multiple sensing modalities. Via registration, this complementary
data can be fused for subsequent processing or visualization. Display of spatially aligned
multi-modality data provides a human viewer with more information than independent
display of the individual data sets.

The research goals of this dissertation are the design, implementation and validation offast
andaccurate solution methods for 3-D shape-based registration. The goal of fast registration
is addressed via a high-speed registration solver which is demonstrated by tracking the pose
of arbitrarily-shaped objects at speeds of roughly 10 Hz. The goal of accurate registration is
addressed via methods for the intelligent selection and analysis of registration data, and the
online estimation of registration accuracy.
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1.1  Motivation

While there are many areas to which registration can be applied, the chosen domain for this
dissertation is medicine, and most of the results are presented in the context of computer-
assisted surgery. Despite the specific nature of the chosen application area, the underlying
ideas and methods presented in this dissertation have application to a broad range of regis-
tration problems.

The area of medical robotics and computer-assisted surgery (MRCAS) has emerged within
the past five years as a novel field of investigation as evidenced by the many conferences,
books and journals in the area [Ayache, 1995] [Ayache and Duncan, 1995] [Bucholz, 1995]
[DiGioia et al., 1994] [DiGioia and Taylor, 1995] [Dohi, 1995] [Maciunas, 1993] [Satava
et al., 1995] [Taylor et al., 1995]. Research in this area combines sensing, mechanical actua-
tion, computer graphics, image processing, simulation, and high performance computing to
address problems in the planning and execution of surgical tasks.

Figure 1-1 illustrates a typical application in computer-assisted orthopaedic surgery. The top
half of the figure contains tasks which are performed offline (i.e., pre-operatively), while the
bottom half depicts tasks performed online (i.e., intra-operatively). For this application,
selected portions of the patient’s anatomy are imaged using a sensor such as a computed
tomographic (CT) scanner prior to surgery. The resulting images are cross sections of the
anatomy which can be stacked to create a 3-D data volume in which image intensity is pro-
portional to density of the corresponding anatomy. These images are used to generate a plan
of the procedure which will be subsequently executed in the operating room. The pre-opera-
tive plan is constructed by a physician using computer-aided graphical planning tools.
Example tasks in computer-assisted orthopaedic surgery include: placement of devices such
as acetabular and femoral implants in total hip replacement surgery [DiGioia et al., 1995]
[Taylor et al., 1994], placement of implants in total-knee replacement surgery [Lea
et al., 1995b], or placement of screws into the vertebral pedicles in spine fusion surgery
[Lavallee et al., 1994] [Nolte et al., 1994]. For such tasks, the pre-operative plan specifies
the placement of the relevant hardware (e.g., prostheses, screws) relative to the anatomy in
the medical images. Thus, the desired location of the hardware is known relative to the coor-
dinate system of the pre-operative medical images.

In the operating room, precise execution of the tasks specified by the pre-operative plan
must be achieved. There are many task execution methods in computer-assisted surgery
which differ in the amount of direct control which a surgeon has over the underlying surgi-
cal tools. The most autonomous mode of computer-assisted surgical execution arises when a
robot provides the actuation forces to perform tasks such as drilling, milling or cutting of the
patient’s anatomy. A less autonomous alternative is passive navigational guidance in which
feedback is provided to the surgeon in the form of computer graphics or medical images.
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This feedback is derived from the pre-operative plan and the locations of conventional surgi-
cal tools which are tracked in real-time. Regardless of the mode of surgical task execution, a
fundamental problem must be solved before the pre-operative plan can be executed. Recall
that the pre-operative plan is constructed in a coordinate system attached to the pre-opera-
tive medical images. Surgical execution, on the other hand, is performed in a coordinate sys-
tem relative to a portion of the patient’s anatomy which is assumed to be rigidly fixtured in
space. Therefore, before the plan can be executed it is necessary to establish a transforma-
tion which maps points in the pre-operative plan into corresponding points on the patient.
Establishing this transformation requires solution of the registration problem.

Fiducial-based registration is a method which has been applied to several application areas
including neurosurgery [Maciunas, 1993] and orthopaedic surgery [Taylor et al., 1994]. In
fiducial-based registration, markers are rigidly affixed to the relevant anatomy before acqui-
sition of the pre-operative medical images, as shown in Figure 1-2. The location of these
markers can then be precisely extracted from the medical images. In the operating room, the
locations of these markers can be determined using a sensing device such as an optical digi-
tizing probe. Since the correspondences between the pre- and intra-operative marker loca-
tions are known, it is possible to find a transformation which minimizes an error measure

Figure 1-1: Offline planning and online execution in computer-assisted surgery. The
procedure plan specifies or implies a set of actions which must be precisely
executed during surgery.
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between the corresponding markers. Once this transformation is known, it can be used to
accurately execute the pre-operative plan during surgery.

Unfortunately, the use of fiducial markers has several negative consequences. First, insertion
of the markers can require a non-trivial surgical procedure prior to the primary surgery. Sec-
ond, the markers can often be bulky and invasive, as in the case of stereotactic head frames
used in neurosurgery. Third, since the markers are often constructed of metal, they may
introduce noise or artifacts which degrade the quality of the pre-operative medical images.
Finally, in most cases the markers must be physically exposed during surgery and are some-
times distant from the primary surgical site. This may cause additional trauma to the patient
and add to the time required to perform the surgery.

An alternative to fiducial-based registration is to use features which are intrinsic to the
underlying anatomy to perform registration. For example, if anatomical landmarks can be
identified both pre- and intra-operatively, these landmarks can serve the same purpose as the
above fiducial markers. In general, it is difficult to accurately and reliably identify corre-

Figure 1-2: Fiducial-based registration of a pre-operative plan to intra-operative execution.
Fiducial markers attached to the registration object can be extracted in the pre-
and intra-operative coordinate systems, and used to estimate the required
registration transformation.
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sponding discrete point landmarks in this manner. However, in certain cases it is possible to
extract information such as the shape of an anatomical object’s bounding surface. As shown
in Figure 1-3, if an object’s boundary can be accurately extracted both pre- and intra-opera-
tively, this information can be used to solve the registration problem. This is the approach to
registration which is used in this dissertation. Techniques for solving the shape-based regis-
tration problem are described in detail in Chapter 2.

A critical step in Figure 1-3 which has received little attention in the literature is the intra-
operative shape extraction process. In this step, geometric data from the relevant anatomy
are collected during surgery. This is a difficult sensing task for several reasons. First, there is
often limited visibility of the relevant anatomy due to obstruction from surgical tools and
fixators, blood and other fluids, and occluding portions of the anatomy. Second, the data
accuracy required for shape-based registration may be quite high, placing constraints on the
type of sensing which can be used. In addition, any sensor used during surgery must have a
proven safety record, must not harm the patient or clinicians, and must be highly reliable.
Third, the data acquisition process must be fast since longer surgical times result in

Figure 1-3: Shape-based registration of a pre-operative plan to intra-operative execution.
Representations of the shape of the registration object can be extracted in the
pre- and intra-operative coordinate systems, and used to estimate the required
registration transformation.
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increased risk of patient infection, increased blood loss, and increased monetary costs.
Finally, the type of anatomical tissue to be localized places constraints on the choice of sens-
ing modality since the associated anatomical boundaries must be visible to the sensor.

In orthopaedic surgery, the anatomy to be localized is usually bone, and the sensors avail-
able for intra-operative shape extraction include: discrete point digitizers which measure the
location of a probe tip placed in contact with an object; conventional X-ray imaging which
has the added cost of radiation exposure to the patient; and ultrasonic imaging which may
not be sufficiently accurate for many registration tasks. Each additional datum acquired with
one of these sensors may increase the overall time spent in surgery, and in the case of X-ray
imaging will increase the radiation exposure as well. Therefore, it is often desirable to mini-
mize the amount of intra-operative data required to attain sufficiently accurate registration
results.

1.2  Scope of the Dissertation

The majority of this dissertation focuses on the problem of attaining and ensuring high accu-
racy shape-based registration results. A framework for achieving this goal is presented in
Figure 1-4. The example application used in this framework is computer-assisted surgery,
but as suggested earlier, the proposed approach has broad applicability to other areas. The
approach consists of two phases, an offline (pre-operative) phase and an online (intra-opera-
tive) phase. The critical offline component isIntelligent Data Selection (IDS), which is
based on the observation that all data are not equally beneficial for performing accurate reg-
istration. Judicious selection and careful collection of a limited amount of data can result in
better registration accuracy than random collection of larger amounts of data. IDS consists
of two components, an optimization process referred to asConstraint Synthesis, and a
numerical analysis method which provides a criterion measure for the optimization process,
referred to asConstraint Analysis. The criterion measure resulting from constraint analysis
is a measure of expected registration accuracy as a function of a hypothesized set of registra-
tion data. The input to IDS is the surface model which will subsequently be used to perform
shape-based registration. The output of IDS is a configuration of data points of fixed size
called a data collection plan (DCP) which is near-optimal with respect to expected registra-
tion accuracy. The offline process can be performed as soon as the surface model becomes
available, and typically requires several hours of computation time to generate the DCP.

The online process is centered around the shape-based registration solver. In the medical
application, the solver requires three inputs, a pose estimate to initialize the registration pro-
cess, a surfaceModel constructed from pre-operative medical images, and a set ofDatacol-
lected during surgery.1 In computer-assisted surgery, an initial pose estimate for shape-based
registration can often be acquired using anatomical landmark-based corresponding point
registration. Computationally, this method is similar to fiducial-based registration methods;
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however, no fiducial markers are required. When an initial pose estimate is available, a more
descriptive name for the registration process isshape-based pose refinement.

The Data collection process includes the physical act of collecting the particular Data points
specified by the DCP from the registration object using an appropriate sensor. In the experi-
ments of this dissertation, a human Data collector positions the sensor and oversees the Data
collection process. There is, however, a potential inconsistency in this framework. The DCP
specifies a configuration of points to be collected on the registration object. However, the
location of the object itself is not precisely known, and therefore the points in the DCP can
not be collected exactly. Fortunately, initial and incremental pose estimates from the regis-
tration process can be fed back to the collection process to help guide Data collection. In
practice, a computer-graphic rendering of the surface Model can be displayed to the Data
collector with the locations of the desired points highlighted. Using the pose estimates fed
back from registration, it is also possible to superimpose an estimate of the current location
of the Data collection sensor on the graphic rendering. This information can be used by the
collector to acquire the points specified by the DCP within reasonable tolerances.

In registration applications requiring high-reliability, it is desirable to have an online mea-
sure of confidence in the resulting registration accuracy. The same constraint analysis crite-
rion used in IDS, together with a conventional root-mean-square (RMS) registration error,
can provide an online measure of confidence in registration accuracy. Using this measure it
is possible to estimate whether particular registration accuracy requirements have been satis-
fied as registration is being performed. Online estimates of registration accuracy are critical
in applications requiring high-reliability.

In the registration examples of Figures 1-2 and 1-3, patient anatomy at the primary surgical
site is assumed to be rigidly fixtured during surgery. Fixturing prevents motion of the anat-
omy relative to the tools which are used to execute the surgical procedure. If motion occurs,
the transformation established via registration becomes invalid and the pre-operative plan
will require periodic registration for precise execution. One contribution of this dissertation
is the demonstration that shape-based registration can be performed at speeds much higher
than those previously reported in the literature. This capability is demonstrated via a system
for tracking the pose (position and orientation) of human faces at speeds of roughly 10 Hz.
The system operates by registering a surface model of a human face to discrete point surface
measurements of the same face acquired using a real-time range sensor. This type of system
has potential application for tracking non-fixtured patient anatomy in computer-assisted sur-

1. Throughout the dissertation, the terms “Model” and “Data” (note capitalization) refer to the object
descriptions used to perform registration. This terminology was chosen to reduce ambiguity resulting
from the generic usage of these words. Unless otherwise noted in the text, Model refers to a surface
model and Data refers to a set of discrete surface points used in either the registration or intelligent
data selection processes.
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Figure 1-4: A framework for accurate shape-based registration in a computer-assisted
surgical application. The offline component generates a data collection plan, a
set of data points which are near-optimal with respect to expected registration
accuracy. The online component uses the data collection plan to guide the
collection of data from the registration object. This data is then used by the
registration solver to estimate the registration pose transformation. Online
estimates of the registration transformation and transformation error are fed
back to the data collection process to help guide the data collection process.
These online estimates also provide a mechanism for ensuring that registration
accuracy requirements are satisfied.
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gery. Eliminating fixturing devices in certain surgical procedures is desirable due to the
invasive nature of the devices. While the tracking system demonstrated in this dissertation is
not yet reliable enough for surgical applications, it may be suitable for applications in areas
such as human-computer interaction and manufacturing which are not life-critical.

1.3  Dissertation Overview

The remainder of the dissertation is organized as follows.

Chapter 2 provides background on the shape-based registration problem and presents the
registration solution methods used in this dissertation. Methods are discussed for handling
outliers in the Data, and for dealing with convergence to non-global minima. A very high-
speed registration solver which improves registration computation times by up to two orders
of magnitude is presented. An application for tracking the pose of human faces at rates as
fast as 10 Hz is described, with additional details provided in Appendix A. The important
and difficult problem of quantitative evaluation of registration accuracy is discussed, and
several measures for describing accuracy are defined. In particular, the importance of evalu-
ating registration accuracy in a task-specific manner is explained.

Chapter 3 presents the theoretical framework and numerical formulation of the constraint
analysis method. The inputs to constraint analysis are a surface Model and a configuration
of Data points which lie on the surface. The output is a scalar measure which is a good pre-
dictor of registration accuracy. It is shown that constraint analysis can be computed at very
high speeds for a typical Model and Data configuration (approximately 1 ms). Two funda-
mental problems related to constraint analysis are described: dependence upon object scale
and dependence upon choice of coordinate-system. Solutions are proposed for handling
these problems, and rigorous justifications are presented for the proposed solutions. The
utility of constraint analysis in the context of Intelligent Data Selection is demonstrated
through a variety of experimental results and illustrative examples. It is shown that the mea-
sure computed by constraint analysis provides an upper bound on registration accuracy, and
that this measure can be computed quickly without the need to perform registration.

Chapter 4 describes the constraint synthesis problem which is shown to be a complex, multi-
dimensional optimization problem. Several non-linear search algorithms are proposed for
solving constraint synthesis. The goal of these algorithms is to maximize the criterion mea-
sure provided by constraint analysis as a function of the particular Data points which are
included in a selected Data configuration. The output of the algorithms is a Data configura-
tion which is near-optimal with respect to expected registration accuracy. As mentioned
above, there is a fundamental problem associated with the effect of object pose uncertainty
during the Data collection process. The implications of this problem are discussed, and
methods for handling object pose uncertainty are suggested. Experimental results are pre-
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sented which compare the relative performance of several constraint synthesis solution
methods. Additional results demonstrate the effectiveness of the proposed solution method
for generating Data configurations which exhibit superior registration accuracy. The effects
of object pose uncertainty and sensor noise on registration accuracy are also quantified in
these experiments.

Chapter 5 demonstrates how the proposed registration framework presented in Figure 1-4
can be applied to problems in the real world. The problem of satisfying registration accuracy
requirements using Data sets of minimal size is discussed, and methods for solving this
problem are proposed. It is shown that generation of minimally-sized Data sets requires the
ability to estimate registration accuracy online, during the registration process. A method is
proposed for performing online accuracy estimation, and experimental results which dem-
onstrate the feasibility of the method are presented. Additional experimental results pre-
sented in this chapter provide the most convincing demonstration of the potential benefits of
the proposed constraint analysis and synthesis methods. The results suggest that these meth-
ods can be used in practice to significantly improve shape-based registration accuracy.

Chapter 6 contains the conclusion. The contributions of this dissertation are summarized,
and directions for future work are proposed.

Several appendices follow the conclusion. Appendix A describes the high-speed pose track-
ing application which demonstrates the speed with which shape-based registration can be
performed. Appendix B contains a derivation related to constraint analysis which was too
detailed to include in Chapter 2. Appendix C presents experimental results which illustrate
the effect of scale upon constraint analysis.
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Chapter 2

Shape-Based Registration

The goals of this chapter are to provide background on the shape-based registration prob-
lem, familiarize the reader with the registration solution methods used in this dissertation,
and discuss measures for evaluating registration accuracy. Figure 2-1 highlights the shape-
based registration component addressed in this chapter within the object localization frame-
work presented in Chapter 1. In Section 2.1, the registration problem is described and an
example problem from a medical application is presented. In Section 2.2, a review of the
related literature is presented with emphasis on registration solution methods and medical
applications. Section 2.3 describes the iterative closest point (ICP) algorithm which is the
basis for most of the experimental registration work reported in this dissertation. Methods
are discussed for handling outliers in the Data, and for dealing with convergence of the reg-
istration algorithm to non-global minima. Section 2.4 addresses the problem of performing
registration at high speeds, and describes speed enhancements to the ICP algorithm which
improve execution time by two orders of magnitude. The capabilities of the speed enhanced
iterative closest point (EICP) algorithm are demonstrated in a high-speed pose tracking sys-
tem which is described in detail in Appendix A. Section 2.5 deals with the important and
difficult problem of quantitative evaluation of registration accuracy. Several measures for
describing accuracy are defined, and the importance of evaluating registration accuracy in a
task-specific manner is explained. Section 2.6 concludes the chapter with a brief discussion
of the implications and contributions of the work presented in this chapter.

2.1  Problem Description

Registration is the problem of determining the relative pose (position and orientation)
between two descriptions of the same object. These descriptions may be either geometric or
photometric, and 2- or 3-dimensional. The goal of registration is to find a spatial transforma-
tion which brings the two object descriptions into alignment as measured by a suitable cost
metric. The applied transformation may be either rigid or deformable, and may or may not
include a scale term. The work presented in this dissertation concentrates on the problem of
rigid registrationwithout scale of 3-dimensional geometric object descriptions.
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A geometric object description encodes information about an object’s shape. Volumetric
shape descriptions explicitly represent the regions of space which are occupied by an object.
Boundary shape descriptions explicitly represent the transition between an object and its
surround (i.e., the object’s surface). The work in this dissertation uses boundary representa-
tions to describe objects. Primitives which can be used to describe object surfaces include:
sets of points, sets of lines, sets of curves, sets of polygons (e.g., triangle meshes), implicit
surfaces, or parametric surfaces. The experimental work presented in this dissertation uses
two surface representations: triangle meshes and sets of discrete surface points; however,

Figure 2-1: The shape-based registration component addressed in Chapter 2 (highlighted)
within the object localization framework.
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most of the results can be extended to other surface representations. Throughout the disser-
tation, the terms “Model” and “Data” refer to the two object descriptions used to perform
registration. Unless otherwise noted in the text, Model refers to a triangle mesh surface, and
Data refers to a set of discrete surface points.

Figure 2-2 shows surface descriptions of a human pelvis phantom (physical object model)
before and after registration. The shaded surface, corresponding to the Model, was con-
structed from computed tomographic (CT) images of the pelvis phantom, and the spheres,

Figure 2-2: Pelvis Data and Model before and after registration.

Before:

After:
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corresponding to the Data, were collected from the same phantom using a digitizing probe.
As suggested by the figure, the goal of registration is to find a spatial transformation which
can be applied to the Data in order to bring it into alignment with the Model. Once thisreg-
istration transformation has been found, it provides a mapping between any point in the
Model’s coordinate system and the corresponding point in the Data’s coordinate system, and
vice versa.

2.2  Background

This dissertation concentrates on the problem of registering two or more 3-D geometric
object descriptions in which the applied transformation is rigid. Much research has been
done on related 2-D and photometric registration problems. An excellent survey of 2-D pho-
tometric image registration with application to areas such as aerial photo interpretation,
object recognition, and medical image processing can be found in [Brown, 1992]. Recently,
3-D photometric image registration has received considerable attention with the availability
of high-quality, volumetric medical data [van den Elsen et al., 1993] [Wells et al., 1995]
[Woods et al., 1993]. Registration of 2-D geometric descriptions to 3-D geometric models
has been the focus of work in the computer vision literature [Fua and Leclerc, 1994] [Haral-
ick and Joo, 1988] [Lowe, 1991] [Wheeler, 1996]. This mode of registration has been pro-
posed in medical applications in which video images [Uenohara and Kanade, 1995] or
X-ray images [Feldmar et al., 1995] [Lavallee and Szeliski, 1995] are used to derive the 2-D
geometric descriptions.

A fundamental 3-D to 3-D geometric registration problem is the estimation of the relative
pose between two sets of points in which point correspondences are known. There are two
general categories of solution methods for this problem: quaternion-based and singular
value decomposition-based (SVD-based). Both types of solution methods are formulated as
least-squares minimization problems. In quaternion-based methods [Faugeras and
Hebert, 1986], [Horn, 1987], rotations are represented as quaternions in order to simplify
the problem of enforcing the orthonormality constraint which arises when using matrices to
represent rotations. SVD-based solution methods have been demonstrated [Arun
et al., 1987] [Haralick et al., 1989]. A medical application of corresponding point registra-
tion can be found in the Robodoc system which is described in [Taylor et al., 1994].

A minimum of three points is required to solve the 3-D corresponding point problem. When
additional points are available, the problem is overconstrained and it becomes possible to
remove outlier correspondences resulting from noisy data. Outlier elimination requires the
specification of which points to eliminate. Most methods for identifying outliers use a resid-
ual error threshold which partitions the point-set into inlier and outlier correspondences.
Robust statistical methods for determining appropriate residual thresholds are described in
[Haralick et al., 1989], [Zhang, 1994] and [Zhuang and Huang, 1994].
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A general class of 3-D to 3-D registration problems includes the registration of a Model
composed of point-sets, line-sets, curve-sets or surfaces, to Data composed of one of these
representations. For example, the work described in this dissertation involves the registra-
tion of point-sets to surfaces. More formally, the goal of these problems is to solve the equa-
tion:

(2.1)

whereM is a description of the Model,D is a description of the Data,t is a rigid transforma-
tion, andd is a measure of similarity between the object descriptions. A solution method for
this class of problems was proposed in [Besl and McKay, 1992] which describes the itera-
tive closest point (ICP) algorithm. Since the ICP algorithm is the basis for much of the regis-
tration performed in this dissertation, a detailed description of the algorithm is presented in
Section 2.3. An independently developed and very similar algorithm to ICP which was
applied to registration of range images of outdoor terrain is described in [Zhang, 1994].
Prior to the above work, similar ideas were proposed but not implemented for the 3-D case
in [Cox et al., 1990]. Two strengths of the ICP algorithm are that it can be applied to a vari-
ety of object representations, and that explicit correspondences are not required.

A number of other methods have been used to solve variants of the 3-D to 3-D registration
problem. These methods differ in the selected cost function and in the search mechanism
used to find optimal pose transformations. An excellent summary of three methods which
register surfaces to point-sets is presented in [Cuchet et al., 1995] in the context of neurosur-
gical applications. The method proposed in [Grimson et al., 1995] uses a quasi-Newton
optimization method in a coarse-to-fine registration process which tends to avoid local min-
ima in the pose space. The methods described in [Champleboux et al., 1992] and [Lavallee
et al., 1991] use a cost function which is very similar to the one used in ICP; however, unlike
ICP, optimization is performed using the Levenberg-Marquardt algorithm which requires
the explicit computation of gradients. In [Henri et al., 1995] a quasi-stochastic search strat-
egy is coupled with a robust estimator in an attempt to minimize the effect of outliers. A pro-
posed enhancement to the ICP algorithm incorporates surface normals into the cost function
in an attempt to avoid local minima in the search space [Betting et al., 1995]. A surface
matching technique which has been applied to multi-modal data registration is described in
[Jiang et al., 1992]. A potential problem with this method is the difficulty of extracting cor-
responding surface data from a single anatomical surface using two different sensing modal-
ities. In [Wheeler, 1996], a robust method is proposed for matching 3-D range images to 3-D
surface models in a manner which reduces the effect of noise and outliers. This method uses
M-estimation and dynamic recomputation of correspondences to achieve robustness.

 min
t

d M t D( ),[ ]
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In any complex multi-dimensional search problem it is possible to get trapped in local min-
ima of the search space. In registration, there are two possible types of local minima: those
close to the global minimum, and those distant from it. For the work described in this disser-
tation, it is assumed that the latter condition will not arise since sufficiently good initial pose
estimates are available via anatomical landmark correspondences. When distant local min-
ima are problematic, techniques which attempt to guide the search towards the global mini-
mum can be helpful at avoiding them [Besl and McKay, 1992] [Grimson et al., 1995]. A
particularly promising approach to this problem based on geometric hashing is described in
[Johnson and Hebert, 1996]. In order to deal with the former type of local minima, those
near the global minimum, several researchers have suggested repeating the registration pro-
cess several times, each time randomly perturbing the solution about the current optimum
[Cuchet et al., 1995] [Grimson et al., 1995]. A similar approach has been implemented in
this work and is described in Section 2.3.

A key assumption made by ICP and other registration algorithms is that one geometric
object description is a subset of the other (i.e., for each point or region described by the
Data, there must be a corresponding point or region in the Model). For reasons outlined in
Section 2.3, erroneous pose estimates will result when this condition is violated. Data which
violate this assumption are outliers to the registration process. Outliers can result from sev-
eral factors including: data collection in non-overlapping regions, noise in the data collec-
tion process, and artifacts introduced during the generation of the geometric descriptions
(e.g., surface model creation artifacts). Whatever the source, it is desirable to identify and
eliminate outliers during the registration process. For the ICP algorithm, robust 3-D to 3-D
corresponding point methods can be used to eliminate outliers [Haralick et al., 1989]
[Zhang, 1994] [Zhuang and Huang, 1994]. Some researchers have suggested the use of a
least median of squares estimator [Masuda and Yokoya, 1994]; however, the computation
time required to implement this technique is high. A robust approach which uses M-estima-
tion based on the Lorentzian function to reduce the effect of outliers is described
in [Wheeler, 1996]. In this approach, correspondences with small errors are weighted more
heavily than those with large errors. The approach described in [Johnson and Hebert, 1996]
appears to work well when the density of points in the Model and Data are roughly equal,
and connectivity information is available for both. Many research groups suggest using sim-
ple thresholding to eliminate outliers in which the threshold is based upon desired accuracy
or estimated noise in the data [Cuchet et al., 1995] [Grimson et al., 1995] [Henri
et al., 1995] [Jiang et al., 1992] [Lavallee and Szeliski, 1995] [Zhang, 1994]. Such tech-
niques appear to work well in practice as demonstrated later in this dissertation.

Most registration algorithms require the computation of a Euclidean distance between geo-
metric entities of the Data and Model (e.g., distance between a point and surface). This com-
putation is usually the most time consuming portion of the registration process. Therefore,
many groups have attempted to accelerate distance computation using a variety of methods.
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Chamfer matching [Barrow et al., 1977] with a pre-computed distance map has been used to
accelerate registration [Cuchet et al., 1995] [Jiang et al., 1992]. A related method is
described in [Lavallee and Szeliski, 1995] in which oct-tree splines are used for the same
purpose. K-d trees [Friedman et al., 1977] have been used in [Zhang, 1994] to reduce the
time required to calculate distances. In [Besl and McKay, 1992] an extrapolation process is
proposed which uses a variation of line search optimization to speed convergence of the ICP
algorithm. One of the contributions of this dissertation is the demonstration that the ICP
algorithm can be run at speeds much faster than previously believed. Speed enhancements to
the ICP algorithm are described in detail in Section 2.4.

There are many examples of registration applied to problems in medicine. Medical applica-
tions of registration can be divided into at least two categories: registration for data fusion
and subsequent visualization, and registration for spatial localization. Applications of regis-
tration for data fusion include: multi-modality data visualization [Jiang et al., 1992] [Woods
et al., 1993] in which fused data from multiple sensing modalities provide more information
when viewed together than when viewed separately; and detection of anatomical changes
between images of the same anatomy taken at different times [Ettinger et al., 1994]. An
excellent survey of techniques and applications in medicalimage-basedregistration can be
found in [van den Elsen et al., 1993]. The second registration category is registration for
spatial localization, and is the type of registration investigated in this dissertation. In these
applications, registration can be used to estimate the spatial location of a portion of a
patient’s anatomy with respect to a representation of the same anatomy (e.g., constructed
from pre-operative medical images). An excellent survey of this type of registration can be
found in [Lavallee, 1995], while a more general review appears in [Maurer and
Fitzpatrick, 1993]. In computer-assisted surgery, registration has been used to perform tasks
such as: guiding robotic tool movements [Kwoh et al., 1988] [Taylor et al., 1994], guiding
or constraining a surgeon’s tool movements [DiGioia et al., 1995] [Galloway and
Maciunas, 1990] [Lavallee et al., 1994] [Nolte et al., 1994] [Radermacher et al., 1994],
superimposing graphical overlays of internal anatomy upon a surgeon’s view of the patient
[Grimson et al., 1994], or guiding the position of radiosurgical equipment [Schweikard
et al., 1994].

Recently, two research groups have described systems which employ surface-based registra-
tion techniques for an orthopaedic application [Lavallee et al., 1994] [Nolte et al., 1994].
Both groups describe systems for planning and executing the insertion of screws into the
pedicle component of human vertebrae. Both employ registration techniques similar to that
described in this dissertation. In particular, they register 3-D surfaces that were derived from
pre-surgical CT images, to discrete point data from a coordinate measuring device. In addi-
tion, Nolte et al. perform a validation of the errors resulting from registration by comparing
their surface-based results to a high accuracy approximation of ground-truth. The analyses
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and techniques described in this dissertation should be useful for improving the registration
accuracies in applications such as these.

One distinction of medical registration is the type of data which is used. Medical sensing
modalities include computed tomographic (CT) imaging, magnetic resonance imaging
(MRI), X-ray imaging, ultrasonic imaging, positron emission tomographic (PET) imaging,
and single photon emission computed tomographic (SPECT) imaging. Most of these sens-
ing modalities provide 3-D volumetric data. In addition, conventional sensing modalities
such as video imaging, optical range imaging and 3-D point digitizers have also been used
in medical localization problems. Examples of registration for localization in medical appli-
cations include: registration of CT or MRI images to computational stereo images [Betting
et al., 1995] [Henri et al., 1995], registration of CT images to X-ray images [Feldmar
et al., 1995] [Hamadeh et al., 1995] [Lavallee and Szeliski, 1995], registration of CT or
MRI images to optical range data [Grimson et al., 1995], registration of CT images to digi-
tizer data [Lavallee et al., 1995] [Nolte et al., 1994], corresponding-point registration of
landmarks extracted from CT to digitizer-based landmark measurements [Lea et al., 1995b]
[Taylor et al., 1994], registration of CT or MRI images to ultrasound data [Troccaz
et al., 1994], and registration of SPECT images to MRI images via an intermediate step of
registering both to optical range sensor data [Peria et al., 1994].

An interesting approach to registration is presented in [Radermacher et al., 1994] in which
physical templates constructed using rapid manufacturing techniques based on pre-operative
medical images are used to localize patient anatomy. In this approach, when a template is
physically mated to the relevant anatomy, the pose of the anatomy relative to the template is
known. Thus, the template provides a known reference frame in which to execute a medical
procedure. In [Lea et al., 1995a], an approach for diagramming the structure of spatial rela-
tionships in complex registration systems is presented. This approach provides a common
language for researchers to communicate the structure of systems involving registration.

2.3  A Registration Solution Method

The corresponding point registration problem is illustrated in Figure 2-3. Given two inde-
pendently measured point-sets and associated correspondences, the problem is to find a
transformation which minimizes a cost function. For the work described in this dissertation,
the cost function to be minimized is the following least-squared distance metric:

(2.2)

whereDi represents points in the Data,Mi represents points in the Model, and the goal is to
find a rotation,R, and translation,T, which minimize the least-squared distance between the

min
R T,

Mi RDi T+( )– 2

i
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points. In a surgical application, theMi might correspond to the locations of fiducial markers
extracted from pre-operative CT data, while theDi might correspond to locations of the
same markers measured during surgery with a digitizing probe. A physical analogy for this
problem is two sets of points in which corresponding pairs are connected by springs. The
goal of registration is to minimize the total potential energy in the springs. This problem can
be solved directly (i.e., non-iteratively) using either quaternion-based methods [Faugeras
and Hebert, 1986] [Horn, 1987] or singular value decomposition (SVD) based methods
[Arun et al., 1987] [Haralick et al., 1989]. Using these methods, it is also possible to weight
each of the terms in the summation of Equation 2.2 by a constant coefficient. This is useful
if the uncertainties associated with the data are known and are not constant. Extending the
above spring analogy, the addition of weights to corresponding point registration is equiva-
lent to connecting the points with springs of different spring constants.

2.3.1  The ICP Algorithm

For the more general class of 3-D to 3-D registration problems, the(Di, Mi) correspondences
are unknown a priori, and the object descriptions may not be composed of point-sets. The
iterative closest point (ICP) algorithm proposed in [Besl and McKay, 1992] is one approach
for solving this class of problems. An outline of the algorithm is presented in Figure 2-3.

1. Initialize the cumulative transformation parametersR andT to the identity trans-
formation. Reset the iteration counter,k, to zero.

2. For each discrete pointDi in the Data set, compute theclosest point (in terms of
Euclidean distance)Mi which lies on the surface of the Model.

Figure 2-3: The corresponding point registration problem.

Data Points

Model Points

Registration Result
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3. Using the correspondences from step 2, find a rotation,Rk, and a translation,Tk,
which minimize Equation 2.2 via the corresponding point registration method
described in [Horn, 1987].

4. Apply the incremental transformation from step 3 to all Data points,Di. Update
the cumulative transformation parametersR andT based upon the incremental
transformations,Rk andTk.

5. If a stopping criterion is satisfied, terminate, else goto step 2.

There are several stopping criteria which can be used with ICP. The particular stopping cri-
teria used in this dissertation include:

i. Stop if the incremental rotation and translation relative magnitudes are both less
than thresholds:

Figure 2-4: Outline of the iterative closest point (ICP) algorithm. Numbers refer to the steps
in the description of the algorithm above.

2) Find theClosest Points

5) IF done THEN exit ELSE Final Result:

3 & 4) Solve the “Corresponding”
Point Problem and Transform Data

Model Surface

Data Points

GOTO step 2
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 and (2.3)

(Refer to Section 2.5.1 for a description of how the rotation magnitudes are computed.)

ii. Stop if the incremental rotation and translation absolute magnitudes are both less
than thresholds:

 and (2.4)

iii. Stop if the change in residual error from Equation 2.2 is less than a threshold:

(2.5)

iv. Stop if the total number of iterations exceeds a threshold: . This condi-
tion is usually logically or’ed with one of the above.

Unless otherwise noted, the stopping criterion used in this dissertation is the relative trans-
formation magnitude criterion (labeled i. above). Suitable values for  and  have been
determined empirically to be roughly 10-5. Reducing these values further has minimal effect
upon registration accuracy.

Many registration methods use a cost function similar to the one in Equation 2.2. In [Hauser
and Taylor, 1990] it is suggested that if the Model and Data are both surface descriptions,
then solving Equation 2.2 is approximately equivalent to minimizing the volume between
the surfaces. While the precise formulation of cost functions used in other methods may dif-
fer [Grimson et al., 1995] [Henri et al., 1995], almost all methods include a term expressing
the distance between the Model and Data similar to the one in Equation 2.2. Variations in
cost function formulation include the incorporation of weighting terms:

(2.6)

wherewi are constants which weight the importance of individual correspondences based
upon prior knowledge such as estimates of noise. Inclusion of surface normals into the cost
function has also been proposed [Betting et al., 1995]. Since many different approaches to
registration use similar cost functions, the techniques described in this dissertation are not
specific to the ICP algorithm.

2.3.2  Local Minima Suppression

The ICP algorithm works quite well, especially when an approximate pose estimate is avail-
able for initialization. In general, there is no guarantee that the ICP algorithm will converge

Rk

R
--------- εRr<

Tk

T
--------- εTr<

Rk εRa< Tk εTa<

Mi RDi T+( )– 2
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to the global minimum; however, convergence tends to be very good in practice. Techniques
exist for guiding the algorithm to the region of the global minimum when non-global con-
vergence is a problem [Besl and McKay, 1992] [Grimson et al., 1995]. A promising
approach to this problem based on geometric hashing is described in [Johnson and
Hebert, 1996]. In the medical applications described in this dissertation, high quality initial
pose estimates are derived by solving the corresponding point problem using manual speci-
fication of anatomical landmarks to determine correspondence. Therefore, the work
described in this dissertation concentrates on detection, rather than avoidance, of local min-
imawhich are far from the global minimum.

Several researchers have demonstrated the existence of local minima very close to the global
minimum [Cuchet et al., 1995] [Grimson et al., 1995]. Getting trapped in one of these local
minima can lead to sub-optimal registration accuracy. An approach similar to that presented
in [Grimson et al., 1995] has been implemented in this work and is outlined below.

1. The ICP algorithm is run, and the resulting pose transformation, (R, T), is
recorded. If the least-squared error of Equation 2.2 resulting from this trial of ICP
is smaller than errors from all previous trials of ICP, set the best transformation,
(R* , T*), to the current transformation, (R, T).

2. A new initial pose is generated by randomly perturbing about the current best
transformation, (R* , T*). The method for generating these random perturbations
is the same as that described below in Section 3.4.2. The random perturbations
are uniformly distributed, with maximum translation magnitude and rotation
angle (from angle-axis representation) specified by the parametersθp-max and
τp-max, respectively. See Section 3.4.2 for additional details.

3. Steps 1 and 2 are iterated untilIp trials of the ICP algorithm have been performed
with no additional improvement in the resulting least-squared error.

A variation on this method is to repeat the entire process several times, each time reducing
the values ofθp-max and τp-max. The motivation is similar to the idea behind simulated
annealing [Kirkpatrick et al., 1983]. Initially, large perturbations will help to avoid minima
which are far from the global minima. As the process converges, progressively smaller per-
turbations will help to avoid local minima which are closer to the correct result.

The above procedures work well in certain situations; however, they are somewhat heuristic
and are not guaranteed to avoid local minima. Local minima can often be detected at the ter-
mination of a registration trial by examining the values of the individual residuals,

. If a significant number of residuals are above a threshold, there is a
higher likelihood of convergence to a local minima. Histograms are useful for visualizing
these error residuals. In critical applications, manual methods should be used to test for local
minima in registration pose. Manual verification is possible in surgical applications using

Mi RDi T+( )–
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visual checks of identified anatomical landmarks. For example, by pointing to an anatomical
landmark on an actual patient with a digitizing probe, it is possible to highlight the location
of this landmark on a visual display of the pre-operative image data using the estimated reg-
istration transformation. A visual check can then be performed to determine whether the
selected landmark has been correctly identified in the pre-operative image. By performing
this type of visual test using several landmarks, local minima in the registration pose space
can be identified.

2.3.3  Outlier Elimination

When outliers due to noise or violation of the Data-Model subset constraint are present,
additional processing is necessary to achieve accurate registration results. The experiments
reported in this dissertation use the following threshold-based outlier detection method.

1. Run the ICP algorithm normally until convergence.

2. Calculate all corresponding point pair residuals, . If any of
these residuals is larger than a user specified threshold,εo, remove a fraction,ρo,
of these outlier Data points.

3. Iterate steps 1 and 2 until there are no longer any residuals which are greater than
the threshold.

If necessary, local minima suppression via perturbation and outlier elimination can be run
together by replacing step 1 of the outlier elimination algorithm with:

1. Run the local minima suppression version of the ICP algorithm until conver-
gence.

With this modification, outliers are only removed after the perturbation method has con-
verged. The effect of applying local minima suppression, outlier elimination, and the hybrid
method including both approaches is reported in experimental results throughout the disser-
tation.

The ICP algorithm has provided a basic registration capability which, together with the
speed enhancements described in the next section, have been used throughout this disserta-
tion. The ICP algorithm was chosen due to its simplicity and independence of data represen-
tation. A summary of the ICP parameters described in this section is presented in Table 2-1.

2.3.4  A Registration Example

To demonstrate the registration methods described in this section, a registration trial was
performed using discrete point Data and a Model similar to those of Figure 2-2. The Data
were collected from a cadaver pelvis with an optical digitizing probe. The Model was con-

Mi RDi T+( )–
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structed from CT images of the same cadaver pelvis. An initial estimate of the registration
transformation was derived using an anatomical landmark-based registration method. In this
method, a surgeon identified three anatomical landmark points from the CT images of the
pelvis. The surgeon then collected Data at the same three landmark points on the actual pel-
vis using an optical digitizing probe. An initial transformation estimate was then computed
using the corresponding point registration method outlined in Figure 2-3 [Horn, 1987]. The
resulting transformation estimate became the starting pose for the shape-based registration
process.

Table 2-1:  Complete list of registration parameters.

Parameter Description

Termination criterion The ICP stopping condition which is used:
i) change in relative transformation magnitude
ii) change in absolute transformation magnitude
iii) change in absolute least-squared error

Termination thresholds:
εRr, εTr
εRa, εTa
εLSE

Depending upon which termination criterion is selected,
it is necessary to specify one of:

1) relative rotationεRr and translationεTr thresholds
2) absolute rotationεRa and translationεTa thresholds
3) absolute least-squared error threshold,εLSE

kmax Maximum number of ICP iterations before termination.

Minima suppression Specifies whether perturbation-based local minima sup-
pression is enabled.

θp-max Maximum angle of the uniformly distributed random
rotational perturbation.

τp-max Maximum magnitude of the uniformly distributed ran-
dom translational perturbation.

Ip Number of iterations required without additional
improvement before termination of minima suppression.

Outlier elimination Specifies whether threshold-based outlier elimination is
enabled.

εo Threshold on residual error which must be exceeded in
order for a Data point to be eliminated.

ρo Ratio of Data points with residuals exceeding the thresh-
old, εo, which are eliminated after a run of ICP.
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The registration parameters used in this example are presented in Table 2-2. Local minima
suppression and outlier elimination were both enabled. Sixty Data points (not including the
landmark points) were collected and registered to the Model. Figure 2-5 shows the evolution
of translation, rotation and registration error as a function of ICP iteration for a single trial of
the ICP algorithm. Translation and rotation parameters are plotted relative to the starting
pose established by anatomical landmark correspondence, and rotations are represented
about a coordinate system centered in the acetabulum (the hemispherical cup of the pelvis).
From the translation and rotation graphs, it can be seen that the initial pose estimate in this
case was within about 40 mm and 5 degrees of the final pose. These are typical initial pose
errors for registration of the pelvis using the selected anatomical landmarks. The bottom
graph in Figure 2-5 shows the evolution of the root-mean-squared (RMS) error,

, (2.7)

and the maximum residual error (MRE),

, (2.8)

as a function of ICP iteration,k. Note that the RMS error converges monotonically towards
zero. For this particular trial of the ICP algorithm, it can be seen that there are outliers in the
Data since the MRE value upon convergence is roughly 15 mm, a value much larger than the
expected Data or Model noise magnitude.

Table 2-2:  Registration example parameters.

Parameter Value

Termination criterion 1) change in relative transformation magnitude

Termination thresholds:
εRr, εTr

εRr = 10-4, εTr = 10-4

kmax 500

Data set size,N 60

τp-max 10.0 mm

θp-max 7.0 deg

Ip 10 iterations

εo 1.5 mm

ρo 0.1
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Figure 2-5: Relative translation, relative rotation, root-mean-squared error, and maximum
residual error versus ICP iteration number. The transformation parameters are
relative to the initial pose.
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The local minima suppression and outlier elimination methods described in Sections 2.3.2
and 2.3.3 require multiple trials of the ICP algorithm. The effect of applying local minima
suppression is illustrated in the top graph of Figure 2-6, which plots RMS and MRE error
values at the termination of each ICP trial. The benefit of local minima suppression is dem-
onstrated by the fact that the error values corresponding to the final ICP trial are slightly
smaller than the error values corresponding to the initial ICP trial. The graph also demon-
strates that the local minima suppression algorithm terminates when there is no additional
improvement in the RMS error after a fixed number of ICP trials, ten in this example.
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Figure 2-6: Root-mean-squared error and maximum residual error as a function of ICP trial
number. The top graph corresponds to the trials before outlier elimination. The
bottom graph corresponds to the trials after outlier elimination.
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The bottom graph of Figure 2-6 plots RMS and MRE errors versus ICP trial after a single
iteration of the outlier elimination method. In this example, five Data points have been
removed between the ICP trials of the top and bottom graphs of Figure 2-6 via the method
described in Section 2.3.3. The effect of removing the outlier Data is evident by comparing
error values from the two graphs. RMS and MRE values for the final ICP trial are substan-
tially smaller after outlier elimination.

The above registration example demonstrates the basic mechanisms of the ICP algorithm,
the local minima suppression method, and the outlier elimination method, each of which
have been used throughout this dissertation. The next section describes speed enhancements
to the basic ICP algorithm which can improve ICP execution time by as much as two orders
of magnitude. Section 2.5 provides a comprehensive discussion of registration accuracy,
including experimental results which demonstrate the accuracy which can be achieved using
the above methods.

2.4  A Speed Enhanced Registration Solution Method

Due to its simplicity, the ICP algorithm is well suited to high-speed implementation. In par-
ticular, unlike some other registration methods [Hauser and Taylor, 1990], time consuming
gradient calculations are not required. For this reason, it has been possible to use the ICP
algorithm as the primary component of a system for tracking the pose of arbitrarily-shaped
3-D objects at rates up to 10 Hz. To achieve these results, it was necessary to add several
speed enhancements to the basic ICP algorithm. Each of these enhancements: k-d trees,
closest point caching, fast surface point computation, and decoupled acceleration are
described in the following sections. A description of the high speed tracking system is pre-
sented in Section 2.4.6, while details of the system are presented in Appendix A.

2.4.1  K-d trees

The most computationally expensive step in the ICP algorithm is finding the closest points
(step 2 in the ICP algorithm description of Section 2.3). In general if there are  points in
the Data and  geometric entities (i.e., points, lines, triangles) in the Model, then the com-
plexity of a single closest point query is . However, as suggested in [Besl and
McKay, 1992] and demonstrated in [Zhang, 1994], the average complexity of a closest point
query can be reduced to  by the use of a k-dimensional binary tree, or simply
k-d tree [Bentley, 1975]. The use of k-d trees for closest point computation converts the
closest point computation to the search of a binary tree. At each node of the tree, a test is
performed to decide which side of a hyperplane the closest point will lie on. Using this
method, large regions of the search space can be pruned at each level in the search. A closest
point algorithm based on the k-d tree [Friedman et al., 1977] was implemented in this work,
and is the most significant factor for improving ICP execution speed as demonstrated below.
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2.4.2  Closest Point Caching

A second speed improvement was realized by caching closest points. Referring to the Model
asM and the Data asD, points inM andD which are proximal at iterationk, are highly
likely to be proximal at iterationk+1. Thus, rather than finding the single closest point inM
for a given Data pointDi[k], theN closest points inM can be found and cached together with
the pointDi[k]. (For reasons described below, when the cache size isN, in practiceN+1
closest points must be found.) There is little overhead involved in findingN+1 closest points
whenN is a small number like 5. On the next iteration of the ICP algorithm, since the point
Di[k+1] is likely to be close to the pointDi[k], it is also likely that the closest point inM to
Di[k+1] will be one of the points cached on the previous iteration. It is possible to determine
conclusively whether the closest point is contained in the cached set by performing the fol-
lowing test. First, defineCPn(Di[k]) as thenth closest point inM to Di at iterationk, where
n=0 corresponds to the closest point. Second, define ,
the distance between a point,Di, and it’snth closest point at iterationk. In order to test if the
closest point at iterationk+1 is in the cache built at iterationk, the following condition must
be satisfied:

(2.9)

This test compares the magnitude of the previous incremental transformation to the distance
between the closest cached point and theN+1st closest point, whereN is the total number of
points in the cache. A variation on this test can determine whether the closest point at itera-
tion k+1 is thesame as the closest point at iterationk. This condition is satisfied if:

(2.10)

The overall result of caching is that closest points can often be found without requiring a full
search of the k-d tree. Rather, only the points in the cached set must be tested.

A similar caching technique can be applied tospatially (rather thantemporally) adjacent
points. If two data pointsDi[k] andDi+ 1[k] are spatially proximal, then it is likely that their
corresponding closest pointsMi[k] and Mi+ 1[k] will also be spatially proximal. An analo-
gous caching technique can be applied to this situation; however, caching has not yet been
implemented for spatially adjacent points. This approach is worth pursuing in the future if
additional speed improvements are required in the registration process.
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2.4.3  FastSurface Point Computation

In the work described in this dissertation, since the Model is a triangle mesh surface, compu-
tation of the closest point requires an additional step. The output of the k-d tree based closest
point algorithm is thevertex, Vi, which is closest to the Data point,Di, as shown in
Figure 2-7. GivenVi, the closest Model pointMi will lie within, or on the border of, one of
the triangles to which the vertex belongs.1 In order to findMi, it is necessary to projectDi
into the planes defined by each of these triangles. The resulting projected points will either
lie inside or outside of a given triangle. For each triangle, if the projected point lies inside
the triangle, defineCj as this point, wherej is the triangle index. For projected points which
lie outside of the triangle,Cj is defined as the closest point on the border of trianglej to the
projected point. Finally,Mi is found as the point which is closest toDi among allCj. In order
to perform these computations quickly, onceDi is projected into each of the planes, all com-
putations are performed in 2-D rather than 3-D. Thus, during initialization, each triangle is
stored in both its 2-D and 3-D representations.

1. This is not strictly true, as there are pathological cases for whichMi will lie in a totally different tri-
angle. For example, this may occur if part of an object is very thin, resulting in 2 or more facets which
are proximal but which lie on opposite sides of the object. In practice, such pathological cases have
not been a problem and have therefore been ignored.

Figure 2-7: Computing the closest surface pointMi, requires projecting the test point,Di,
into the planes of each of the triangles which contain the closest vertex,Vi.
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2.4.4  Acceleration

A final speed improvement was realized using a modified version of theaccelerated ICP
algorithm described in [Besl and McKay, 1992]. The accelerated ICP algorithm adds the
following step to the basic ICP algorithm after step 3:

3b. If the incremental transformations (Rk-1, Tk-1), (Rk-2, Tk-2) and (Rk-3, Tk-3) cor-
responding to iterationsk-1,k-2, andk-3 arewell aligned, extrapolate the current
incremental transformation.

The “well aligned” condition above tests that the pose is moving in a roughly constant direc-
tion from one iteration to the next. Extrapolation is performed by scaling the current incre-
mental transformation. The scale factor is a function of the least-squared error and the
magnitude of the incremental transformations at the previous three iterations. See [Besl and
McKay, 1992] for details.

Besl and McKay calculate a single acceleration scale factor for both translation and rotation.
In the current work, better results were achieved by decoupling the acceleration of transla-
tion and rotation. There are two reasons for doing this. First, in Besl and McKay’s approach,
the well aligned condition is tested once for both rotation and translation. Thus, for example,
if rotation was well aligned but translation was not, no acceleration would be performed.
However, an acceleration on rotation alone seems desirable in this situation. A second rea-
son for decoupling is related to the scale factor used in extrapolation. Besl and McKay used
the same scale factor to extrapolate both rotation and translation components. This scale fac-
tor is designed to extrapolate the solution as far as possible in a single step without over-
shoot. In the coupled version, the size of the scale factor is governed by the component
(translation or rotation) which would cause the solution to overshoot first. The other compo-
nent can usually be accelerated further. By decoupling, translation and rotation are indepen-
dently accelerated as far as possible without overshoot.

2.4.5  Enhancement Results

Four speed enhancements have been described: closest point computation via k-d trees,
closest point caching, fast surface point computation, and decoupled acceleration. The
results of applying each of these enhancements to a single registration problem are summa-
rized in Table 2-3. In this problem, the Data set contained 2432 points and the Model was a
triangle mesh containing 4860 triangle facets. The initial pose error was a rotation of
roughly 10 degrees about each axis, and a translation of roughly 10% of the object size
along each axis. The number of points in the closest point cache was 5.
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In the table,Type indicates the enhancements used:

• none: no speed enhancements

• a: coupled acceleration

• kd: k-d tree based closest point computation

• d: decoupled acceleration

• c: closest point caching

• 2d: fast surface point computation

Time is the total ICP execution time in seconds. %Time is the percentage of time relative to
the slowest time.Iterations is the number of ICP iterations.Rot-Acc andTrans-Acc are the
number of iterations for which rotation and translation were accelerated, respectively.

The speed improvements shown in Table 2-3 demonstrate the relative utility of each of the
described enhancements for a given registration problem. In general, the relative utility is a
function of the underlying data, the initial pose, and the ICP termination conditions. Accel-
eration and k-d tree search are always the two most important enhancements. The relative
utility of k-d tree search increases with the number of points in the data set. Caching is use-
ful when the termination thresholds (e.g.,εRr, εTr) are small, since the number of cache hits
will be large during the “fine-tuning” iterations of the ICP algorithm.

Additional speed improvements to the ICP algorithm would be possible via a multi-proces-
sor implementation. The closest point computation is easily parallelized by dividing the
Data points across multiple processors, and the expected speed improvement is proportional
to the number of processors. Depending upon future interest in high-speed applications of

Table 2-3:  Effect of the ICP speed enhancements upon processing time and iteration count.

Type Time %Time Iterations Rot-Acc Trans-Acc

none 908.8 100.0 122 0 0

a 261.2 28.7 35 11 11

kd 62.2 6.8 122 0 0

kd/a 18.0 2.0 35 11 11

kd/d 13.1 1.4 25 13 7

kd/d/c 11.9 1.3 25 13 7

kd/d/c/2d 8.3 0.9 25 13 7
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this algorithm, a multi-processor implementation of ICP may be built to attain higher speeds
than those demonstrated here.

2.4.6  A Demonstration of the Speed Enhanced ICP Algorithm: High-Speed Tracking

In order to demonstrate the capabilities of the speed enhanced ICP algorithm, a system was
built for tracking the 3-D pose of arbitrarily-shaped rigid objects at speeds of roughly 10 Hz.
Static accuracies on the order of 1 mm in translation and 1 degree in rotation have been
achieved. The system has tracked human faces using Data from a high-speed VLSI range
sensor developed at Carnegie Mellon University (CMU) [Gruss et al., 1992]. The imple-
mented tracking system is independent of the sensor used or the object to be tracked. While
other researchers have addressed the problem of pose tracking using range data [Grimson
et al., 1994] [Yamamoto, 1993], to this author’s knowledge none have demonstrated sub-
second performance without the use of fiducial markers. Details of the tracking system,
including accuracy results, are presented in detail in Appendix A.

High-speed 3-D pose tracking has potential uses in a variety of applications. In manufactur-
ing, 3-D tracking could allow a mechanism (e.g., a robot) to perform a task (e.g., grasping)
on arbitrarily-shaped moving parts. In human computer interaction, high-speed pose estima-
tion could be used to track body movements for subsequent interpretation as input to a com-
puter. In medical registration, patient tracking could help eliminate invasive and bulky
fixation devices. The system described in Appendix A demonstrates the feasibility of high-
speed 3-D pose tracking system with potential application to these problems.

2.5  Measures of Registration Accuracy

To quantify the accuracy which results from a registration trial, it is necessary to have appro-
priate measures of registration accuracy. When knowledge of the true registration transfor-
mation is available, a class of measures referred to asground-truth-based accuracy measures
can be used. Such measures are useful when experimentally validating a registration
approach in the laboratory. Typically, ground-truth information is not available during the
actual registration process. For quantifying registration accuracy in the field, a second class
of measures which does not require ground-truth can be used. These are referred to asnon-
ground-truth-based accuracy measures.

A second distinction of accuracy measures is whether or not they aretask-specific or
generic. Task-specific measures have a direct physical relation to the task which is being
performed. For example, in the computer-assisted surgical task outlined in Figure 1-3, it is
possible to express registration accuracy in terms of the implant placement error induced by
registration inaccuracies. Task-specific measures are often more useful for understanding
the implications of registration inaccuracies than generic measures of registration error.
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This section defines several accuracy measures which are used throughout the dissertation.
The results of a registration experiment are presented to demonstrate the value of task-spe-
cific accuracy measures.

2.5.1  Accuracy Measure Definitions

When the true registration transformation is not known, the least-squared distance metric of
Equation 2.2 forms the basis for several measures of registration accuracy. After conver-
gence of a registration trial, it is possible to calculate the individual residual distances,

, between each Data point and its corresponding closest Model point.
From these residuals, the following four measures can be defined:

(2.11)

(2.12)

(2.13)

and

(2.14)

where LSE is the normalized least-squared error, RMS is the normalized root-mean-squared
error, and ARE and MRE are the average and maximum residual errors, respectively. These
four measures have the advantage that they can be evaluated without ground-truth pose
transformations, and are therefore useful as online checks of a registration result. The pri-
mary disadvantage of these measures is that they do not guarantee good registration accu-
racy. They are necessary, but not sufficient conditions for accurate registration. In addition,
the MRE is sensitive to noise in the Data or Model. More reliable estimates of registration
accuracy are possible with the use of ground-truth pose transformations; however, such
transformations are typically available only during algorithm development and testing.

With reference to Figure 2-8, the transformation  is anestimate resulting from the regis-
tration process of the transformation between the Model and Data coordinate systems. The
transformation  is theground-truth or true transformation between the Model and Data
coordinate systems. In this dissertation, ground-truth is determined either by creating the
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Data from the Model, or via a highly accurate calibration. In the former case, the Data are
synthetically created by selecting discrete points on the Model and transforming these
points by a known amount. In the latter case, fiducial-based registration is performed in par-
allel with surface-based registration to provide a highly-accurate registration transformation
which is used as ground-truth. Theregistration error transformation, , represents the
difference between the estimated and ground-truth transformations. All ground-truth based
accuracy measures are derived from this transformation.

The transformation  is a function of 6 parameters, , where
 are rotations about thex, y, andz axes, respectively, and  are trans-

lations along the newly rotatedx, y, and z axes. These six parameters may be useful for
quantifying registration accuracy in certain situations. Alternately, norms of the rotation and
translation error components can be computed as:

(2.15)

and:

(2.16)

where  and  are the norms of the translation and rotation components of ,
respectively. Equation 2.16 is valid as long as the individual rotation errors are small so that
the approximation  holds. For large rotation errors, a more accurate measure
can be derived by converting rotation error into an angle-axis representation as illustrated in
Figure 2-9. This representation can describe any 3-D rotation as a single rotation about a
given axis [Craig, 1986] [Spoor and Veldpaus, 1980]. The rotation angle, , from the angle-
axis representation provides an alternative to the rotation error norm of Equation 2.16 for
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large rotation errors; however, it can be difficult to compute for small values of . In prac-
tice, the angle-axis measure is used when  is greater than 5 degrees.

Correspondence error measures (CEMs) provide an alternative to the error norm accuracy
measures discussed above. A CEM measures the displacement between corresponding
points induced by applying the registration error transformation to a copy of the Model, as
illustrated in Figure 2-10. There are several steps required to compute a CEM. First, a dense
sampling of fixed points on the surface of the Model is selected (e.g., all of the vertices of a
triangle mesh surface model). Second, a copy of this set of points is created, and the copy is
transformed with respect to the original set by the registration error transformation, .

θ

ωx

ωz

ωy

K

Figure 2-9: A rotation given by  can be represented as a single rotation about
an axis,K, through an angle, .
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Figure 2-10: Correspondence error measures are derived by calculating the displacements
between corresponding points on the Model and a copy of the Model which
has been transformed by the registration error transformation.
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Between each original point and its corresponding displaced copy, a Euclidean distance, ,
is computed. Given these , the following measure can be computed:

(2.17)

where ACE is the average correspondence error, andN is the number of selected points.
Similarly, the maximum correspondence error (MCE) can be computed as:

(2.18)

The MCE is an intuitively satisfying measure of registration error. It provides an upper
bound on the displacement induced by the registration error transformation for any point
within a rigid body. Therefore, this measure has a physically meaningful relation to the task
being performed. For example, consider a problem from computer-assisted surgery in which
the task is to guide a drill to a precisely specified point within a bone. Assuming that regis-
tration is the only source of error in this task, the MCE would provide an upper bound on the
maximum distance between the desired and actual final drill-tip position. The MCE is a use-
ful measure for validation of a registration method when ground-truth pose information is
available.

As seen in Figure 2-10, the MCE is computed using only points on thesurface of a rigid
body. It is now shown that for an arbitrary transformation, the maximally displaced point
always lies on the surface, as opposed to the interior, of a rigid body.

Theorem 2-1:The maximal point displacement resulting from the application of an arbi-
trary transformation to a rigid body will occur at a point on the surface of the rigid body,
and not in the interior.

PROOF. It is well known from Chasles’ theorem that every spatial displacement is the com-
position of a rotation about some axis and a translation along the same axis
[McCarthy, 1990]. This axis will be referred to as the helical axis. Applying an arbitrary
transformation to a rigid body, each point within the body will be displaced by a component
parallel to the helical axis (from translation along the axis), and a component orthogonal to
the helical axis (from rotation about the axis). Displacement parallel to the helical axis is the
same for every point within a rigid body since it results from a pure translation. Displace-
ment of a point orthogonal to the helical axis is proportional to the distance between the
point and the axis. Therefore, the point which is farthest from the helical axis will be maxi-
mally displaced by the rotation. This same point will also be maximally displaced by the
entire applied transformation since rotation and translation components are orthogonal, and
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translation is constant for all points. Given a rigid body and an arbitrary axis, the furthest
point within the rigid body from the axis must lie on the body’s surface and not in the inte-
rior. Therefore, the maximal point displacement resulting from the application of an arbi-
trary transformation to a rigid body must occur at a point on the surface of the rigid body
and not in the interior.❒

Correspondence error measures provide an unambiguous gauge of registration accuracy. In
contrast, there is a fundamental ambiguity related to the choice of coordinate systems in the
translation error norm measure of Equation 2.15. The nature of this ambiguity is illustrated
in Figure 2-11. Recall that the registration error transformation, , measures the differ-
ence between a ground-truth and an estimated pose transformation. However, there is an
arbitrary decision which must be made regarding the placement of the coordinate system
about which  is represented. In Figure 2-8 for example, the registration error is repre-
sented with respect to the ground-truth coordinate system,G. The effect of this choice is
demonstrated in Figure 2-11 by the difference in translation error between the cases on the
left and right. The apparent distortion of error is an artifact of the choice of coordinate sys-
tem. The actual displacement between both sets of rigid bodies in Figure 2-11 is identical.
Mathematically, the relation between the two transformations can be expressed as:

(2.19)

where  is the transformation between the coordinate system on the left, and the one on
the right. Due to the effect illustrated in Figure 2-11, careful selection of a coordinate sys-
tem is required when using measures such as  and .

T
G

E

T
G

E

TE
∗G

T
G∗

G T
G

E T
G

G∗=

T
G

G∗

Et Eω

T
G

E

Figure 2-11: Registration error transformations as a function of coordinate system
placement. Left: the coordinate system is centered on the femoral head. Right:
the coordinate system is centered at a point on the femoral shaft. Displacement
between the two rigid bodies is identical; however, the transformation
varies as a function of coordinate system placement.

T
G

E

y

x
z

y

xz

y

x
z

y

xzTE
∗G



 2.5. Measures of Registration Accuracy

39

Another example of the above ambiguity is given in the simple 2-D example of Figure 2-12.
On the left, the two lines labeled 1 and 2 represent a rotational misalignment error such as
that resulting from registration. With respect to a coordinate system positioned at pointa,
this error can be described as a pure rotation. In order to describe the same error with respect
to a coordinate system positioned at pointb, line 2 must first be rotated about pointb so that
it is parallel to line 1, and then shifted back to pointa. The angles of rotation about pointsa
or b are the same; however, the translations differ.

2.5.2  Accuracy Measure Demonstration

In this subsection, some of the accuracy measures defined in the previous section are dem-
onstrated using an example task from computer-assisted surgery. The task is to accurately
“place” an orthopaedic implant within a human femur based upon geometric information
from a pre-operative plan. For the experiment performed in this section, the following steps
which parallel those in Figure 1-3 were performed: a pre-operative plan was constructed
from CT images of the femur; registration was performed using a Model constructed from
the CT images and Data collected from the bone using a digitizing probe; and the accuracy
of registration was evaluated using fiducial-based registration to provide the ground-truth.
The actual placement of the physical implant was never performed. The goal of the experi-
ment was to evaluate the effect which the physically measured registration error would have
on implant misalignment.

To perform the experiment, a human cadaveric femur was CT scanned in water at 1 mm
intervals. A schematic of the pre-operative plan constructed from these images is shown in
Figure 2-13. Each of the numbered points correspond to origins of coordinate systems
which are used to represent registration error in the results below. The pre-operative plan

Figure 2-12: Two ways to represent the same spatial transformation. Left: the
transformation between lines 1 and 2 can be represented as a pure rotation
about pointa. Right: the same transformation can be represented as a rotation
about pointb, followed by a translation back to pointa.
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was constructed manually via a graphical user interface which allowed the user to overlay a
model of the implant upon orthogonal views of the CT images.

After construction of the plan, a surface model was built from the CT images for use as the
registration Model. One hundred Data measurements were collected within a region of the
proximal femur using a digitizing probe which was accurate to 0.1 mm. Data collection was
limited to areas of the bone which are clinically accessible during total hip replacement sur-
gery. The EICP algorithm was used to estimate the registration transformation, and corre-
sponding point registration was performed using 6 spherical fiducial markers to calculate the
ground-truth transformation. Descriptions of these fiducial markers and additional details of
the experiment can be found in Section 5.3 and [Simon et al., 1995].

Table 2-4 summarizes the results of the experiment using the error norms defined in
Equations 2.15 and 2.16. Within each row of the table the error norms are calculated with
respect to a coordinate system defined in Figure 2-13. The coordinate systems numbered 1-3
are parallel, with the x-axis in the direction of the implant shaft’s central axis, the y-axis
defined by the projection of the femoral head centroid onto the x-axis, and the z-axis defined
as the cross product of the first two. The origin of each coordinate system was selected for
its relevance to the implant placement task: 1) centroid of the implant femoral head;
2) centroid of the implant; and 3) distal tip of the implant. The fourth coordinate system is
the one used by the CT scanner.

In the table, the magnitudes of the translation errors are a function of coordinate system,
while the magnitudes of the rotation errors are independent of coordinate system. This is
consistent with the explanation of Figure 2-12. The key point is that each of the results in
Table 2-4 refers to thesame physical displacement. These results demonstrate the potential
ambiguity of accuracy measures which require selection of a coordinate system. When
using such measures, it is crucial that the coordinate system have a physically meaningful

Figure 2-13:  Schematic of a pre-operative plan illustrating the desired placement of an
implant within a femur for total hip replacement surgery. The numbered points
indicate origins of coordinate systems used to represent registration errors.
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relation to the task being performed. For this example, depending upon the selected coordi-
nate system, errors could either be reported as 0.17 mm in translation or 1.77 mm in transla-
tion, a factor of 10 difference. Fortunately, meaningful error values for this task are closer to
the smaller value.

Table 2-5 presents the results of the same experiment using correspondence error measures
rather than error norms. Using the approach described on page 36, the correspondence
errors, , are computed for each of the points shown in the table. The first three points are
the points labeled 1-3 in Figure 2-13. The fourth point is the extremum point for which the
resulting  value is equal to the maximum correspondence error (MCE). These results are
independent of the choice of coordinate system. Each of the reported  values can be inter-
preted as the implant misalignment which would result at the specified point if the implant
were actually placed using the estimated registration transformation. It is no coincidence
that the  values are the same as the corresponding translation norm magnitudes from
Table 2-4. This can be explained with respect to Figure 2-12. On the right side of the figure,
the translation required to realign line 3 with line 1 is the same as the displacement which
would be induced at pointb by rotating line 2 together with pointb, about pointa to match
line 1.

Table 2-4:  Registration error norms for implant placement task as a function of
coordinate system location.

Location of coordinate system origin  (mm)  (deg)

1 - Head Centroid 0.25 0.97

2 - Implant Centroid 0.31 0.97

3 - Implant Distal Tip 0.17 0.97

4 - CT 1.77 0.97

Et Eω

di

di

di

di

Table 2-5:  Registration correspondence errors for implant placement task as a function of
corresponding point location

Location of corresponding point (i)  (mm)

1 - Head centroid 0.25

2 - Implant centroid 0.31

3 - Implant distal tip 0.17

4 - Extremum point 0.54

di
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The fourth point in Table 2-5 is the extremum point, the point for which  is maximum
over all points within the implant. As noted earlier, the MCE provides an upper bound on the
implant misalignment introduced by registration. As suggested by Theorem 2-1, the extre-
mum point can be calculated as the point on the implant’s surface which is farthest from the
helical axis representation of the registration error transformation. Figure 2-14 illustrates the
relation of the points of Table 2-5 to a projection of the helical axis error transformation.
From the figure, it can be seen that the extremum point is farthest from the helical axis, and
each of the  values from the table are proportional to the distance between the helical axis
and the associated point. For this reason, 3-D graphical renderings of the helical axis super-
imposed on the relevant rigid body are useful for visually interpreting errors resulting from
registration.

2.6  Discussion

The registration methods described in this chapter have provided reliable tools for use in
both research and application. The primary innovation in the described implementation is
the ability to perform registration at high-speed, as demonstrated by the real-time pose
tracking system. The methods described for handling outliers and avoiding local minima
have been very effective in the experiments described throughout this dissertation. An
implementation of the registration method described in this chapter is currently being pre-
pared for use in a clinical trial in which computer-assisted surgical techniques are being
applied to a problem in total hip replacement surgery [DiGioia et al., 1995].

The registration literature contains many reports of registration accuracy in which the partic-
ular metrics used are not carefully described. It is not uncommon for registration accuracy to
be reported using descriptions such as: “Our method is shown to be accurate to 1 mm”. As
demonstrated in this chapter, there is potential ambiguity in such descriptions. When using
accuracy measures which depend upon a choice of coordinate system, a careful description

di

di

Figure 2-14: Relation of the helical axis error representation to the points in Table 2-5. The
error transformation is represented as a rotation about the helical axis and a
translation along it. Thedi values of Table 2-5 are proportional to the distance
between the corresponding point and the helical axis.
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of the selected coordinate system is required. When registration is used to perform a partic-
ular task, accuracy should be reported using measures which have a direct physical relation
to the task. The maximum correspondence error (MCE) was shown to be a generic measure
of registration accuracy which represents the largest point displacement within an object
resulting from registration inaccuracies.

This chapter has emphasized the details of performing and evaluating shape-based registra-
tion without regard to the underlying Data. The next chapter presents a method for assessing
the quality of registration Data for the purpose of achieving accurate registration results. It is
shown that careful selection of registration Data can have a profound impact upon the result-
ing registration accuracy.
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Chapter 3

Constraint Analysis

The goal of the Intelligent Data Selection (IDS) method outlined in this dissertation is to
guide the collection of a fixed number of discrete point Data measurements in a manner
which maximizes registration accuracy for a given arbitrarily-shaped object. As discussed
later in this dissertation, by combining IDS with online accuracy estimation, it is possible to
minimize the number of Data measurements required to satisfy a given accuracy require-
ment. As outlined in Figure 3-1, the input to the IDS process is a surface Model of the regis-
tration object, and the output is a plan for acquiring discrete-point measurement Data. This
chapter presents the theoretical framework and numerical formulation of the first component
of IDS, constraint analysis. As input, constraint analysis requires a surface Model of the
registration object and a hypothesized set of discrete point Data measurements. The output
of constraint analysis is a sensitivity measure which is shown to be a good indicator of
expected registration accuracy. Using this sensitivity measure, theconstraint synthesis algo-
rithm described in Chapter 4 can generate sets of discrete-point Data measurements which
are shown to be near-optimal in terms of the resulting registration accuracy. The remainder
of this chapter is organized as follows. In Section 3.1, several motivating examples for the
constraint analysis problem are provided. Section 3.2 includes a review of the relevant liter-
ature. Section 3.3 presents a derivation of constraint analysis and discussions of the effect of
object scale and coordinate system placement upon the analysis. Section 3.4 contains exper-
imental results which demonstrate that constraint analysis is a good predictor of registration
accuracy. Section 3.5 concludes the chapter with a discussion of constraint analysis and its
relation to the other components of this dissertation.

3.1  Problem Description

The goal of registration as formulated in the previous chapter is to find a rotation,R, and
translation,T, which minimize the equation:

(3.1)Mi RDi T+( )– 2

i
∑
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whereDi are discrete point Data measurements, andMi are the corresponding closest points
on a surface Model. One aspect of registration which has received little attention in the liter-
ature is the selection of the measurements,Di, which are used to minimize Equation 3.1. As
demonstrated in the following examples, the particular choice of measurements can have a
profound effect upon registration accuracy.

Consider the problem illustrated in Figure 3-2 in which the goal is to estimate the pose of a
slotted cylinder by acquiring discrete point Data measurements on its surface. If measure-

Figure 3-1: The role of constraint analysis (shaded) in Intelligent Data Selection and online
error estimation.
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ments were only collected at locations indicated by the marks, it would be impossible to
determine orientation about the central axis or translation along it. Additional Data collected
in the disk-shaped end regions and within the slot would allow determination of translation
and rotation, respectively. The problem with the Data measurement configuration shown in
Figure 3-2 is that it does not completely constrain the pose of the cylinder. In other words,
“freedoms” or singularities exist between the Model and Data causing multiple solutions in
R andT to Equation 3.1. While these freedoms are visually apparent in this example, when
dealing with more complex surfaces such as the Pelvis Model of Figure 2-2, identification of
this condition becomes more difficult.

Another example which illustrates the effect of Data selection upon registration accuracy is
described with reference to Figure 3-3. In this example, the problem is to estimate the pose
of a cube (disregarding symmetries) using the three Data configurations shown in the figure.
The configurations, C1, C2 and C3, contain 25, 4, and 4 points per face, respectively, for
totals of 150, 24 and 24 points per cube.

To demonstrate the effect of Data configuration upon accuracy, registration was performed
between a noiseless surface Model of the cube, and corrupted versions of the three Data
configurations. The corrupted Data sets were generated by adding zero mean Gaussian noise
to the nominal point locations of Figure 3-3 (see Section 3.4.2 for a detailed description of
the experimental method). Registration was performed 100 times for each Data configura-
tion from known, random initial poses. Figure 3-4 shows the resulting normalized least-
squared errors of Equation 2.11, plotted relative to the error for configuration C1. As might

Figure 3-2: Ambiguities in estimating the pose of a slotted cylinder using Data
measurements at locations indicated by the marks.

?

?

Figure 3-3: Three registration Data configurations on a cube: C1, C2 and C3.

C1 C2 C3



Chapter 3. Constraint Analysis

48

be expected, configuration C1 results in the best registration accuracy. This agrees with the
intuition that larger quantities of registration Data will result in better registration accuracy.
For the two 24 point configurations, C2 clearly provides better accuracy than C3. An expla-
nation of this result is given in the next section; however, note that in the absence of mea-
surement noise, registration error would be zero for all three configurations. The difference
between configurations C2 and C3 is related to the sensitivity of registration accuracy to
measurement noise.

The goal of this chapter is to develop a theory of constraint analysis which provides a math-
ematical basis for understanding the examples presented above. Constraint analysis provides
a very fast numerical method for quantitatively evaluating discrete point Data configurations
in terms of expected relative registration accuracy. The importance of fast numerical evalua-
tion is discussed in Chapter 4, in which constraint analysis is used as an evaluation metric
for constraint synthesis.

3.2  Background

This section contains a review of the literature in areas related to constraint analysis. There
are a number of engineering problems described in the literature which share an underlying
mathematical structure with constraint analysis. In particular, there are similarities to work
in analysis and design of industrial fixtures and robotic grasps, robotic manipulability and
other measures of robot dexterity, and robot kinematic calibration. The most closely related
work to constraint analysis was reported by a group at the Ohio State University on the
problem of industrial part localization for surface measurement and inspection. This section

Figure 3-4: Least-squared error (LSE) resulting from registration of the cube with the Data
configurations of Figure 3-3 normalized relative to theLSE of configuration C1.
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presents a brief overview of the literature in each of the above areas in order of increasing
relevance.

3.2.1  Analysis and Design of Industrial Fixtures and Robotic Grasps

Design of industrial fixtures and robotic grasps has the goal of physically immobilizing an
arbitrarily-shaped object using a limited number of contact points. In both of these prob-
lems, choice of contact point location can greatly affect the stability of the resulting hold. As
demonstrated in Section 3.1, the choice of discrete point measurement locations in registra-
tion can greatly affect the resulting accuracy. At a fundamental level, the underlying mathe-
matics of fixture and grasp analysis, especially in the frictionless case, is similar to the
mathematics of constraint analysis presented below in Section 3.3. An overview of prob-
lems in robot grasping and dexterous manipulation can be found in [Mishra and
Silver, 1989]. From Section IV of this paper in particular, the relation between frictionless
grasp analysis and constraint analysis is apparent.

In [Asada and By, 1985], a method is presented for analyzing the local uniqueness of a pose
between an object and a set of fixture elements. Given a CAD model of an object and a set
of fixture contact positions, the authors determine whether motion of the object with respect
to the fixture is possible within a small vicinity of pose space. A similar problem is exam-
ined in the context of robotic grasping in [Asada and Kitagawa, 1989]. Aform closure grasp
is one which constrains a rigid object using mechanical fingers such that object motion is
geometrically constrained in all directions. This paper presents a linear programming tech-
nique for determining whether form closure is satisfied in a given situation. The analysis
considers not only smooth regions of an object, but also the case of contact at surface dis-
continuities (e.g., convex or concave edges). The goals of both of the above papers are simi-
lar to the goal of constraint analysis. Fixture and grasp analysis, however, differ from
constraint analysis in one important regard; it is impossible for a fixture or a finger to pene-
trate the surface of an object. Any computational algorithms for designing fixtures or grasps
must ensure that this constraint is maintained. During registration, however, a point in the
Data may be positioned on either side of the surface of the Model. Since constraint analysis
does not incorporate the non-penetration constraint used in grasp or fixture analysis, the
work presented in this dissertation does not map directly to these problems.

The work by Ohwovoriole and Roth [Ohwovoriole and Roth, 1981] in the area of screw the-
ory is used extensively in fixturing and grasping research. Their paper outlines a theoretical
framework for the analysis of differential object motion under frictionless point constraint.
While the formulation of constraint analysis presented below does not make explicit use of
screw theory, apparent similarities are noted.
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3.2.2  Robot Dexterity Measures

Robot dexterity measures provide a quantitative evaluation of the ease with which the posi-
tion of a robot can be changed (or equivalently the ease with which it can apply a force)
when the robot is in a specified configuration. These measures are based upon a robot’s
Jacobian matrix. Dexterity measures are used in the manipulator design process to evaluate
the implications of kinematic design decisions (e.g, manipulator size, link lengths) on the
robot’s ability to perform a given task. Dexterity measures are also used to select appropriate
configurations when programming a robot to perform a task.

The manipulator Jacobian relates the rate of change of a manipulator’s endpoint location to
the rate of change of each of the joint angles. Robot dexterity measures are scalar sensitivity
measures derived from the Jacobian which express a manipulator’s ability to move its end-
point in an arbitrary direction from a given configuration. As demonstrated below, in con-
straint analysis there is a matrix which relates the rate of change of a first order
approximation of the registration cost metric, Equation 3.1, to the rate of change of object
pose. As in the case of robot dexterity, it is possible to derive scalar sensitivity measures
from this matrix which express the ability to localize an object in all directions from a given
set of measurements.

Perhaps the best known measure of robot dexterity is the manipulability measure described
in [Yoshikawa, 1990]. Manipulability is basically the determinant of the manipulator Jaco-
bian. It can be shown that manipulability is also a function of the eigenvalues of the Jaco-
bian matrix multiplied by its transpose. Other robot dexterity measures can be derived from
these eigenvalues as well. Excellent overviews of robot dexterity measures are presented in
[Kim and Khosla, 1991] and [Nahvi and Hollerbach, 1996]. The measures used for con-
straint analysis in this dissertation are identical to those used as measures of robot dexterity
by previous researchers. Additional discussion of these measures is presented in
Section 3.3.2.

3.2.3  Pose Selection for Kinematic Calibration of Robots

Pose selection for kinematic calibration of robots is a very similar problem to the problem
described in the previous section. The goal of kinematic calibration is to identify manipula-
tor parameters (e.g., link lengths, relative joint orientations, etc.) based on measurements of
the robot’s end-effector pose at several commanded configurations [Hollerbach, 1993]. The
goal of pose selection is to choose a small number of poses which maximize kinematic
parameter identification accuracy, assuming that pose measurements are corrupted by noise.
Once again, there is a fundamental similarity to the goal of constraint analysis.

Since the Jacobian matrix is fundamental to the kinematic calibration pose selection prob-
lem and the robot dexterity measure problem, the same criterion measures are used in these
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problems. An overview of work in optimal pose selection for kinematic calibration is pre-
sented in [Nahvi and Hollerbach, 1996]. That paper also introduces a criterion measure
called the “noise amplification index” which is used later in this dissertation. In [Borm and
Menq, 1991] and [Zhuang et al., 1994], methods for selecting optimal robot poses for kine-
matic calibration are presented. The optimization methods presented in those papers are
similar in spirit to the constraint synthesis work presented in Chapter 4.

3.2.4  Sensitivity Analysis for Registration

Among the literature reviewed for this dissertation, work done by a group at The Ohio State
University [Sahoo and Menq, 1991] [Menq et al., 1992] [Sahoo and Menq, 1988] is most
similar to the constraint analysis method described in this chapter. These papers discuss a
method for evaluating the sensitivity of registration accuracy as a function of the underlying
data in the context of industrial part localization for surface measurement and inspection.
Their formulation is quite similar to the independently derived constraint analysis method
presented in subsequent sections of this chapter. The work presented in this dissertation
improves upon the earlier work in several ways. First, this dissertation presents a solution to
an important problem which was not addressed in the earlier work: automatic selection of
optimal measurement configurations based upon the sensitivity analysis. Additional
improvements presented in this dissertation include: recognition and treatment of the scale
dependence problem which affects how rotations and translations are weighted in the analy-
sis; recognition and treatment of the coordinate system dependence problem; choice of a
different criterion measure; improved geometric interpretation of the analysis; and substan-
tially more experimental validation.

The application of the Ohio State work was the localization and inspection of industrial
parts using CAD models. While this domain differs from the medical domain in terms of
registration requirements, underlying data, etc., the fundamental problems are the same.
Therefore, the results presented in this dissertation can be directly applied to problems in
industrial parts localization.

3.3  Constraint Analysis Formulation

This section presents the theoretical and computational framework of constraint analysis.
Section 3.3.1 describes the mathematical derivation with additional details presented in
Appendix B. Section 3.3.2 compares several criterion measures and justifies the selection of
a particular measure which is used throughout the remainder of the dissertation.
Section 3.3.3 discusses a fundamental problem related to scale dependence in constraint
analysis. It is shown that the scale of surfaces used in constraint analysis affects the relative
weight which rotational versus translational transformations have upon the analysis.
Section 3.3.4 discusses a dependence between constraint analysis and the position of the
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coordinate system in which the analysis is performed. A method for dealing with this depen-
dence is proposed.

3.3.1  Derivation

The derivation of constraint analysis begins by posing the following question as illustrated
in Figure 3-5. Given a discrete point which lies on a surface, how does the distance between
the point and the surface vary as the point is perturbed by a small amount about its resting
position? This question can be answered by computing the gradient of this distance with
respect to an arbitrary transformation of the surface point.

The distance between a pointx, and a surface is defined as the length of the shortest line
between the point and the surface. In general, there is no closed form analytical expression
for this distance given an arbitrary surface; however, several researchers have proposed the
following local approximation [Sampson, 1982] [Taubin, 1991]:

(3.2)

where  is the implicit equation of the surface,  is the magnitude of the
gradient to the surface,  is a point which may or may not lie on the surface, and  is
the approximate distance. It can be shown that  is a first order approximation of the
true point-to-surface distance, and is the exact distance when the surface is a plane.

Assume that there exists a point , which lies on the surface such that . This
point can be perturbed with respect to the surface by applying a differential transformation,
T, to the point.T can be represented by a homogeneous transformation which is a function of
6 parameters , where  are rotations about thex, y, andz

x

y

z

Figure 3-5: Distance induced by a small perturbation of a point lying on a surface.
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axes, respectively, and  are translations along the newly rotatedx, y, andz axes.
Define:

(3.3)

as the 6-vector of transformation parameters. The gradient of the point-to-surface distance,
D, with respect to  specifies howD varies for an arbitrary transformation of the point. As
shown in Appendix B, this gradient can be computed and the resulting 6-vector, , is
defined as:

(3.4)

where  is the unit normal to the surface evaluated at the point , and  is the cross-
product of the radius vector with the surface normal.  relates a small transformation
specified by a vector  to a corresponding change in distance between the point and the
surface. In other words:

(3.5)

Drawing a parallel to the robot dexterity measures discussed in Section 3.2, the sensitivity
vector  of Equation 3.4 is similar to the manipulator Jacobian. In the robot grasping
and fixture analysis literature,  is a wrench system which represents a frictionless
force applied to a body in the direction  at the point  [Mishra and Silver, 1989]. This
expression is also used by the Ohio State University group in their sensitivity analysis for-
mulation [Menq et al., 1992].

There exists an intuitive geometric interpretation of Equation 3.5. Grouping the first three
elements of into a vector describing the translation components, and the last three ele-
ments into a vector describing the rotation components:

(3.6)

(3.7)

where  and , while  and  are the com-
ponents of the distance induced by translation and rotation, respectively.

Geometric interpretations of Equations 3.6 and 3.7 are presented in Figures 3-6 and 3-7,
respectively. Figure 3-6 indicates that a small translation of the point in a direction parallel
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to the surface normal at that point will result in the largest change in distance. Similarly, a
small translation perpendicular to the surface normal will result in no change in distance
since the point will be moving tangentially to the surface. The rotational case in Figure 3-7
can be interpreted by recognizing that a differential rotation through the origin specified by
the vector , will induce a translation of the point  given by . The resulting
translation can then be interpreted as in Figure 3-6. An experimental result which provides
intuition into the meaning of the sensitivity vector, , is presented in Section 3.4.1.

Until now, the derivation has considered how the distance between a single point and a sur-
face changes as a function of an arbitrary, small rigid transformation. The goal is to perform
this analysis for acollection of points which lie on the surface. Recall from Equation 3.5,
that for a single point:

dθ xs dθ xs×

V xs( )

α

Figure 3-6: Geometric interpretation of the translational components of the sensitivity
vector, .V xs( )

n

dτDτ n dt αcos=
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Figure 3-7: Geometric interpretation of the rotational components of the sensitivity vector,
. A rotation about the vector  will induce a translation at the point
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Squaring this equation, results in:

(3.8)

where  is a symmetric, positive semi-definite 6x6 matrix. Summing
the quantity in Equation 3.8 over a set,P, of discrete surface points results in:

(3.9)

where  is the sum of squared distance errors between the surface and the points inP, and
 is the sum of the  matrices evaluated at each point.  is a first order approxima-

tion of the registration error metric of Equation 3.1; the points inP correspond to the dis-
crete point measurements,Di, of Equation 3.1. The matrix  is a scatter matrix which
contains information about the distribution of the original  vectors over all points in
the setP. This matrix is similar to thestiffness matrix in robotic grasp analysis [Mishra and
Silver, 1989].

Performing principal component analysis [Kendall and Stuart, 1977] upon  results in a
form which is more easily interpreted:

(3.10)

where  are the eigenvalues of , and  are the corresponding
unit eigenvectors. Each eigenvector, , can be interpreted as a differential transformation
represented as a 6-vector; the first three elements are the translation components, and the
last three elements are the rotation components.

Substituting Equation 3.10 into Equation 3.9 results in:
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(3.11)

From Equation 3.11 it can be seen that the eigenvector  corresponding to the largest
eigenvalue represents thetransformation of maximum constraint. Perturbing the points in
the setP by the differential transformation  will result in the largest possible change in

 from among all possible transformation perturbations. Similarly, the differential trans-
formation represented by the eigenvector  corresponds to thetransformation of maximum
freedom. Perturbing the points by this transformation will result in the smallest possible
change in  from among all possible transformation perturbations. In general, an eigen-
value, , is proportional to the rate of change of error, , induced by a small transforma-
tion in the direction specified by . The result presented in Equation 3.11 is equivalent to
the one presented by the Ohio State group [Menq et al., 1992].

A special situation occurs when some of the  are close to or equal to zero. For each such
eigenvalue, a singularity exists such that perturbing the points in the direction specified by
the corresponding eigenvector will result in no change in . Clearly, such singularities
complicate registration since it becomes impossible to localize an object in the direction cor-
responding to the singularity. For example, as demonstrated in Section 3.4.3, the slotted cyl-
inder example of Figure 3-2 has two zero eigenvalues, one corresponding to a rotation about
the central axis and the other corresponding to a translation along it.

From the above derivation, it is also possible to see that the minimum number of points
required to unambiguously localize an arbitrarily-shaped object using shape-based registra-
tion is six. In order for the  matrix to contain no zero-eigenvalues (i.e., have a rank of 6),
it must be derived from a minimum of six linearly independent  vectors. This is only
possible when 6 or more Data points are available.

In Section 3.4, it is demonstrated that discrete point measurement configurations which have
a well conditioned  matrix tend to result in better registration accuracy. In Chapter 4, it is
shown that the primary goal of constraint synthesis is to select a minimally-sized set of dis-
crete point measurements,P, which results in a well-conditioned  matrix for a given
object. The problem of how to mathematically define “well-conditioned” is addressed in the
next section.

At this point, the reader may choose to refer to the experimental results presented in
Section 3.4.1 which may help to clarify the above derivation.
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3.3.2  Criterion Measures

This section addresses the question of how to mathematically define awell conditioned
matrix from Equation 3.10 for the purposes of constraint analysis. In this section, several
scalar measures of matrix conditioning are discussed, and one measure is selected for use in
constraint analysis.

In Equation 3.11, principal component analysis is applied to the matrix  resulting in 6
eigenvectors, , and 6 corresponding eigenvalues, , where .
Given a 6-vector,x, the equation

defines a 6-dimensional ellipsoid which will be referred to as theuncertainty hyperellip-
soid.1 The principal axes of this hyperellipsoid are defined by the eigenvectors of , and
the lengths of the principal axes are given by the reciprocals of the square roots of the corre-
sponding eigenvalues of , as shown in Figure 3-8. The length of each principal axis can
be interpreted as a measure of localization uncertainty in the direction specified by the cor-
responding eigenvector; longer axes correspond to directions in which localization uncer-
tainty is larger. There are several attributes of this hyperellipsoid which can be characterized
by the scalar measures of matrix conditioning described below. For the purposes of accurate
object localization via shape-based registration, the most important attribute is that the
length of the largest axis of the hyperellipsoid be as small as possible. As demonstrated by
the cylinder example presented in Section 3.4.3, registration accuracy can be compromised
by just one small eigenvalue. As explained below, another attribute of the hyperellipsoid
which is relevant for this problem is its eccentricity.

1. The uncertainty hyperellipsoid is similar to the manipulability hyperellipsoid from robot dexterity,
and the observability hyperellipsoid from control systems.
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Figure 3-8: Two axes of the 6-dimensional uncertainty hyperellipsoid.
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In [Kim and Khosla, 1991] and [Nahvi and Hollerbach, 1996] a number of scalar measures
of matrix conditioning are discussed in the context of robot dexterity measures. Due to the
similarity between constraint analysis and robot dexterity, these measures are equally appli-
cable to the work in this dissertation. Each of the criterion measures described in the above
papers are scalar functions of the eigenvalues, . A summary of these measures as well as
several others are presented in Table 3-1.

For each measure in the table (with the exception of eigenvalue variance) larger values result
in better matrix conditioning and thus reduced localization uncertainty. For example, a large
minimum eigenvalue results in a small maximum axis of the hyperellipsoid, and thus small
localization uncertainty in the direction of maximum freedom. While the magnitude of the
minimum eigenvalue is a weak indicator of hyperellipsoid volume, it provides no informa-
tion regarding hyperellipsoid eccentricity.

λi

Table 3-1:  Scalar measures of matrix conditioning (6 dimensional case).

Measure Name Equation

Minimum
Eigenvalue

(3.12)

Inverse Condition
Number (3.13)

Manipulability (3.14)

Geometric Mean
of Eigenvalues (3.15)

Arithmetic Mean
of Eigenvalues (3.16)

Eigenvalue
Variance

(3.17)

Isotropy Measure

(3.18)

Noise Amplification
Index (3.19)

λ6

λ6

λ1
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λ1 λ2 λ3 λ4 λ5 λ6⋅ ⋅ ⋅ ⋅ ⋅

λ1 λ2 λ3 λ4 λ5 λ6⋅ ⋅ ⋅ ⋅ ⋅6

λ1 λ2 λ3 λ4 λ5 λ6+ + + + +

6
------------------------------------------------------------------
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6
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------------------------------------------------------------------⋅
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The inverse condition number is the square root of the ratio of the smallest to largest eigen-
values. Maximizing this measure tends to result in less eccentric hyperellipsoids (i.e., closer
to hyperspherical). Since this measure is derived as a ratio of eigenvalues, it is dimension-
less and thus is normalized for the number of measurements (i.e., points in the setP). How-
ever, the inverse condition number provides no information regarding the volume of the
hyperellipsoid.

The manipulability measure [Yoshikawa, 1985] is the square root of the product of the
eigenvalues. Similarly, the geometric mean of the eigenvalues is themth root of this product,
wherem is the order of the matrix. It can be shown that both of these measures are related to
the volume of the uncertainty hyperellipsoid. However, it is possible to have large values of
manipulability despite one or more small eigenvalues. In addition, manipulability is not a
good predictor of eccentricity. Note that manipulability has units of [length]m.

The arithmetic mean is defined as the trace of the matrix divided by its order. This measure
has an exacerbated version of the problem which is evident with the manipulability measure.
For the arithmetic mean, it is possible to have eigenvalues which are equal to zero despite
large values of the measure.

The variance of all of the eigenvalues can be computed as a measure of eccentricity. Small
values correlate with low eccentricity. This measure is similar to the inverse condition num-
ber in that there is minimal information regarding the volume of the hyperellipsoid.

The isotropy measure proposed in [Kim and Khosla, 1991] is the ratio of the geometric to
arithmetic means of the eigenvalues. The key point is that the arithmetic mean is always
greater than or equal to the geometric mean. Equality is satisfied only when all of the eigen-
values are equal, which occurs in a hypersphere. Values of the isotropy measure close to 1
indicate a small hyperellipsoid with low eccentricity. Since both the geometric and arith-
metic means have units of [length]2, the isotropy measure is unitless.

The noise amplification index [Nahvi and Hollerbach, 1996] is the product of the inverse
condition number and the square root of the minimum eigenvalue. The inverse condition
number is an indicator of eccentricity, while the reciprocal of the square root of the mini-
mum eigenvalue is the length of the longest principal axis of the hyperellipsoid. Therefore,
the noise amplification index accounts for both the size and the eccentricity of the hyperel-
lipsoid. Since the noise amplification index is computed from the largest and smallest eigen-
values, it implicitly includes information regarding the remaining eigenvalues (i.e., all
eigenvalues lie between these two). In [Nahvi and Hollerbach, 1996] it is proven that the
noise amplification index provides an upper bound on the amplification of unwanted noise
in residual measurements (e.g., discrete point Data measurement noise and errors in the
Model) to noise in the estimated parameters (e.g., registration pose parameters).
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For the work presented in this dissertation, the noise amplification index (NAI) was used as
a condition measure for the matrix . What follows is a justification of this selection
which parallels a similar presentation in [Nahvi and Hollerbach, 1996].

The justification begins by rewriting Equation 3.9 as:

, (3.20)

in which  is a columnN-vector of the residuals associated with each of the points
. To use notation similar to that in [Nahvi and Hollerbach, 1996], the pose parame-

ters relative to the global minimum pose can be represented as a column 6-vector,  (see
Equation 3.3). Since the matrix  relates  to  for differential transformations, the
following relation holds [Strang, 1980]:

(3.21)

where  and  are the maximum and minimum eigenvalues of , respectively. This
equation can be rearranged into the inequality

, (3.22)

in which the left side places a lower bound on the magnitude of the registration residuals as
a function of the magnitude of the pose parameter vector. This result is fundamental since it
illustrates the need to maximize the minimum eigenvalue, , in constraint analysis. Large
values of  will ensure that when the relative pose between Data and Model, , is per-
turbed from the global minimum, the perturbation will be reflected in the residuals, , a
requirement for accurate shape-based registration.

Maximizing the smallest eigenvalue, , will minimize the maximum length of the uncer-
tainty hyperellipsoid. It is now shown that a second condition suggests the need to minimize
the eccentricity of the hyperellipsoid as well. Assume that there is unwanted noise associ-
ated with the registration residuals, , due to sensing noise in the Data acquisition process
or errors in the surface Model. This noise can be represented as a columnN-vector, ,
which is added to the residual vector, . As a result of this noise, the transformation
parameters output by the registration process, , will also be noisy, and the resulting noise
components can be represented as a column 6-vector, . Given these terms, the following
inequality holds [Strang, 1980],

, (3.23)
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in which the square-root of the ratio of the eigenvalues is the condition number of  (see
Equation 3.13), and the two ratios are relative errors. This inequality places an upper bound
on the relative error introduced in the pose parameters as a result of the relative error due to
the residual noise. For shape-based registration, it is desirable to minimize the effect that the
residual noise, , has upon pose parameter noise, . However, minimizing the condi-
tion number alone will not guarantee that this condition is satisfied. This is because
Equation 3.23 only deals with therelative errors. In registration, it is the absolute error
terms which are relevant (i.e., the ratio  should be small, independent of the
value of ). This problem can be reconciled by substituting the lower bound on
from Equation 3.22 into the inequality of Equation 3.23 resulting in:

(3.24)

which can be simplified to:

(3.25)

in which the ratio containing the eigenvalues is the reciprocal of the noise amplification
index (NAI). This result shows that the NAI is the maximum amplification factor between
noise in the residuals and noise in the pose parameters. Maximizing the NAI will ensure that
the minimum eigenvalue is large (which satisfies the requirement of Equation 3.22), and that
the uncertainty hyperellipsoid is not too eccentric (which satisfies the requirement of
Equation 3.23). For these reasons, the NAI has been selected for use in this dissertation.

Additional details on the NAI, as well as experimental results which compare the NAI to
other criterion measures can be found in [Nahvi and Hollerbach, 1996]. Examples of the use
of the NAI as a scalar measure of conditioning in constraint analysis are presented in this
dissertation beginning in Section 3.4.

3.3.3  Scale Dependence

In the derivation of constraint analysis in Section 3.3.1, an implicit weighting factor deter-
mines the relative importance of rotational versus translational constraint. This weighting
factor is a function of the scale of the surface being analyzed. In this section, a normalization
is described which reduces the dependence of surface size upon constraint analysis. It is no
coincidence that the same problem has been noted in the context of robot dexterity measures
[Doty et al., 1995] [Hollerbach, 1993] [Sugimoto, 1989].
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Figure 3-7 indicates that the rotational component of the sensitivity vector is scale depen-
dent. The magnitude of the translation induced at the point  by a fixed rotation about the
origin is given by . This expression is a function of the distance between the point
and the origin, . Thus, for a fixed rotation, , the induced distance, , scales lin-
early as the surface is scaled about the origin, as illustrated below in Figure 3-9. Case I
shows a planar curve which has undergone a rotation  about the origin.1 After the rota-
tion, the distance between the curve and the point  is , as seen in Equation 3.7. In
Case II, an identical planar curve which has been contracted about the origin has undergone
a rotation about the origin of thesamemagnitude as in Case I. Due to the term  in
Equation 3.7, the resulting induced distance  differs from  by a factor which
is proportional to the ratio of curve sizes. In general, for a fixed rotation about the origin, the
induced distance, , is proportional to the size of the surface, assuming that the sur-
face is scaled about the origin.

Now consider the translational component of the sensitivity vector, which from Figure 3-6 is
seen to be scale independent. From Equation 3.6 recall that:

Since the right side of this equation depends only upon the surface normal, the distance
induced by a translation , is independent of the surface size as illustrated in

1. Planar curves are used for illustrative purposes; however, the same reasoning can be applied to 3-D
surfaces. The magnitudes of the rotations shown in the figure are exaggerated for clarity.
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Figure 3-9: Scale dependence of the rotational component of constraint analysis. The
distance induced at a point by a rotation through a fixed angle is a function
of scale.
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Figure 3-10. In Case I, the large planar curve has been translated by a fixed amount  with
a resulting induced distance, . In Case II, the smaller curve has been translated by
the same amount, , resulting in an induced distance which isidentical to that for Case I.
In contrast to the rotational case, the distance induced by a fixed translation is not propor-
tional to the size of the surface.

If , and  is a fixed surface point not near the origin, consider what happens to

the ratio

(3.26)

as the surface is scaled about its centroid. For very large surfaces , while for very small
surfaces . The condition  will be satisfied only when the surface size is such
that  for the given point. When  then , which has the sat-
isfying interpretation that a translation of unit magnitude or a rotation of unit magnitude will
result in identical induced distances.

Since the results of constraint analysis are intimately related to Equations 3.6 and 3.7 upon
which the above ratio, , is based, the results of constraint analysis are scale dependent as
well. The more general problem is that constraint analysis attempts to treat rotations and
translations in a unified framework, despite different underlying units. In the robot dexterity
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Figure 3-10: Scale independence of the translational component of constraint analysis.
The distance induced at a point by a translation of fixed length is not a
function of scale.
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literature, various types of task-dependent normalization and scaling are proposed to deal
with the scaling problems [Doty et al., 1995] [Hollerbach, 1993] [Sugimoto, 1989]. This
same problem has also been noted in the context of visual tracking [Rehg and Witkin, 1991].
The solution used in this dissertation (which is also task-dependent) is to pre-normalize the
size of surfaces to which constraint analysis is applied, as described below.

The first step in scale normalization is to shift the surface such that the origin is coincident
with the centroid to ensure that scaling occurs about the centroid. Next, the surface is scaled
such that the average distance between the surface and the origin is 1. When the surface is
represented by a triangle mesh containingN vertices, this can be achieved by computing a
scale factor:

(3.27)

where the summation is over the set,V, of all vertices in the mesh. Each vertex is then scaled
by k, so that:

(3.28)

where  are the scaled vertices. By pre-normalizing surface models in this man-

ner, the results of constraint analysis can be made independent of scale. The motivation
behind the average distance of 1 in Equation 3.28 is to equate translational and rotational

units. Recall that the ratio, , in Equation 3.26 will equal 1 only when the surface size is

such that . While this condition cannot be satisfied simultaneously for all surface

points, Equation 3.27 ensures that theaverage distance from the surface to the origin is 1.
Therefore, on average a unit translation will contribute the same to constraint analysis as a
unit rotation. The results of an experiment which validates this normalization approach are
presented in Appendix C. Unless otherwise mentioned, all constraint analysis results pre-
sented in this dissertation include pre-scaling by the method described above.

3.3.4  Coordinate System Dependence

This section shows that there is a dependence between the results of constraint analysis and
the position of the origin of the constraint analysis coordinate system. Judicious selection of
this coordinate system can improve the sensitivity of constraint analysis, and is shown to be
a function of the geometry of the Model.

Figure 3-11 illustrates the effect of changing the origin of the constraint analysis coordinate
system upon a displacement induced at a point on an object’s surface. Rotations through an
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angle, , about two different centers of rotation result in different induced distances
between the point and the surface. This dependence on coordinate system only occurs for
rotations and not for translations.

In the derivation of constraint analysis, it is shown in Equation 3.7 that the distance induced
by a rotation about a given axis between a point and a surface can be expressed as:

(3.29)

where  is the induced distance,  is a point on the surface,  is the unit normal to

the surface evaluated at ,  is the cross-product of the radius vector with the surface

normal, and is a vector with components representing small rotations

about thex, y, andz axes, respectively. Equation 3.29 can be generalized to incorporate the

coordinate system origin,  as

. (3.30)

From this equation, it can be seen that the induced displacement, , is a function
of the distance between the surface point, , and the origin, . Assuming a constant value
of , the displacement  is maximized when the two vectors,
and , are orthogonal and minimized when they are parallel.

θ

Figure 3-11: Coordinate system dependence of the displacement induced at a given point on
a surface by a fixed rotation about the origin (rotations exaggerated for clarity).
Displacement is a function of two factors: the distance between the point,xs,
and the rotation center,xo; and the angle between the vector (xs- xo) and the
surface normal,n, at the point,xs (for differential rotations only).
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Following the constraint analysis derivation of Section 3.3.1, Equation 3.30 can be squared
and summed over multiple surface points to create an energy measure similar to the one
from Equation 3.9:

(3.31)

where  are the individual Data points on the surface and  are the associated surface
normals. In the remainder of this section, it is shown that placing the origin of the constraint
analysis coordinate system, , at a location which is a function of the  and the
results in desirable behavior.

For a given Model and Data set, Equation 3.31 defines an energy surface which is a function
of the rotation 3-vector, , centered about the registration global minimum (i.e., ).
This energy surface is illustrated schematically in Figure 3-12, in which the y-axis repre-
sents the energy, and the x-axis represents the 3-dimensional rotation space. The global min-
imum corresponds to the case in which the Model and Data are perfectly aligned.

From Equation 3.31 it can be seen that varying the location of  will affect the shape of the
energy surface, and in particular will change the slope of the surface in the vicinity of the
global minimum. To derive a mathematical measure of this slope, it is necessary to compute
the second derivative ofE with respect to  (i.e., a Hessian matrix). As a first step, the gra-
dient ofE can be computed from Equation 3.31 as

(3.32)

in which  is a row 3-vector. The Hessian can then be computed by differentiating
Equation 3.32 with respect to  resulting in
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Figure 3-12: Schematic illustration of the energy surface as a function of the rotation
3-vector, .θ
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(3.33)

which is a 3x3 real symmetric matrix. The eigenvalues of this matrix contain information
about the slope of the energy surface in the region of the global minimum. A large eigen-
value is associated with a steep slope of the energy surface in the direction of its correspond-
ing eigenvector. Similarly, a small eigenvalue is associated with a shallow slope in the
direction of its corresponding eigenvector.

Recall from Figure 3-1 that constraint analysis provides a criterion measure to constraint
synthesis for the purpose of Intelligent Data Selection (IDS). The goal of IDS is to select
configurations of discrete point Data sets which result in thelargest possible changes in
energy as a result of arbitrary, small transformations. Given a choice between an energy sur-
face which is locally steep near the global minimum (i.e., has a large maximum eigenvalue
of the Hessian matrix of Equation 3.33) and one which is locally shallow (i.e., has a small
maximum eigenvalue), for the purposes of constraint analysis, it is always desirable to
choose the one which is locallyshallow.This may seem counterintuitive; however, selection
of  such that the energy surface is shallow will reflect the conditions under which a given
Data set provides the least geometric constraint. This choice is desirable since constraint
analysis should provide a criterion measure under the conditions for which a Data set will
perform the worst (i.e., result in the least geometric constraint and largest registration error).

Based upon the above argument, one approach for selecting a coordinate system origin, ,
is to position it such that the smallest eigenvalue of the matrix in Equation 3.33 is mini-
mized. This can be achieved by starting with the following observation. Given ank x k, real,
symmetric matrix,A, and an arbitraryk-vector,X, the following inequality holds:

(3.34)

where  is the minimum eigenvalue of the matrixA. In other words, the quadratic form
 places an upper bound on the smallest eigenvalue ofA, . Assuming that

, minimizing the left side of Equation 3.34 will minimize an upper bound on the
minimum eigenvalue, . Substituting the Hessian matrix of Equation 3.33 forA in
Equation 3.34 results in the expression

. (3.35)

Since the two inner product terms in this expression are scalars, the left side of this equation
can be rewritten as
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. (3.36)

Applying the Schwarz inequality to this expression results in

(3.37)

where the fact that  has been used to eliminate this term from the right side. The
cross product term can be represented using the following skew-symmetric matrix

(3.38)

where  are the elements of theith normal vector, . Therefore, the right side of
Equation 3.37 can be rewritten as

. (3.39)

This expression provides an upper bound on the left side of Equation 3.35, and therefore, an
upper bound on the minimum eigenvalue, . Therefore, the goal is to minimize
Equation 3.39 via judicious selection of , which can be done using a least squares formu-
lation. The value of  which minimizes Equation 3.39 in the least squares sense is identical
to the least squares solution of

(3.40)

which is of the form . The least squares solution can be computed as

. (3.41)

Applying Equation 3.41 to Equation 3.40, and expressing the inner products as summations
results in
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ñ2

:

ñk
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. (3.42)

This result means that locating the origin of the constraint analysis coordinate system, ,
according to Equation 3.42 will tend to minimize the smallest eigenvalue of the Hessian
matrix of Equation 3.33, and therefore will result in the shallowest slope of the correspond-
ing energy surface near the global minimum.

This result is intuitively satisfying. Minimizing the right side of Equation 3.37 by setting
 tends to minimize the angular differences between corresponding pairs of vectors
 and , since the cross product terms will be smallest when these vector pairs are

parallel. By positioning  at , the surface will appear as “spherical” as possible from the
point of view of the origin. Due to the  term in the cross product, points which are
farther from the origin will be more strongly weighted when evaluating the “spherical” crite-
rion. In the case when the surface is a sphere,  will correspond to the sphere’s centroid.
Referring to Figure 3-7, it can be seen that choosing the origin according to Equation 3.42
will minimize the change in energy,E, as a function of small, arbitrary rotations about the
global minimum. Thus, the solution of Equation 3.42 satisfies the goal of placing the coordi-
nate system origin in the “worst” possible location.1

3.4  Experimental Results

This section contains a number of experimental results which demonstrate the utility of con-
straint analysis. In Section 3.4.1, two simple examples of the intermediate and final results
of constraint analysis are presented for a torus and helicoid. In order to relate the measure
computed by constraint analysis to registration accuracy, it is necessary to perform large
numbers of registration experiments. Section 3.4.2 outlines a framework for performing reg-
istration experiments which is used throughout the remainder of the dissertation.
Section 3.4.3 presents experimental results which demonstrate the effectiveness of con-
straint analysis as a predictor of relative registration accuracy. These experiments are per-
formed using a cube, a slotted cylinder, a femur, a pelvis and a face. Section 3.4.4 presents
the results of an experiment which demonstrates the relation between Data noise and con-
straint analysis.

1.  The result of Equation 3.42 was not discovered until most of the experiments for this dissertation
were completed. Therefore, in the experimental results presented throughout the dissertation, it was

the Model centroid, and not , which was used as the origin of the constraint analysis coordinate

system. In practice, this substitution had minimal effect upon the results, since the distances between

the  values and the centroids were small for the Models used in the experiments.
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3.4.1  Simple Examples of Constraint Analysis

In Section 3.3.1, the sensitivity gradient, , is defined in Equation 3.4. This 6 dimen-
sional vector represents the rate of change of point-to-surface distance between a point and
an underlying surface as the point is perturbed by a small transformation. Figure 3-13 dis-
plays this gradient vector graphically over the surface of a torus. Before computation, the
torus was scaled using Equation 3.27, and the origin was placed at the centroid of the verti-
ces of the triangle mesh as described in the footnote on page 69. Each surface in the figure
represents a different element of  corresponding to the 6 parameters of the transfor-
mation. The  vector was evaluated for every vertex of the triangle mesh representing
the torus. Intensity encodes the rate of change of point-to-surface distance induced by the
indicated transformation at a particular point; brighter regions indicate higher rates of
change. For example, the surface labeled  corresponds to the first element of

, the component which measures sensitivity to a translation along the x-axis. For the
translational components, surface points at which the induced motion is parallel to the sur-
face normal result in a high rate of change, while points at which the induced motion is per-
pendicular to the surface normal result in a low rate of change. For rotational components,
the rate of change at a surface point is related to the direction of the surface normal with
respect to the axis of rotation (AOR) and the distance of the point from the AOR. For exam-
ple, consider the surface labeled  corresponding to a rotation about the y-axis. Sur-
face points near the axis of rotation have a smaller rate of change than points distant from it.
However, even points which are distant from the rotational axis may have small rates of
change if the induced motion at a point is perpendicular to the direction of the surface nor-
mal at the point. An especially interesting case is the surface labeled , rotation
about the x-axis. Since the torus is symmetric about this axis, the rate of change should be
zero everywhere. In practice, the small intensity variations seen in the figure are due to sur-
face discretization errors which cause the computed surface normals to differ from those of
an ideal torus.

Given the  vectors displayed in Figure 3-13, the eigenvalues and eigenvectors of
Equation 3.11 can be computed. Table 3-2 presents the analysis results for the case in which
all vertices of the triangle mesh surface model of the torus are included in the setP of
Equation 3.9. The magnitude of each eigenvalue is shown in the horizontal bar graph on the
left of the table. Each row of the table corresponds to an eigenvalue - eigenvector pair. The
eigenvectors corresponding to the smallest and largest eigenvalues represent the transforma-
tions of maximum freedom and constraint, respectively. In this example, the transformation
of maximum freedom corresponds to a rotation about the x-axis, which is the axis of rota-
tional symmetry noted above. Theoretically, the smallest eigenvalue in this example should
have a magnitude of zero; however, a small non-zero value is present due to discretization
errors introduced by the triangle mesh. These discretization errors result in computed sur-
face normals and radius vectors which differ from those of an ideal torus, thus causing devi-
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ations from the expected result. From Table 3-2, it can be seen that the transformation of
maximum constraint corresponds to a translation along the x-axis. This agrees with the intu-
ition from Figure 3-13 that the  surface has the largest bright region. The remain-
ing 4 eigenvectors in the table complete a basis set which spans the space of differential
transformations. Due to the symmetry of the torus, these 4 eigenvectors are only unique to a
rotation about the x-axis. For this example, constraint analysis correctly determines that it is
impossible to localize the torus rotationally about the x-axis.

In general, the eigenvalues resulting from constraint analysis are not dependent upon the
orientation of the constraint analysis coordinate system. For example, the coordinate system
shown in Figure 3-13 can be arbitrarily rotated about its origin with no change in the eigen-
values of Table 3-2 (and thus no change in the criterion function). The eigenvectors do vary
as a function of coordinate system orientation, but remain fixed relative to the object itself
(disregarding symmetries).Translations of the reference coordinate system will affect the
results of constraint analysis for the reasons outlined in Section 3.3.4. As demonstrated in
that section, placing the coordinate system origin at the location specified by Equation 3.42
will result in maximal sensitivity of constraint analysis. Nevertheless, it has been experi-
mentally verified that coordinate system translations with magnitudes similar to the object
size can be tolerated by constraint analysis. In particular, the singularities identified by con-
straint analysis are invariant to such small translational changes in coordinate system.

The results of constraint analysis can be computed at very high speeds. Computation is per-
formed in three steps: calculation of the  matrices of Equation 3.8 for each vertex in
the Model; computation of the matrix  of Equation 3.9 over all vertices in the current
Data configuration (i.e., the setP); and computation of the principal components as in
Equation 3.10. Once the first step has been performed for a given Model, only the second
and third steps must be computed for each new configuration. For the constraint analysis
results of Table 3-2, computation times were roughly 20 ms for the first step, and 10 ms for

∂D ∂tx⁄

Table 3-2:  Constraint analysis results for a torus.

Eigenvalue Index
Eigenvectors

Translation Elements Rotation Elements

1 0.00 0.00 0.00 1.00 0.00 0.00

2 0.01 0.02 -0.08 0.00 0.61 0.78

3 0.00 -0.01 -0.12 0.00 0.78 -0.62

4 0.00 -0.72 0.68 0.00 0.10 0.01

5 0.00 0.69 0.71 0.00 0.10 -0.03

6 1.00 0.00 0.00 0.00 0.00 -0.01
1500.0 1000.0 500.0 0.0

M xs( )
ΨP
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the second and third steps on an SGI Indigo 2 with a 200 MHz IP22 processor. High speed
computation of constraint analysis is important since the constraint synthesis algorithm
described in Chapter 4 requires a large number of constraint analysis evaluations (e.g., 106).

A second example of constraint analysis is demonstrated for the helicoidal surface shown in
Figure 3-14. All of the vertices of the triangle mesh, except for those near the ends of the
helicoid, are included in the setP for the analysis. The resulting eigenvalues and eigenvec-
tors are presented in Table 3-3. In this example, the transformation of maximum freedom
corresponds to an invariant twist about the z-axis. This twist corresponds to a translation
along the z-axis, coupled with a rotation about the z-axis. Thepitch of the helicoid can be
recovered from this eigenvector as the ratio of translation to rotation, in this case 0.1. The
transformation of maximum constraint is parallel to the z-axis. Once again, constraint analy-
sis correctly determines that it is impossible to localize the pose of the helicoid along the
identified twist.

3.4.2  Framework for Registration Experiments

Throughout the remainder of the dissertation, experimental results from large numbers of
controlled registration trials are reported. These experiments are used to demonstrate the
relation between constraint analysis and registration, and to demonstrate the efficacy of con-
straint synthesis. This section describes the framework used in these registration experi-
ments.

A registration experiment is defined as a set of registration trials. Each registration trial is a
single execution of the speed-enhanced iterative closest point (EICP) algorithm described in
Chapter 2. For each trial, all of the EICP parameter values described in Table 2-1 must be

Figure 3-14: Surface model of a helicoid.
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specified, and these parameters remain constant for all trials within an experiment. Rather
than reporting these parameters for every experiment, a set of default EICP parameters is
presented in Table 3-4. EICP parameters will only be reported when the values differ from
the defaults specified in the table.

The flow of a single registration experiment is outlined in Figure 3-15. The rectangles in the
flowchart represent processing operations, and the ovals represent experiment parameters.
An experiment begins by reading a description of the Model from a file, and initializing the
experimental parameters which are also read from a file. Within an experiment, there are
three possible methods of fixed-size discrete point Data set creation: random generation by

Table 3-3:  Constraint analysis results for a helicoid.

Eigenvalue Index
Eigenvectors

Translation Elements Rotation Elements

1 0.00 -0.01 0.10 0.00 0.00 1.00

2 -0.48 -0.14 0.03 0.79 -0.36 -0.01

3 -0.05 -0.65 0.00 0.19 0.73 0.00

4 0.78 0.23 0.03 0.56 0.11 0.00

5 0.40 -0.71 0.03 -0.14 -0.57 -0.01

6 -0.02 0.02 0.99 -0.03 0.02 -0.10

1500.0 1000.0 500.0 0.0

Table 3-4:  Default EICP parameters for registration experiments. Only deviations from
these parameters are reported in subsequent experiments.

Parameter Description / Value

Termination criterion Which ICP stopping condition is used?
1) change in relative transformation magnitude

Termination thresholds:
εRr, εTr

εRr = 10-4, εTr = 10-4

kmax Maximum EICP iteration count:kmax = 500

Minima suppression Disabled

Outlier elimination Disabled
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randomly selecting vertices of the triangle mesh surface Model; optimal selection via the
constraint synthesis methods of Chapter 4; and manual-selection by a human.

To evaluate the performance of a given Data set for use in registration, it is necessary to per-
form many registration trials beginning from different initial starting poses. Initial poses are
randomly generated using two parameters: the maximum translation distance,τimax, and the
maximum rotation angle,θimax. In order to ensure a fair comparison between Data sets, the
same random initial poses are repeated for each set. A random translation is generated as
follows:

(3.43)

where (tx, ty, tz) are the generated translation parameters, andran(x, y) is a function which
returns a uniformly distributed random number in the range [x, y]. The effect of normalizing
by the term  is to ensure that the maximum possible magnitude of the resulting
translation is .

A random rotation can be generated in a similar manner by representing the rotation in the
angle-axis representation discussed in Section 2.5.1. The random angle is generated as:

(3.44)

Generating a uniformly distributed random vector on a unit sphere (or hemisphere in this
case) requires several steps. First, a uniformly distributed random vector is generated using
parameters specified by the bounding box of a unit hemisphere centered at the origin:

(3.45)

where  are elements of a random vector, . If the magnitude of this vector,
, is greater than 1, then the vector lies outside of the hemisphere and is discarded. Oth-

erwise, the vector is projected onto the unit hemisphere:
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(3.46)

where  are elements of the transformed unit vector after normalization by .

The reason for generating a vector on the unit hemisphere rather than the unit sphere is that
in angle-axis representation, there is an equivalence between (k, -θ) and (-k, θ). Therefore,
sinceθ is generated in the range [−θimax,θimax], it is only necessary to generate positive val-

ues ofk (i.e., values on a unit hemisphere). It has been empirically verified that this simple
procedure generates uniformly distributed vectors on the unit hemisphere.

The next step in the registration experiment flow of Figure 3-15 is corruption of the Data,
and (less frequently) the Model with random Gaussian noise. When physically measured
Data points are used in an experiment, it is not necessary to corrupt the Data with noise;
however, when the Data sets are created, corruption with noise results in Data points which
more closely resemble real measurements. Given a 3-D point, , the problem is to
generate a random Gaussian noise vector such that the magnitude of this random vector has
a specified expected value. Noise is added to each point as:

(3.47)

where  are the elements of the added noise vector, and the magnitude of this vector
is given by:

(3.48)

The goal is to generate random Gaussian noise vectors such that:

(3.49)

whereE[ ] is the expected value operator and  is a constant specified by the experimenter.

It is shown in [Papoulis, 1984] that if  are independent Gaussian random variables

with zero mean and variance , then  has a Maxwell distribution and:
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(3.50)

Therefore, the standard deviation of the random Gaussian noise variables can be expressed
in terms of the expected vector magnitude, , as:

(3.51)

The desired behavior can be attained by generating the random variables  from a Gaussian
distribution with zero mean and standard deviation . When generating noise in this man-
ner,maximum values for the noise vector magnitude tend to be roughly a factor of 3 greater
than the expected magnitude, .

Once noise has been added, a registration trial is performed using the specified EICP param-
eters. At the completion of the trial, all of the registration accuracy measures and transfor-
mations described in Section 2.5.1 are recorded. The process of generating random initial
poses, adding noise, performing registration, and recording results is repeated until the
desired number of poses is reached. A new Data set is then read from a file or created, and
the entire process repeats until the desired number of Data sets have been processed. Finally,
statistics are calculated for all trials within the experiment and the results are saved to a file
for subsequent analysis. A complete list of the experimental parameters discussed in this
section is presented in Table 3-5 for reference.

3.4.3  Relation of Constraint Analysis to Registration

In Section 3.1 above, registration problems using a cube and slotted cylinder are presented
to motivate the need for constraint analysis. This section uses these and other objects to
demonstrate the utility of constraint analysis as a predictor of relative registration accuracy.

Cube Examples

In Figure 3-3 on page 47, there are three Data configurations shown for registering a cube.
Configuration C1 is a dense sampling of 25 points per face, and configurations C2 and C3
are samplings of 4 points per face with the points in C2 near the corners and the points in C3
near the centers. Tables 3-6, 3-7 and 3-8 show the eigenvalues and eigenvectors resulting
from constraint analysis for these configurations. The first observation from these results is
that the eigenvectors can be divided into two sets: those containing only translation compo-
nents and those containing only rotation components. This behavior does not occur for arbi-
trarily-shaped objects or random Data configurations, but appears in this case due to the
Data configuration symmetry with respect to the cube. A second observation is that eigen-
value magnitudes are larger for configuration C1 than for the other two configurations since
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the eigenvalues are not normalized for the total number of Data points. A third observation
is that the results of configurations C2 and C3 only differ in the eigenvalue magnitudes of
the rotation components; C2 is more sensitive than C3 to rotations, while both configura-
tions are equally sensitive to translations. This observation is verified in the experimental
registration results below.

Using the framework from the previous section, a registration experiment was performed
with the three Data configurations. The EICP and registration experiment parameters are
shown in Table 3-9. In particular, note that local minima suppression (described in
Section 2.3) is enabled. In these experiments, the length of an edge of the cube is 50.0 mm,
so the expected value of the noise magnitude is 2.5% of the length of an edge, and the max-
imum noise magnitude is roughly 7.5% of this length.

The results of this experiment are presented in Figure 3-16. The three graphs correspond to
three different measures of registration accuracy: the maximum correspondence error
(MCE); the translation error norm, ; and the rotation error norm,  (see
Section 2.5.1 for a discussion of these accuracy measures). In each case, the accuracy mea-
sure is plotted versus the noise amplification index (NAI) criterion measure described in
Section 3.3.2. Recall that the NAI is computed as the ratio of the smallest eigenvalue to the
square-root of the largest eigenvalue, and provides a scalar measure of localization sensitiv-
ity for a given Model and Data set. Each datum in the plot consists of a circle, an error bar,

Table 3-5:  Registration experiment parameters.

Parameter Description

Data source Method of Data creation:
1) Randomly generated.
2) Synthesized via constraint synthesis.
3) Manually-selected.

Data set size,N Number of discrete points in the Data set.

τimax Maximum translation distance used to generate random initial
poses.

θimax Maximum rotation angle used to generate random initial poses.

Noise state Specifies whether noise is enabled or disabled.

Expected value of noise vector magnitude.

pose_count Number of poses per Data set.

set_count Number of Data sets per experiment.

µ∆

Et Eω
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Table 3-6:  Constraint analysis results for cube with Data configuration C1

Eigenvalue Index
Eigenvectors

Translation Elements Rotation Elements

1 0.00 0.00 0.00 -0.02 -0.01 1.00

2 0.00 0.00 0.00 1.00 -0.02 0.02

3 0.00 0.00 0.00 0.02 1.00 0.01

4 0.50 -0.50 -0.71 0.00 0.00 0.00

5 0.15 0.85 -0.50 0.00 0.00 0.00

6 0.85 0.15 0.50 0.00 0.00 0.00

Table 3-7:  Constraint analysis results for cube with Data configuration C2

Eigenvalue Index
Eigenvectors

Translation Elements Rotation Elements

1 0.00 0.00 0.00 1.00 0.00 0.00

2 0.00 0.00 0.00 0.00 1.00 0.00

3 0.00 0.00 0.00 0.00 0.00 1.00

4 1.00 0.00 0.00 0.00 0.00 0.00

5 0.00 1.00 0.00 0.00 0.00 0.00

6 0.00 0.00 1.00 0.00 0.00 0.00

Table 3-8:  Constraint analysis results for cube with Data configuration C3

Eigenvalue Index
Eigenvectors

Translation Elements Rotation Elements

1 0.00 0.00 0.00 1.00 0.00 0.00

2 0.00 0.00 0.00 0.00 1.00 0.00

3 0.00 0.00 0.00 0.00 0.00 1.00

4 1.00 0.00 0.00 0.00 0.00 0.00

5 0.00 1.00 0.00 0.00 0.00 0.00

6 0.00 0.00 1.00 0.00 0.00 0.00

0.015.030.045.060.0

10.0 8.0 6.0 4.0 2.0 0.0

10.0 8.0 6.0 4.0 2.0 0.0
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and two triangles. The circle corresponds to the mean of the associated accuracy measure
computed over the total number of poses (i.e., 500) for the given Data set. The error bars
represent the standard deviation, and the upward and downward facing triangles correspond
to the minimum and maximum values of the accuracy measure, respectively. The graph of
MCE provides an indication of the combined effect of rotation and translation error. It is
apparent that configuration C1, which contains 150 Data points, has the smallest mean,
maximum and minimum errors, as well as the smallest standard deviation. Configuration
C2, which has roughly a factor of six fewer Data points than configuration C1, exhibits com-
parable registration accuracy, while the accuracy results for configuration C3 are relatively
poor. An important observation from these results is that constraint analysis provides a good
predictor of the relative registration accuracy of the three Data configurations; larger values
of the NAI result in smaller registration errors. Note that constraint analysis provides no
explicit measure of theabsolute error which can be expected from registration. Absolute
registration error is a function of factors which are not included in constraint analysis,
including noise in the Data and Model. Therefore, the value of constraint analysis is derived
from its ability to estimate therelative registration accuracy resulting from multiple Data
configurations.

The results of Figure 3-16 demonstrate that for the cube example, rotation errors contribute
more than translation errors to the overall error measured by the MCE. While this effect is

Table 3-9:  Parameters of cube registration experiment #1.

Parameter Value

Data source Read from file

τimax 5.0 mm

θimax 10 deg

Noise state Enabled

1.25 mm

pose_count 500

set_count 3

Minima suppression Enabled

τp-max 2.5 mm

θp-max 5.0 deg

Ip 7 iterations

µ∆
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Figure 3-16: Results of cube registration experiment #1. Maximum correspondence error,
translation error norm, and rotation error norm plotted versus the NAI for
three Data configurations on a cube.
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not predicted by the NAI values for the three configurations, it can be explained with refer-
ence to the eigenvalues of Tables 3-6, 3-7 and 3-8. From these tables, note that the transla-
tional eigenvalues for configurations C2 and C3 are identical, and the translation errors in
Figure 3-16 for these two configurations are also identical. In contrast, the rotational eigen-
values for configuration C2 are larger than those for C3, and as expected, the rotation errors
for C2 are smaller than those for C3. It is difficult to directly compare the eigenvalues for
configuration C1 with the other two configurations since they were derived using different
numbers of Data points. However, the larger eigenvalue magnitudes for configuration C1
and corresponding larger NAI, correctly predict the improved registration accuracy.

Recall from Section 2.5.1 that the use of correspondence error measures such as the maxi-
mum correspondence error (MCE) and the average correspondence error (ACE) requires the
availability of a ground-truth registration transformation. Residual-based error measures
such as the average residual error (ARE) described in Section 2.5.1, do not require ground-
truth. It is interesting to compare plots ofACE andARE for the above cube registration
experiments. Figure 3-17 contains plots ofACE andARE versus the NAI for the three cube
Data configurations. As expected, the absolute error magnitudes in the plots differ since the
ACE is computed using corresponding points, and theARE is computed using closest points.
Despite the magnitude differences, the similarity in general features is apparent. This simi-
larity partially explains why the ICP algorithm converges; minimizing theARE in the regis-
tration process also minimizes theACE. If this condition were not satisfied for a given
object, ICP would not converge to the global minimum. A convergence theorem for ICP
which depends upon this observation appears in [Besl and McKay, 1992].

Slotted Cylinder Examples

This section presents constraint analysis and registration experiment results for a slotted cyl-
inder using the two Data configurations, each containing 10 points, shown in Figure 3-18.
The configuration on the left, S1, does not contain any points within the central slot or in the
two end regions, while the configuration on the right, S2, contains points within both of
these regions.

Constraint analysis results for the two slotted cylinder Data configurations are presented in
Tables 3-10 and 3-11. Configuration S1 contains two singularities corresponding to transla-
tion along the central axis and rotation about it as demonstrated by the two zero eigenvalues
in Table 3-10. As seen in Table 3-11, these singularities are not present for configuration S2
since Data are available in the end regions and within the slot. Note that the eigenvectors
cannot be decoupled into pure rotational and translational components in this example.

Registration experiments were performed for the slotted cylinder with each Data configura-
tion using the parameters specified in Table 3-12. The length of the cylinder’s axis is 40 mm
and the radius is 10 mm, so the expected magnitude of the noise is 2.0% of the radius. A plot
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Figure 3-17: Results of cube registration experiment #1: Average correspondence error
and average residual error plotted versus the NAI for three Data
configurations on a cube.
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Table 3-10:  Constraint analysis results for the slotted cylinder Data configuration S1.

Eigenvalue Index
Eigenvectors

Translation Elements Rotation Elements

1 0.00 0.00 1.00 0.00 0.00 0.00

2 0.00 -0.01 0.00 -0.02 0.00 1.00

3 0.29 -0.27 0.00 0.56 0.73 0.01

4 0.64 -0.33 0.00 0.31 -0.62 0.00

5 0.61 -0.08 0.00 -0.74 0.29 -0.01

6 0.38 0.90 0.00 0.22 0.02 0.02

Table 3-11:  Constraint analysis results for the slotted cylinder Data configuration S2.

Eigenvalue Index
Eigenvectors

Translation Elements Rotation Elements

1 0.18 -0.31 -0.01 -0.02 0.04 0.93

2 0.09 -0.12 0.35 0.76 -0.53 -0.02

3 -0.07 0.14 0.90 -0.39 0.00 0.07

4 0.08 -0.42 0.24 0.35 0.78 -0.18

5 0.82 0.54 0.02 0.09 0.17 0.01

6 0.52 -0.64 0.00 -0.38 -0.30 -0.30

0.02.04.06.08.010.0

0.02.04.06.08.010.0
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of MCE versus NAI for this experiment is shown in Figure 3-19. Due to the singularities in
configuration S1, the value of the NAI is zero for this configuration. From the plot it is
apparent that the mean, standard deviation, minimum and maximum values of the MCE are
smaller for configuration S2 than S1, as predicted by the NAI. Since the NAI for configura-
tion S1 is zero, the resulting MCE values are very dependent upon the particular initial poses
used in the registration trials. Initial poses which displace the Data in the direction of a sin-
gularity would result in worse MCE values than initial poses which do not displace the Data
in these directions. Alternate measures of registration error, the individual components of

Figure 3-18: Slotted cylinder with 2 Data configurations, each with a total of ten points.

Configuration S1 Configuration S2

z-axis z-axis

Table 3-12:  Parameters of the slotted cylinder
registration experiment #1

Parameter Value

Data source Read from file

Data set size,N 10

τimax 2.0 mm

θimax 5 deg

Noise state Enabled

0.2 mm

pose_count 500

set_count 2

Minima suppression Disabled

µ∆
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the registration error transformation of Figure 2-8, are plotted in Figure 3-20. From these
plots, it is apparent that the registration inaccuracies resulting from configuration S1 are due
to translations and rotations about the z-axis of the cylinder as expected from the results of
constraint analysis for this shape.

Femur, Pelvis and Venus Examples

Three additional demonstrations of the relation between constraint analysis and registration
accuracy are presented for a human femur, a human pelvis, and a bust of the goddess Venus,
all of which are shown in Figure 3-21. The Femur and Pelvis Models were constructed from
CT images by extracting contours of the bones and then linking these contours into triangle
mesh surfaces using techniques described in [Geiger, 1993]. The Venus Model was created
from multiple range data views using a technique based on deformable surfaces [Delingette
et al., 1992]. The number of vertices in each of the models is 4527 for the Femur, 2375 for
the Pelvis, and 2432 for the Venus.

Registration experiments were performed for each of the Models using the parameters spec-
ified in Table 3-13. Each registration experiment was performed using 6 Data configurations
containing 20 points each. Five of these configurations were randomly generated, and one
was automatically synthesized to maximize the NAI using methods described in detail in
Chapter 4. The maximum initial pose misalignments, 20.0 mm and 10 degrees, were based
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Figure 3-19: Results of the slotted cylinder registration experiment #1. Maximum
correspondence error plotted versus the NAI for two Data configurations on
the slotted cylinder.
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Figure 3-20: Results of slotted cylinder registration experiment #1. Individual translation
and rotation error components plotted versus the NAI for two Data
configurations on the slotted cylinder.
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Figure 3-21: Surface Models of a human femur, a human hemi-pelvis and a bust of the
goddess Venus, each superimposed with 20 randomly selected Data points.

Femur:

Pelvis:

Venus:
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on empirically derived estimates of the accuracy of anatomical landmark-based correspond-
ing point registration (see Figure 2-3). The expected noise magnitude of 1.0 mm is a very
conservative estimate of expected measurement noise from the optical digitizing system
used to collect Data in subsequent experiments. Local minima suppression was always
enabled for these experiments.

The results of these experiments are reported in Figure 3-22 as graphs of NAI versus MCE.
The general trend between NAI and registration error is similar to the relation observed for
the cube and the slotted cylinder; smaller registration errors are generally associated with
larger values of the NAI. For each Model, the 5 randomly generated Data configurations all
have smaller values of the NAI than the single synthesized configuration. It is important to
note that the NAI provides an estimate ofworst caseMCE value for a given configuration.
For example, the minimum MCE values for the random Data configurations are smaller than
the mean MCE values for the synthesized configurations. Due to variations in initial pose
and added noise, it is possible for a Data configuration with a small NAI value to have a
lower MCE value than a configuration with a large NAI value in a given registration trial.
The utility of constraint analysis is due to the relation between NAI and the maximum and
mean MCE values over multiple registration trials for a given Data configuration. These
relations are well illustrated in the Pelvis graph in which mean and maximum MCE are

Table 3-13:  Parameters for Femur, Pelvis and Venus
registration experiments #1.

Parameter Value

Data source Random & File

Data set size,N 20

τimax 20.0 mm

θimax 10 deg

Noise state Enabled

1.0 mm

pose_count 500

set_count 5 random, 1 file

Minima suppression Enabled

τp-max 10.0 mm

θp-max 8.0 deg

Ip 6 iterations

µ∆
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Figure 3-22: Results of Femur, Pelvis and Venus registration experiments #1. MCE plotted
versus the NAI for five random Data configurations and one synthesized Data
configuration. Note the different scales along the y-axes. Large triangles at the
upper borders indicate data which would lie off the graph (y-value adjacent).
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almost monotonically decreasing functions of NAI. Additional results which demonstrate
the relation between maximum MCE and NAI are presented below.

In the experiments of Figure 3-22, several Data configurations resulted in very large maxi-
mum MCE values due to registration trials which converged to local minima in the registra-
tion pose space. This is true despite the use of local minima suppression. As suggested in
Section 2.3, manual verification may be required in critical applications to identify such reg-
istration local minima. In the graphs of Figure 3-22, the maximum values of MCE corre-
sponding to some of these local minima are not drawn to scale along the y-axes, but rather
are indicated by the large downward facing triangles with adjacent numbers indicating the
values. Two additional registration local minima are apparent for the Femur, both with NAI
values near 0.25. It is important to note that the relation between NAI and maximum MCE
doesnot hold for registration trials which have converged to local minima. Constraint analy-
sis is formulated using a local approximation of the registration cost function which only
holds in the vicinity of the registration global minimum. When registration converges to a
local minimum, no relation between the NAI and registration error is expected.

The distinction between poor registration accuracy due to local minima in the registration
pose space and poor registration accuracy due to poor geometric constraint is a subtle yet
important difference. It is possible for a Data configuration with a large NAI value to con-
verge to a local minimum, and for a Data configuration with a small NAI value to converge
to the global minimum with poor accuracy due to poor constraint. Both are undesirable situ-
ations resulting in poor registration accuracy; however, the mechanisms which cause these
results are quite different. The former situation must be addressed via methods for avoiding
local minima in the registration pose space, while the latter can be addressed via intelligent
selection of registration Data.

To better demonstrate the relation between MCE and NAI, an additional set of experiments
was performed using the Femur, Pelvis and Venus models. For these experiments, 1000 con-
figurations were generated randomly, and the number of registration trials per configuration
was reduced to 3, as seen in Table 3-14. The results of these experiments are presented in the
scatter plots of Figure 3-23 which graph the NAI versus the maximum value of MCE
achieved over the 3 registration trials. To eliminate the effects of registration local minima in
these graphs, all Data configurations with maximum MCE values greater than 10 mm were
eliminated. The total numbers of configurations eliminated out of 1000 were 22 for the
Femur, 8 for the Pelvis and 1 for the Venus. From the figure, the relation between registra-
tion error and constraint analysis is clear; the NAI places an upper bound on registration
error as indicated by the hand-drawn upper bound curves in each graph. For each Model, the
upper bound on error falls off sharply with increasing NAI.
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In the Pelvis Model graph of Figure 3-23, a single outlier is apparent with an NAI value of
roughly 0.8. This outlier is caused by changes to the NAI value resulting from the added
sensor noise. With the addition of noise, the points within a Data configuration will be per-
turbed from their nominal locations. Due to this perturbation, the surface normals and radius
vectors used to compute the NAI may change (see Equation 3.4). The termideal NAI will
be used to refer to the NAI computed from the unperturbed, nominal Data points. The term
effectiveNAI will be used to refer to the NAI computed from the perturbed, noisy Data
points. The effective NAI can be computed from Equation 3.4 using the Model points which
are closest to the actual registration Data points at the termination of the registration pro-
cess. Differences between ideal and effective NAI values result not only from sensor noise,
but also from uncertainty in the Data collection process of Figure 3-1. This uncertainty may
result in discrepancies between the locations of the desired points (i.e., from the Data collec-
tion plan) and locations of the points actually collected. In order to demonstrate the useful-
ness of the effective NAI, the results of Figure 3-23 are re-plotted in Figure 3-24 using this
measure. Note that the upper bound curves are much steeper and have no outliers when the
effective NAI is used. Complete discussions of Data collection uncertainty and the effective
NAI appear in Chapter 4.

Table 3-14:  Parameters for Femur, Pelvis and Venus
registration experiments #2.

Parameter Value

Data source Random

Data set size,N 20

τimax 20.0 mm

θimax 10 deg

Noise state Enabled

1.0 mm

pose_count 3

set_count 1000

Minima suppression Enabled

τp-max 10.0 mm

θp-max 8.0 deg

Ip 6 iterations

µ∆



Chapter 3. Constraint Analysis

94

Figure 3-23: Results of Femur, Pelvis and Venus registration experiments #2. Maximum
MCE plotted versus theideal NAI for 1000 random Data configurations. Upper
bound curves drawn by hand. Note the different scales along the x- and y-axes.
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Figure 3-24: Results of Femur, Pelvis and Venus registration experiments #2. Maximum
MCE plotted versuseffectiveNAI for 1000 random Data configurations. Upper
bound curves drawn by hand. Note the different scales along the x- and y-axes.

Pelvis:

Venus:

Femur:

0.0 0.2 0.4 0.6 0.8 1.0
0.0

2.0

4.0

6.0

M
ax

. C
or

re
s.

 E
rr

or
 (

m
m

) 
(M

ax
)

Noise Amplification Index

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Noise Amplification Index

0.0

2.0

4.0

6.0

8.0

M
ax

. C
or

re
s.

 E
rr

or
 (

m
m

) 
(M

ax
)

0.0 0.1 0.2 0.3 0.4
Noise Amplification Index

0.0

2.0

4.0

6.0

8.0

10.0

M
ax

. C
or

re
s.

 E
rr

or
 (

m
m

) 
(M

ax
)



Chapter 3. Constraint Analysis

96

The results obtained in the Femur, Pelvis and Venus experiments, and in particular the rela-
tion between maximum MCE and NAI have a resemblance to results reported previously by
other researchers. In the area of optimal pose selection for kinematic calibration of robots,
several papers report results which are quite similar to those shown in Figures 3-23, 3-23
and 3-24 [Borm and Menq, 1991] [Nahvi and Hollerbach, 1996]. These papers demonstrate
a strong similarity between errors in a robot’s kinematic model, and criterion measures such
as the NAI. This similarity is expected due to the fundamental resemblance between con-
straint analysis and robot pose selection as explained in Section 3.2. The group at Ohio State
University working in the area of registration has also reported similar results [Menq
et al., 1992].

3.4.4  Noise, Registration Accuracy, and Constraint Analysis

Added Data noise can influence registration accuracy and the effective NAI value described
in the previous subsection. This subsection presents experimental results which demonstrate
the effects of Data noise upon registration accuracy for a simple Model, the cube. Subse-
quent chapters present similar results for more complex Models.

Table 3-15 contains the parameters of the experiments performed. Each of the three cube
Data configurations, C1, C2 and C3 described earlier, was registered to the cube Model

Table 3-15:  Parameters: cube experiment #2:
Noise versus registration accuracy

Parameter Value

Data source File

τimax 5.0 mm

θimax 10 deg

Noise state Enabled

0.2-2.2 mm by 0.2 mm

pose_count 500

set_count 3

Minima suppression Enabled

τp-max 2.5 mm

θp-max 5.0 deg

Ip 6 iterations

µ∆
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using different noise magnitudes. A total of 11 registration experiments were performed
with each Data configuration using expected noise magnitudes ranging from 0.2 mm to
2.2 mm in 0.2 mm increments. The length of a cube edge was 50 mm, so the expected noise
magnitudes ranged from 0.4% to 4.4% of the size of the cube, with maximum noise magni-
tudes roughly a factor of 3 larger.

The results of this set of experiments are presented in Figure 3-25. Each column of graphs in
the figure corresponds to a particular Data configuration, C1, C2, or C3. Each row of graphs
corresponds to an error measure: maximum correspondence error, MCE; translation error
norm, ; and rotation error norm, . X-axis scales are the same for all graphs, while
y-axis scales are the same within each row of graphs. As expected, registration errors
increase as a function of increasing Data noise. There is a strong relation between the slopes
of the error curves and the NAI value for a given configuration; larger NAI values corre-
spond to smaller slopes, and thus lower sensitivity of a configuration to noise. For example,
the mean MCE curve is roughly a factor of 6 steeper for C3 than for C1, and a factor of 3
steeper for C3 than for C2. Most of the difference in sensitivity between the three configura-
tions can be attributed to rotation errors as seen by comparing mean error slopes in the bot-
tom two rows of graphs. Also note that the slopes of the mean translation error norm curves
are roughly the same for C2 and C3, while the slopes of the mean rotation error norm curves
for these configurations differ by a factor of roughly 3.5. Both of these observations are
expected based upon the constraint analysis results from Tables 3-6, 3-7 and 3-8.

These experiments demonstrate a strong relation between the NAI and sensitivity of regis-
tration accuracy to Data noise. This relation was expected based upon the proof in [Nahvi
and Hollerbach, 1996] (see Section 3.3.2) which shows that the noise amplification index
(NAI) provides an upper bound on the amplification of unmodeled errors and noise (i.e., dis-
crete point Data measurement noise and errors in the Model) to the estimated parameters
(i.e., registration transformation parameters). In Section 4.4.4, the results of similar experi-
ments for the Femur, Venus and Pelvis objects are presented.

3.5  Discussion

This chapter demonstrates that the criterion measure provided by constraint analysis is a
good predictor of registration accuracy. Similar observations have been made by other
researchers; however, the presentation in this chapter is significant for several reasons.

1. It experimentally demonstrates the relationship between sensor noise, constraint
analysis, and registration accuracy.

2. It identifies and analyzes the dependence of constraint analysis upon object scale,
and proposes a normalization method which reduces this effect.
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Figure 3-25:  Registration errors (MCE, translation norm, rotation norm) as a function of expected Data noise magnitude for the three
cube configurations C1, C2 and C3. Top row: MCE, middle row translation error, bottom row: rotation error.
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3. It identifies and analyzes the dependence of constraint analysis upon coordinate
system origin, and proposes the value specified in Equation 3.42 as the location
of the coordinate system origin which maximizes constraint analysis sensitivity.

4. It proposes and justifies the selection of the noise amplification index as a suitable
criterion measure for constraint analysis.

Constraint analysis plays two important roles in the object localization framework of
Figure 3-1. For Intelligent Data Selection, constraint analysis provides the criterion measure
to be maximized by constraint synthesis in order to generate Data configurations which are
near-optimal in terms of expected registration accuracy. In this role, it is important that con-
straint analysis be computed very quickly, since it may be necessary to compute the noise
amplification index on the order of 106 times to compute a single near-optimal Data config-
uration. Constraint synthesis and Intelligent Data Selection are discussed in detail in Chap-
ter 4.

In its second role in the object localization framework, constraint analysis provides a mea-
sure which is useful for estimating online registration error, a topic explored in Chapter 5. It
is important to note that constraint analysis does not provide measures ofabsolute expected
registration accuracy, since factors which are unmodeled by constraint analysis such as
noise in the Data or Model will affect absolute accuracy. Because of this limitation, con-
straint analysis alone can not be used to determine thequantityof Data required to satisfy a
given registration accuracy requirement. Methods for addressing this problem are discussed
in Chapter 5.

Development of the infrastructure necessary to perform the hundreds of thousands of regis-
tration trials required to generate the results reported in this chapter was a non-trivial
endeavor. For example, the results of Figure 3-24 alone required roughly 50,000 registration
trials. Software was written to automate much of the experimental process. Experiments
were often distributed over 30 or more computer workstations, and systems were developed
to automatically invoke and record the experiments. Analysis of the data was also semi-
automated, and software was written to automatically convert the voluminous output of a
single registration experiment to the various graphs presented in this chapter. Performing
these experiments, as well as the ones reported in Chapters 4 and 5, would have been impos-
sible without distributing the computation over multiple workstations, and without the auto-
mated infrastructure for collecting and analyzing results.
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Chapter 4

Constraint Synthesis

The constraint analysis methods described in the previous chapter provide estimates of the
relative registration accuracy among multiple, fixed-size Data configurations. The constraint
synthesis methods described in this chapter use the output of constraint analysis to automat-
ically generate near-optimal Data configurations with respect to the noise amplification
index (NAI). Constraint synthesis is shown to be a high-dimensionality optimization prob-
lem in which the objective is to maximize the NAI, and the independent variables are the
locations of points included in a Data configuration. The relation of constraint synthesis to
the other elements of the object localization framework is shown in Figure 4-1.

This chapter is organized as follows. Section 4.1 defines the constraint synthesis problem.
Section 4.2 describes four search algorithms which have been used to perform constraint
synthesis: steepest ascent hillclimbing (SAH), next ascent hillclimbing (NAH), Population-
Based Incremental Learning (PBIL) and a hybrid PBIL - hillclimbing approach. Section 4.3
introduces the problem of Data collection uncertainty. Due to uncertainty regarding the pose
of the registration object, it is impossible for the Data collection process of Figure 4-1 to
precisely collect the exact Data specified by the Data collection plan. This section examines
the implications of this uncertainty. Section 4.4 presents experimental results which demon-
strate the effectiveness of constraint synthesis and the robustness of the resulting Data con-
figurations. Section 4.4.1 describes the framework used to evaluate constraint synthesis.
Section 4.4.2 compares the performance of the constraint synthesis search algorithms.
Section 4.4.3 demonstrates the effects of Data collection uncertainty upon the NAIs of syn-
thesized Data configurations. Section 4.4.4 examines the effects of sensor noise and Data
collection uncertainty upon registration accuracy based upon synthesized Data configura-
tions. The chapter concludes with a discussion in Section 4.5.
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4.1  Problem Description

The constraint synthesis problem can be stated as follows:

Select N discrete points from a set,V, and place these points in the Data con-
figuration set,P, of Equation 3.9 such that the noise amplification index of
Equation 3.19 is maximized. The resulting optimal set,P, is referred to as the
Data collection plan (DCP).

Figure 4-1: The role of constraint synthesis (shaded) in Intelligent Data Selection and the
object localization framework.
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This is a combinatorial search problem, and for all but artificially small problems the solu-
tion space is much too large to search exhaustively. For the experimental results reported in
this dissertation, the set,V, is composed of the vertices of triangle mesh registration Models;
however, any sufficiently dense tessellation of a surface can be used to deriveV. The number
of points in a Data configuration, N, remains fixed within a given constraint synthesis trial.
The problem of finding Data configurations of minimum size is addressed in Chapter 5.

In general, it may be desired to constrain points within a DCP to lie within specified regions
of a Model. This is useful, for example, if surgical access is limited to certain regions of a
patient’s anatomy, thus preventing the collection of Data outside of those regions. Such
access constraints can easily be incorporated into constraint synthesis by including in the set
V, only points within the accessible regions.

In DCPs generated by constraint synthesis, it is possible to allow a single vertex to appear
more than once. Mathematically, this choice is justified since repeated points in the setP can
increase the value of the NAI. In practice, each time a Data point is collected it will provide
new, and slightly different information for the shape-based registration process.

4.2  Search Algorithms for Constraint Synthesis

This section presents four search algorithms for solving the constraint synthesis problem:
two hillclimbing methods, an approach related to genetic algorithms known as Population-
Based Incremental Learning (PBIL) and a hybrid PBIL / hillclimbing approach.

4.2.1  Steepest Ascent Hillclimbing

The first type of hillclimbing is steepest ascent hillclimbing (SAH). Initially, N vertices are
randomly chosen from the set of possible vertices,V, and placed into the setP. Let NAI(P)
represent the value of the noise amplification index computed using the points in the setP
(see Equation 3.19). Select a vertex,v, from P. In turn, substitutev with every vertex inV.
Repeat this procedure for eachv in P. After all substitutions have been attempted, replace
the vertex inP with the single substitution which leads to the largest increase in NAI(P).
Iterate this process, and continue until no substitutions which improve the result are found.

Steepest ascent hillclimbing is a “greedy” method which, on each iteration, performs the
substitution which results in the maximal change in NAI(P). Each iteration requires N(M-1)
evaluations of Equations 3.4, 3.8, 3.9, 3.10 and 3.19, where M is the number of vertices in
the set of possible vertices,V, and N is the number of vertices in the set of selected vertices,
P.1 The total number of iterations required for convergence depends upon the size of the
problem, but is typically less than 100 for the experiments performed in this dissertation.

1.  Evaluation time for these equations is approximately 1 ms on an SGI R4400 200 MHz processor.
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4.2.2  Next Ascent Hillclimbing

The second type of hillclimbing is next ascent hillclimbing (NAH). This method is similar to
steepest ascent hillclimbing, except that the setP is immediately changed when a vertex
substitution is found which increases NAI(P). This is in contrast to the previous method in
which the chosen substitution is the one which maximizes NAI(P) over all possible substitu-
tions. In NAH, the sequence of trial vertex substitutions within an iteration is randomized.

Next ascent hillclimbing is less greedy than the steepest ascent version. It usually requires
more iterations than the previous method, but there are fewer NAI evaluations per iteration.
The number of attempted substitutions is typically small during the initial iterations, and
increases during the later iterations when there are fewer possible substitutions which will
increase the value of NAI(P). Although rarely reached in practice, the maximum number of
evaluations within an iteration is the same as the number required for each iteration of steep-
est ascent hillclimbing, N(M-1). The total number of iterations depends upon the size of the
problem, but is typically less than 700 for the experiments performed in this dissertation.

4.2.3  Population-Based Incremental Learning

As demonstrated below in Section 4.4, the above hillclimbing methods are susceptible to
local minima in the search space. Genetic algorithms (GAs) are biologically motivated
adaptive systems based upon principles of natural selection and genetic recombination
which attempt to avoid such local minima. Good overviews of GAs can be found in
[Goldberg, 1989] and [DeJong, 1975].

Recently, a simplified statistical model of the GA has been introduced in [Baluja and
Caruana, 1995] termed Population-Based Incremental Learning (PBIL). This method has
been compared to standard GAs on a variety of benchmarks with promising results
[Baluja, 1995]. Like the standard GA, the version of PBIL presented below operates on
solutions encoded as binary vectors. A brief introduction to the PBIL method is given below,
and the algorithm is shown in Figure 4-2 (description and figure with permission from
[Baluja, 1995]):

PBIL is a combination of evolutionary optimization and hillclimbing. The object of the algorithm is to
create a real valued probability vector which, when sampled, reveals high quality solution vectors with
high probability. For example, if a good solution to a problem can be encoded as a string of alternating
0’s and 1’s, a suitable final probability vector would be 0.01, 0.99, 0.01, 0.99, etc.

Initially, the values of the probability vector are set to 0.5. Sampling from this vector yields random so-
lution vectors because the probability of generating a 1 or 0 is equal. As search progresses, the values in
the probability vector gradually shift to represent high evaluation solution vectors. This is accomplished
as follows: A number of solution vectors are generated based upon the probabilities specified in the prob-
ability vector. The probability vector is pushed towards the generated solution vector(s) with the highest
evaluation. The distance the probability vector is pushed depends upon the learning rate parameter. After
the probability vector is updated, a new set of solution vectors is produced by sampling from the updated
probability vector, and the cycle is continued. As the search progresses, entries in the probability vector
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move away from their initial settings of 0.5 towards either 0.0 or 1.0. The probability vector can be
viewed as a prototype vector for generating solution vectors which have high evaluations with respect
to the available knowledge of the search space.

The manner in which the updates to the probability vector occur is similar to the weight update rule in
supervised competitive learning networks, or the update rules used in Learning Vector Quantization
(LVQ) [Hertz et al., 1991]. Many of the heuristics used to make learning more effective in supervised
competitive learning networks (or LVQ), or to increase the speed of learning, can be used with the PBIL
algorithm. This relationship is discussed in greater detail in [Baluja and Caruana, 1995].

The application of PBIL to the constraint synthesis problem was performed in collaboration
with Shumeet Baluja, and additional details of this work can be found in [Baluja and
Simon, 1996]. In particular, that document describes issues related to the problem encoding
and search space representations which were used to map the constraint synthesis problem
into the PBIL framework.

For the purposes of this dissertation, PBIL can be thought of as a black-box as outlined in
Figure 4-3. The inputs to PBIL are: the surface Model; the set of allowable configuration
vertices,V; the number of discrete points in the configuration to be generated by PBIL; the

****** Initialize Probability Vector *****
for i :=1 to LENGTH do P[i] = 0.5;

while (NOT termination condition)
***** Generate Samples *****
for i :=1 to SAMPLES do

sample_vectors[i]:=generate_sample_vector_with_probabilities (P);
evaluations[i] :=Evaluate_Solution (sample[i]);
best_vector := best_evaluation (sample_vectors, evaluations);

***** Update Probability Vector Towards Best Solution *****
for i :=1 to LENGTH do

P[i] := P[i] * (1.0 - LR) + best_vector[i] * (LR);

***** Mutate Probability Vector *****
for i :=1 to LENGTH do

if (random (0,1) < MUT_PROBABILITY) then
if (random (0,1) > 0.5) then mutate_direction := 1
else mutate_direction := 0;
P[i]:=P[i]*(1.0-MUT_SHIFT)+ mutate_direction*(MUT_SHIFT);

USER DEFINED CONSTANTS (Values Used in this Study):
SAMPLES: vectors generated before update of the probability vector (100).
LR : the learning rate, how fast to exploit the search performed (0.1).
MUT_PROBABILITY : probability for a mutation in each position (0.02).
MUT_SHIFT : amount a mutation alters the value in the bit position (0.05).
LENGTH:  length of encoded solution (problem dependent).

Figure 4-2: Single vector PBIL algorithm for binary encoded solution strings (with
permission from [Baluja, 1995]).
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stopping criterion; and the function to be optimized (in this case the NAI). The output of
PBIL is the particular configuration which maximizes the NAI among all configurations
evaluated by PBIL within a given trial.

4.2.4  Hybrid PBIL / Hillclimbing Approach

As suggested above, PBIL is better than hillclimbing methods at guiding the search towards
the region of global optimality while avoiding sub-optimal local minima. However, addi-
tional performance improvements can often be realized by initializing a hillclimbing search
using the output of PBIL as a starting point. By combining these two approaches, it is possi-
ble to take advantage of the strengths of each method, as illustrated in Figure 4-4. In the top
graph, hillclimbing begins at a random configuration indicated by the open circle, and con-
verges to a locally maximal configuration indicated by the closed circle. In this case, the
resulting configuration is clearly not globally optimal. In the lower graph, the open circle
represents the configuration resulting from a trial of PBIL, and the closed circle is the result
of hillclimbing from the starting configuration provided by PBIL.

Due to the size and complexity of the search problem presented by constraint synthesis,
even the hybrid PBIL hillclimbing method is not guaranteed to converge to the globally
optimal solution. In an attempt to improve the NAI value of the selected configuration, it is
possible to run the hybrid search method multiple times, as illustrated in Figure 4-5. The
output of each trial of PBIL (indicated by the open circles) provides a starting point for the
hillclimber which converges to a locally maximal configuration (indicated by the closed cir-
cles). A single optimal configuration can then be selected as the one with the overall maxi-
mal NAI value. However, as described in Section 4.3 and demonstrated in Section 4.4.3,
maximizing the NAI value may not be the only criterion for selecting the “best” configura-
tion. Due to uncertainty in the Data collection process, it is also important to assess thesta-
bility of the configuration with respect to the NAI.

Figure 4-3: Population-Based Incremental Learning (PBIL) as a black-box.
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Figure 4-4: Schematics of the energy landscape for the constraint synthesis problem:
hillclimbing alone versus a PBIL-hillclimbing hybrid. Open (closed) circles
represent the starting (ending) points of the hillclimbing process. In the
hillclimbing method, the starting point is randomly selected. In the hybrid
method, hillclimbing begins at the best configuration found by PBIL.
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Figure 4-5:  Multiple PBIL trials followed by hillclimbing. The open circles represent the
outputs of multiple PBIL trials and the starting points for hillclimbing. The
closed circles represent the outputs of the hillclimbing process.
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Experimental results which demonstrate the performance of each of the constraint synthesis
solution methods are presented in Section 4.4.2. A hybrid PBIL/NAH method is shown to be
superior to the other methods in terms of selecting configurations which maximize the NAI.

4.3  Data Collection Uncertainty

As seen in Figure 4-1, the output of constraint synthesis is aData collection plan (DCP).
Unfortunately, it is impossible for a person (i.e., the Data collector) to physically collect the
exact points specified by the DCP. (If this were possible, it would be unnecessary to perform
registration, since the pose of the object would already be known.) This situation is illus-
trated in Figure 4-6, and is referred to as theData collection uncertainty problem. In gen-
eral, the distance between a desired and collected point depends upon several factors
including:

• The availability of recognizable features on the object in the vicinity of the desired point
which the Data collector can use as landmarks.

• The availability of feedback to the Data collector based upon the current pose estimate
which indicates the position of the Data collection sensor relative to the desired point.

• The visibility of the region in which the desired point is located (during surgery, some
regions may be obscured by soft-tissue, fluids, etc.)

As mentioned in Section 3.4.3, there are two variants of the NAI which can be computed.
Theideal NAI is computed using the Data points in the DCP. These Data are uncorrupted by
sensor noise and Data collection uncertainty. Theeffective NAI, on the other hand, uses the
Data which have actually been collected and registered to the Model. The effective NAI is
computed from the Model points which are closest to the collected Data points at the termi-
nation of the registration process. Therefore, the effective NAI is a better measure than the
ideal NAI of the geometric constraint between a Model and the actual registration Data.

Due to Data collection uncertainty, the effective NAI value may be smaller than the ideal
NAI value. The ratio of effective to ideal NAI is a measure of NAIstability, and is a function

Figure 4-6: The Data collection uncertainty problem.

Desired point specified in the DCP

Point actually collected and used in registration
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of several factors including the geometry of the surface, the number of Data points, the mag-
nitude of the Data collection uncertainty, and the particular DCP. As demonstrated in
Section 4.4.3, some Data configurations have greater NAI stability than others. Ideally, con-
straint synthesis would be formulated to maximize not only the NAI, but also Data configu-
ration stability. Unfortunately, there are problems with such a formulation as discussed
below.

A possible model for Data collection uncertainty is illustrated in Figure 4-7. For each
desired point in the DCP, there is an associated region of collection uncertainty within which
there is a likelihood that the actual Data point will be collected. This likelihood can be mod-
eled as a function of the Euclidean distance between the desired point and allconnected
points which lie within the uncertainty region.1 In the experiments reported below, the
uncertainty region is defined by the intersection of the surface and a sphere of fixed radius
centered at the desired point. All points within an uncertainty region have equal likelihood
of being selected.

Assuming that Data collection uncertainty information is available for each point (i.e.,ver-
tex) on a Model, it is possible to re-state the constraint synthesis problem as follows:

Select N discrete points with known Data collection uncertainties from a set,
V, and place these points in the Data configuration set,P, of Equation 3.9
such that theminimum valueof the noise amplification index,when evalu-
ated over all combinations of points within the associated regions of uncer-
tainty, is maximized.

The modified constraint synthesis problem can be explained with reference to Figure 4-8. In
this formulation, each evaluation of a candidate set,P, requires multiple computations of the

1. Connected points are those which are topologically connected to the desired point via surface
patches which lie completely within the uncertainty region.

Figure 4-7: Data collection uncertainty for a single point. Any point within the uncertainty
region has an equal likelihood of being collected.

Desired point

Uncertainty region
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NAI to determine the minimum value over the uncertainty regions. This minimum NAI
value can then be used as the criterion measure for the candidate set,P. Unfortunately, this
evaluation has exponential complexity. Assuming N Data configuration points, and an aver-
age of K points within each uncertainty region (i.e, K triangle mesh vertices), the number of
NAI evaluations required for a single configuration evaluation would be KN. The value of K
depends upon the size of the uncertainty region and the resolution of the triangle mesh
Model. However, even for relatively conservative values (N = 20, K = 5), the number of
evaluations would be prohibitive (9.5x1013).

It may be possible to reduce the total number of NAI evaluations by picking representative
points within each uncertainty region based on similarity of surface orientation. For exam-
ple, uncertainty regions which are relatively planar could be represented by a single point,
while regions with larger variation in surface orientation might require 2 or 3 points to repre-
sent. Unfortunately, this still leads to unacceptable complexity. For example, for a problem
in which N = 20, and for which 10 of these points can be represented by a single point
(i.e., K=1), 5 can be represented by two points (i.e., K=2) and 5 can be represented by three
points (i.e., K=3), the total number of evaluations is (101)(52)(53) = 31250. As demonstrated
below, current run times for solving the conventional constraint synthesis problem vary from
roughly 5 to 200 minutes. Multiplying even the shorter of these run times by the factor
above would lead to unacceptable run times (110 days).

Due to the unacceptable complexity of the above approach, an alternative solution has been
implemented which results in improved configuration stability for certain Models. From
Equation 3.4 it can be seen that Data collection uncertainty will affect the NAI via a discrep-
ancy between thedesired and collected position and normal direction associated with a
given Data point. It has been empirically shown that the NAI is much more sensitive to vari-
ation in the surface normal than to the position of the point. Therefore, an alternate strategy

Figure 4-8: The modified constraint synthesis problem: NAI computation must be
performed for all combinations of vertices within the regions of uncertainty.
Small circles represent the evaluation points, large circles represent the
uncertainty regions, and crosses represent the points which minimize the NAI.
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for reducing the effect of Data collection uncertainty is to eliminate from the constraint syn-
thesis process local patches of a Model which have high surface curvature. The resulting
synthesized Data configurations will therefore consist only of points in regions of low curva-
ture. Thus, the effects of Data collection uncertainty upon the stability of the NAI will be
reduced since surface orientations in the vicinity of each desired Data point will be similar.
An algorithm for eliminating regions of high curvature from a Model is presented below.

High-Cur vature Point Elimination Algorithm

• For each vertex,v, in the Model:

• For every vertex directly connected tov which lies within a sphere of radiusr,
group the associated surface normals into a setL. (Connected vertices are those
which are topologically connected tov via only edges of the triangle mesh which
lie completely within the sphere.)

• Perform a pair-wise comparison between all surface normals inL, and determine if
the angle between any two surface normals in the set is greater than a threshold,δ.
If so, then do not include the vertexv in the filtered version of the Model.

This process eliminates vertices which are in regions of high curvature. In the experiments
performed in this dissertation, typical values ofδ andr are 90 degrees and 10 mm, respec-
tively. As demonstrated below in Section 4.4.3, high curvature elimination before constraint
synthesis can be effective at improving the stability of synthesized Data configurations for
Models in which there is substantial local variation in surface orientation (e.g., the Femur
Model).

4.4  Experimental Results

This section focuses on the experimental validation of the algorithms and methods described
in this chapter. All experimental registration results reported in this Chapter use simulated
Data (i.e., Data which are not physically collected from an object, but generated by adding
noise and random pose transformations to nominal Data sets, as described in Section 3.4). In
Chapter 5, results are reported for similar experiments which use physically collected Data.

4.4.1  Framework for Constraint Synthesis Experiments

In order to demonstrate the efficacy of constraint synthesis, registration experiments using
the methods described in Section 3.4.2 were performed with three types of Data: random,
synthesized and hand-picked. The generation of random Data sets is described in
Section 3.4.2. The generation of synthesized Data sets was performed using various combi-
nations of the constraint synthesis search algorithms described in Section 4.2. Hand-picked
Data sets were manually selected by humans.
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In the registration experiments presented in Section 3.4, a method is described for simulat-
ing the effects of sensor noise in the Data collection process. The same method is used in the
experiments presented below. In addition, a second “noise” component is used to model the
effects of Data collection uncertainty described in Section 4.3. Data collection uncertainty
noise is generated by randomly transforming a selected Model vertex along the surface, such
that the Euclidean distance between the original and perturbed point is uniformly distrib-
uted. An algorithm for generating this noise is presented below.

Data Collection Uncertainty Noise Generation Algorithm

• Preprocessing - performed once during experiment initialization.

• For every vertex,v, in the Model:

• Compute a set,F, of all facets of the triangle mesh which are connected tov
via edges which lie completely within a sphere of radiusru centered atv.
Facets which intersect the sphere are also included in the resulting set,F.

• For each facetf in F, compute Area(f) / Σ Area(f), the fractional area of the
facet relative to all facets inF. The area of each facet which intersects the
sphere is approximated.

• Cache the setF and the fractional area information together with the vertexv.

• Generation - performed for each Data set to which collection uncertainty noise is added.

• For every Model vertex,v, in the nominal Data set:

• Randomly select a facetf from the setF associated with the vertexv. The
likelihood of selecting a particular facet from the setF is proportional to the
fractional area computed during the preprocessing step.

• Randomly select a point within the selected facet,f, from a uniform distribu-
tion. Perform proper clipping to ensure that this point lies within the sphere
of radiusru centered atv.

This algorithm adds noise to the Data which approximates the effects of Data collection
uncertainty described in Section 4.3. After uncertainty noise has been added, sensor noise
can be added using the methods described in Section 3.4. The flow of a single registration
experiment for evaluating constraint synthesis is similar to the experimental flow presented
in Figure 3-15, with the addition of a step to add uncertainty noise before sensor noise is
added. Refer to Section 3.4 and Figure 3-15 for a complete description of the experimental
method.
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4.4.2  Evaluation of Constraint Synthesis Search Algorithms

This subsection compares the various search algorithms in terms of their ability to solve the
constraint synthesis problem. It also demonstrates the superiority of automatically synthe-
sized Data configurations compared to randomly or manually generated configurations in
terms of the resulting NAI values.

To evaluate search algorithm effectiveness, each algorithm described in Section 4.2 was
used to synthesize fixed-size configurations of 10, 25, 50 and 75 points for the Venus, Femur
and Pelvis surface Models of Figure 3-21. For each configuration size, 5 different Data col-
lection plans (DCPs) were generated. The results of the experiment for the Venus Model are
reported in Table 4-1. Seven methods were used for generating configurations: random,
manual, SAH, NAH, PBIL, hybrid PBIL-SAH and hybrid PBIL-NAH. The manually
selected configurations were hand-picked by a surgeon, two graduate students with strong
backgrounds in 3-D computer vision, and the author. The randomly generated configura-
tions were evaluated over 1000 trials, while each of the other configurations were evaluated
over 5 trials.

From the table it can be seen that the three search methods which use PBIL result in larger
values of the NAI than any of the other automatic generation methods, and significantly
larger values than randomly or manually generated configurations. From these results, there
is no strong evidence as to which of the three PBIL-based approaches is preferable. For ran-
domly generated configurations, the maximum NAI values tend to be larger than the corre-

Table 4-1:  Constraint synthesis results for the Venus Model as a function of synthesis
method and configuration size. Results are reported as maximum/minimum NAI
values over 5 trials.

Method
Configuration Size

10 25 50 75

Random Generation (1000 trials) 0.19 / 0.00 0.33/ 0.02 0.51 / 0.08 0.60 / 0.13

Manual Selection 0.08 / 0.05 0.44 / 0.12 0.40 / 0.19 0.45 / 0.29

Steepest Ascent Hillclimbing (SAH) 0.61 / 0.44 1.02 / 0.71 1.48 / 1.14 1.72 / 1.49

Next Ascent Hillclimbing (NAH) 0.63 / 0.55 1.19 / 1.09 1.65 / 1.49 2.06 / 1.96

PBIL 0.71 / 0.64 1.25 / 1.18 1.76 / 1.72 2.13 / 2.06

PBIL-SAH 0.73 / 0.65 1.27 / 1.23 1.80 / 1.75 2.21 / 2.14

PBIL-NAH 0.75 / 0.65 1.25 / 1.22 1.81 / 1.76 2.17 / 2.12
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sponding values for manually generated configurations; however, minimum NAI values are
larger for manually generated configurations. The NAI values for each of the automatic gen-
eration methods are significantly larger than the corresponding manually generated configu-
rations. This is true even when the configuration size is large. This suggests that humans are
not very good at solving the constraint synthesis problem for complex geometries. Addi-
tional results which support this conclusion are presented in Chapter 5.

The plots of Figure 4-9 demonstrate the evolution of the hybrid PBIL-NAH search algo-
rithm in which the NAI criterion measure (top), and eigenvalue magnitudes from
Equation 3.11 (bottom), are plotted as a function of search algorithm iteration. For this
example, most of the improvement in NAI results from the PBIL portion of the search, while
the NAH algorithm “fine-tunes” the result. Note that during the evolution of the search, the
eigenvalues which are initially small become large, while those which are initially large
become smaller. This behavior is expected based upon the goal of maximizing the volume
and hypersphericity of the sensitivity ellipsoid discussed in Section 3.3.2.

The experiments used to generate the results of Table 4-1 were repeated using the Femur
and Pelvis Models, and the results are presented in Tables 4-2 and 4-3, respectively. Due to
the difficulty of manually selecting Data sets, this method of generation was omitted from
the remaining results in this chapter (although additional results with manually-selected
Data sets are presented in Chapter 5). From the tables below, it can be seen that the hybrid
methods consistently perform better than any of the other methods with respect to both max-
imum and minimum NAI values over the 5 trials.

Execution times for the five constraint synthesis search algorithms are reported in Table 4-4,
and range from about 4 minutes per configuration to about 5 hours per configuration,
depending upon method and configuration size. All times are reported in minutes and repre-
sent the times required to synthesize 5 independent configurations. These constraint synthe-
sis trials were performed on several different computers, all SGI Indigo2 Extremes with
R4400 200 MHz processors. Execution times for the NAH approach are consistently faster
than for the SAH approach, both as a stand-alone algorithm, and as a component of the
hybrid PBIL-hillclimbing approach, and therefore the NAH approach is preferred over
SAH. The hybrid PBIL-NAH approach tends to result in slightly larger NAI values than the
NAH approach; however, NAH is significantly faster than the hybrid approach. For the
experimental results reported in the remainder of this dissertation, the hybrid PBIL-NAH
approach is used unless otherwise indicated. In the future, it may be desirable to use the
NAH approach alone if it can be shown that the resulting reduction in NAI value does not
have a significant impact upon registration accuracy.

As suggested earlier, due to clinical access limitations, it may not be possible or desirable to
collect registration Data within certain regions of an anatomical object during surgery. For
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Figure 4-9: Evolution of the hybrid PBIL-NAH search algorithm for a single trial using the
Venus Model and a configuration size of 25 points. The iterations to the left of
the vertical line correspond to PBIL, while those to the right correspond to
NAH. Top: NAI vs. iteration. Bottom: eigenvalue magnitude vs. iteration.
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Table 4-2:  Constraint synthesis results for the Femur Model as a function of synthesis
method and configuration size. Results are reported as maximum/minimum
NAI values over 5 trials.

Method
Configuration Size

10 25 50 75

Random Generation (1000 trials) 0.31 / 0.00 0.59 / 0.48 0.80 / 0.21 0.97 / 0.32

Steepest Ascent Hillclimbing (SAH) 0.94 / 0.79 1.76 / 1.52 2.48 / 2.38 3.20 / 2.38

Next Ascent Hillclimbing (NAH) 0.98 / 0.80 1.73 / 1.52 2.49 / 2.29 3.07 / 2.96

PBIL 0.97 / 0.91 1.77 / 1.68 2.51 / 2.44 3.02 / 2.98

PBIL-SAH 1.04 / 0.93 1.82 / 1.72 2.59 / 2.54 3.19 / 3.14

PBIL-NAH 1.06 / 0.97 1.80 / 1.74 2.59 / 2.56 3.20 / 3.11

Table 4-3:  Constraint synthesis results for the Pelvis Model as a function of synthesis
method and configuration size. Results are reported as maximum/minimum
NAI values over 5 trials.

Method
Configuration Size

10 25 50 75

Random Generation (1000 trials) 0.41 / 0.00 1.18 / 0.08 1.52 / 0.33 1.68 / 0.53

Steepest Ascent Hillclimbing (SAH) 1.39 / 1.15 2.67 / 2.41 3.86 / 3.55 4.87 / 4.33

Next Ascent Hillclimbing (NAH) 1.42 / 1.28 2.62 / 2.43 3.97 / 3.76 4.90 / 4.79

PBIL 1.41 / 1.35 2.70 / 2.58 3.88 / 3.81 4.84 / 4.76

PBIL-SAH 1.51 / 1.36 2.76 / 2.68 4.00 / 3.89 4.96 / 4.91

PBIL-NAH 1.52 / 1.36 2.75 / 2.65 4.02 / 3.92 4.94 / 4.90



 4.4. Experimental Results

117

example, during total hip replacement surgery, only a few regions on a pelvis can be
accessed with a digitizing probe for Data collection, as indicated in Figure 4-10. These clin-
ical access limitations can be easily incorporated into the constraint synthesis process by
using a surface Model which only includes the accessible regions. Constraint synthesis will
operate without modification on a surface Model containing multiple disconnected patches,
such as the one shown in Figure 4-10.

Table 4-5 shows the results of applying the five constraint synthesis search methods to the
clinically accessible regions of the Pelvis surface Model. Despite the simplicity of this

Table 4-4:  Execution times for constraint synthesis of the Femur Model as a function of
synthesis method and configuration size. Results are reported in minutes and
represent the synthesis of 5 configurations. (* = not available)

Method
Configuration Size

10 25 50 75

Steepest Ascent Hillclimbing (SAH) 79 289 664 *

Next Ascent Hillclimbing (NAH) 21 99 209 424

PBIL 315 350 402 704

PBIL-SAH + 25 + 124 + 245 + 757

PBIL-NAH + 22 + 97 + 174 + 383

Figure 4-10: Two views of clinically accessible regions for Data collection from the surface
of the Pelvis during total hip replacement surgery (accessible regions indicated
in dark gray). The resulting Model is referred to as the Clinical Pelvis.
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Model, the various automatic approaches for synthesizing configurations all perform signif-
icantly better than the random method.

This subsection has evaluated the various constraint synthesis search algorithms using sev-
eral surface Models. The next subsection examines the NAIstability of generated configura-
tions as a function of Data collection uncertainty.

4.4.3  NAI Stability of Synthesized Configurations

As discussed in Section 4.3, object pose uncertainty during the Data collection process can
reduce the effective NAI value (computed using collected Data) relative to the ideal NAI
value (computed using the DCP). To demonstrate this effect, experiments were performed in
which Data collection uncertainty noise (see Section 4.4.1) was added to the nominal Data
points specified by a DCP, and the resulting effective NAI values were computed. The
results of such an experiment are illustrated in the two graphs of Figure 4-11. These graphs
show the ideal NAI values, and the effect on the NAI of adding Data collection uncertainty
noise to five nominal DCPs over 1000 trials. The mean, 5th and 95th percentiles of the effec-
tive NAI computed over 1000 trials are plotted for the 5 synthesized configurations. The
graphs were generated using the Pelvis Model and 25-point Data configurations. The top
graph was generated using a Data collection uncertainty noise radius,ru, of 5 mm, and the
bottom one was generated with anru of 10 mm. Note that the configuration which has the
largest ideal NAI value is not necessarily the one which is most stable. As discussed in
Section 4.3, the ultimate goal of constraint synthesis is to maximize theeffective NAI. The
results of experiments such as these can be used to determine which configurations are the
most stable and are therefore the most likely to have the largest effective NAI values.

Table 4-5:  Constraint synthesis results for the Clinical Pelvis Model as a function of
synthesis method and configuration size. Results are reported as maximum/
minimum NAI values over 5 trials.

Method
Configuration Size

10 25 50 75

Random Generation 0.24 / 0.00 0.44 / 0.02 0.60 / 0.12 0.72 / 0.24

Steepest Ascent Hillclimbing (SAH) 0.55 / 0.48 0.94 / 0.89 1.35 / 1.33 1.66 / 1.61

Next Ascent Hillclimbing (NAH) 0.54 / 0.53 0.98 / 0.94 1.42 / 1.36 1.72 / 1.66

PBIL 0.58 / 0.57 1.00 / 0.98 1.44 / 1.44 1.77 / 1.75

PBIL-SAH 0.58 / 0.57 1.00 / 0.98 1.45 / 1.44 1.78 / 1.77

PBIL-NAH 0.58 / 0.57 1.00 / 0.98 1.45 / 1.44 1.78 / 1.77
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Figure 4-11: Effect of Data collection uncertainty on the NAI over 5 synthesized, 25-point
configurations for the Pelvis Model. The ideal NAI is computed from the DCP.
The effective NAI is computed over 1000 trials of adding Data collection
uncertainty noise to the DCP. Top: 5.0 mm radius collection uncertainty.
Bottom: 10.0 mm radius collection uncertainty.
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In the graphs of Figure 4-11, the difference between ideal and effective NAI is a function of
the magnitude of Data collection uncertainty. Larger values of Data collection uncertainty
result in larger differences between ideal and effective NAI values. If Data collection uncer-
tainty is too large, the resulting effective NAI values will be no better than those for ran-
domly generated configurations. For comparison, the 5th and 95th percentiles of effective
NAI values generated from one thousand 25-pointrandom configurations for the Pelvis
Model are 0.21 and 0.64, respectively. Therefore, even for 10 mm Data collection uncer-
tainty, the synthesized configurations perform significantly better than random configura-
tions.

As suggested in Section 4.3, filtering a surface Model by eliminating regions of high curva-
ture before constraint synthesis can sometimes significantly improve the stability of the
resulting Data configuration. An example of a filtered surface Model is shown in
Figure 4-12 in which the filtering parameters,δ and r, are 90 degrees and 5 mm, respec-
tively. The effect of high curvature filtering upon configuration stability is illustrated in the
graphs of Figure 4-13 which plot ideal and effective NAI values versus configuration size
for the Femur Model. To generate these graphs, five synthesized configurations were gener-
ated from a filtered Model, and another five configurations were generated from an unfil-
tered Model. Data collection uncertainty noise was added to each configuration and the
statistical means of the effective NAI values were computed over 1000 trials. For each con-
figuration size, the single configuration corresponding to the median of the effective NAI

Figure 4-12: Views of the unfiltered (left) and filtered (right) Femur Model.
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Figure 4-13: Effect of high-curvature filtering on Data collection uncertainty for the Femur
Model with 5.0 mm radius Data collection uncertainty. Effective and ideal
NAI values plotted vs. configuration size. The ideal NAI is computed from the
DCP. The effective NAI is computed over 1000 trials of adding Data collection
uncertainty noise to the DCP. Top: unfiltered Model. Bottom: filtered Model.
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mean value (over the 5 configurations) is plotted. There are several important trends in these
graphs. First, both ideal and effective NAI increase as a function of Data configuration size.
Second, ideal NAI values are smaller for the configurations synthesized from the filtered
Model. This is because removal of high curvature regions from the Model reduces the varia-
tion in facet orientation, and thus the potential for large values of the NAI. Third, despite the
reduction in ideal NAI values for the filtered Model, the effective NAI values for this Model
are larger than those for the unfiltered Model. This is why high curvature filtering is useful;
removing high curvature regions from a Model may increase configuration stability with
respect to Data collection uncertainty.

High curvature filtering is not always necessary to achieve stable Data configurations.
Among the 4 Models used in the current experiments (Pelvis, Clinical Pelvis, Femur and
Venus), only the Femur Model significantly benefited from application of the filtering pro-
cess. Configurations generated using the other Models were fairly stable without filtering.
Whether or not filtering will improve configuration stability is related to the geometry of the
object, the resolution of the Model (i.e., size of the planar facets) and the noise characteris-
tics of the Model. Figure 4-14 shows an unfiltered and filtered Pelvis Model using the same
filtering parameters as above. For this Model, there are only a small number of high curva-
ture regions which could potentially reduce stability. Therefore, configurations synthesized
from the filtered Pelvis are no more stable than those generated from the unfiltered Pelvis as
seen in the graphs of Figure 4-15.

Figure 4-14: Views of the unfiltered (left) and filtered (right) Pelvis Model.



 4.4. Experimental Results

123

Figure 4-15: Effect of high-curvature filtering on Data collection uncertainty for the Pelvis
Model with 5.0 mm radius Data collection uncertainty. Effective and ideal
NAI values plotted vs. configuration size. The ideal NAI is computed from the
DCP. The effective NAI is computed over 1000 trials of adding Data collection
uncertainty noise to the DCP. Top: unfiltered Model. Bottom: filtered Model.
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The results of Figures 4-13 and 4-15 demonstrate that larger configuration sizes result in
improved NAI stability. In both sets of results, the ratios of mean effective NAI to ideal NAI
increase with increasing configuration size. Figure 4-16 illustrates the relation between con-
figuration stability and the magnitude of Data collection uncertainty. In this figure, ideal and
effective NAI are plotted versus Data collection uncertainty noise radius,ru. It can be seen
that larger values of Data collection uncertainty result in reduced configuration stability. An
important observation can be made based upon the results of Figures 4-13, 4-15 and 4-16.
Given a registration accuracy requirement which must be satisfied, the number of Data
points needed to satisfy this requirement will depend in part upon the magnitude of the asso-
ciated Data collection uncertainty. Due to the Data collection guidance mechanism
described in Chapter 5, high quality initial pose estimates will tend to reduce Data collection
uncertainty, and thus the number of Data points required to localize an object to within fixed
accuracy tolerances.

4.4.4  Registration Accuracy Resulting from Synthesized Configurations

The previous subsection examined the NAI stability of synthesized configurations with
respect to Data collection uncertainty. The current subsection demonstrates that synthesized
configurations result in superior registration accuracy, despite the presence of Data collec-
tion uncertainty and sensor noise. The results presented in this section are based upon the
experimental method outlined in Figure 3-15 which uses synthesized Data. Similar results
using Data collected by a human Data collector with a digitizing probe can be found in
Chapter 5. A complete description of the experimental method and relevant parameters can
be found in Sections 3.4.2 and 4.4.1. A summary of the registration parameters for the
experiments of this section appear in Table 4-6.

Figure 4-17 shows the results of 9 registration accuracy experiments using the Venus Model.
Each graph represents the results of a single experiment, and the title in the center of each
graph indicates the associated noise parameters and Data configuration sizes. For example,
the graph titled “n0.5_s5_25_Venus” contains the results of an experiment which had an
expected noise magnitude, , of 0.5, an uncertainty radius,ru, of 5.0 mm, and a configura-
tion size of 25 points. For all graphs, the x-axis represents the ideal noise amplification
index (NAI) computed from the nominal DCP, and the y-axis represents statistics of the
maximum correspondence error (MCE) computed over 500 registration trials (i.e., mean,
standard deviation, 5th and 95th percentiles). Note that the scales along the x-axes within a
column of graphs are the same, but the scales of the y-axes differ for each graph. Within
each graph, there are two distinct groupings of results; the grouping on the left is for ran-
domly generated configurations (as indicated by the small NAI values), while the grouping
on the right is for synthesized configurations. Within the 3x3 grid of graphs, moving from
left to right across a row corresponds to an increase in the Data configuration size, while
moving from top to bottom within a column corresponds to an increase in sensor noise. Data

µ∆
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Figure 4-16: Effect of Data collection uncertainty radius,ru,on NAI for the unfiltered Venus
Model. Ideal and effective NAI values are plotted versus Data collection
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collection uncertainty is the same for all graphs within the grid; the uncertainty radius,ru, is
5.0 mm.

Several trends are apparent from these results. First, for every experiment in Figure 4-17, the
synthesized configurations perform better than the randomly generated configurations with
respect to the MCE statistics. Moving down within a single column of graphs (i.e., increas-
ing the magnitude of sensor noise) results in an increase in the MCE values. However, the
ratio of MCE values for random configurations to MCE values for synthesized configura-
tions remains roughly constant as a function of increasing sensor noise. Moving left to right
across a row (i.e., increasing the number of points in a configuration) results in larger values
of the NAI for both synthesized and random configurations, and corresponding smaller val-
ues of the MCE. These results suggest that constraint synthesis is useful despite uncertainty
in the Data collection process. This conclusion is supported by the remaining results in this
section, and the results based upon actual Data reported in Chapter 5.

Table 4-6:  Registration parameters for experiments
reported in Section 4.4.4.

Parameter Value

Data source Random & Synthesized

Data configuration size 10, 25, 50 points

τimax 20.0 mm

θimax 10 deg

Noise state Enabled

0.1, 0.5, 1.0 mm

Uncertainty noise Enabled

ru - uncertainty radius 5.0, 10.0 mm

pose_count 500

set_count 5 random, 5 synthesized

Minima suppression Enabled

τp-max 10.0 mm

θp-max 5.0 degrees

Ip 6 iterations

µ∆
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Figure 4-17: MCE vs. NAI for the Venus Model for random and synthesized configurations. Data collection uncertainty of 5.0 mm.
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Figure 4-18 presents experimental results based upon the Pelvis Model which are qualita-
tively similar to the results for the Venus Model. The same value of the Data collection
uncertainty radius, 5.0 mm, was used in both sets of experiments. Figure 4-19 presents
results for the Pelvis using a larger value of the uncertainty radius, 10.0 mm. Comparing the
results of Figures 4-18 and 4-19, it can be seen that the relative utility of the synthesized
configurations decreases with increasing Data collection uncertainty, as expected. The most
apparent differences between these figures are seen in the leftmost columns of the graphs
corresponding to the configurations with the smallest number of points (i.e., 10). The results
of the other two columns are quantitatively similar in both the figures. The fact that increas-
ing Data collection uncertainty has the strongest effect upon the smallest configurations is
expected from the observations of the Section 4.4.3.

As observed in Section 4.4.3, eliminating regions of high curvature from certain Models can
result in improved NAI stability. This is illustrated in the results of the registration experi-
ments presented in Figure 4-20. The graphs in this figure contain three groupings of results
corresponding to random (leftmost), synthesized (rightmost), and synthesized/filtered (mid-
dle) configurations. The configurations which were synthesized from the filtered Model
exhibit smaller MCE values than either the random or unfiltered configurations due to the
improvement in NAI stability resulting from the filtering process (as described in
Section 4.4.3.).

The final results of this section are for the Clinical Pelvis Model of Figure 4-10 in which
only regions which are clinically accessible during total hip replacement surgery are
included. Experimental registration results are shown in Figure 4-21, and the trends evident
in the graphs are similar to those reported earlier in this section. This result is important
because it demonstrates that constraint synthesis performs well compared to random Data
selection, even when the size of the Model is relatively small. This particular application
(i.e., registration of the pelvis during total hip replacement surgery) will likely be the first
clinical demonstration of the Intelligent Data Selection method.

4.5  Discussion

The improvement in registration accuracy resulting from the application of Intelligent Data
Selection (IDS) is a function of many factors including:

• The magnitude of noise in the Data collection sensor.

• The magnitude of uncertainty in the Data collection process.

• The incremental cost of acquiring Data, and the number of Data points which can be
“afforded”.
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Figure 4-18: MCE vs. NAI for the Pelvis Model for random and synthesized configurations. Data collection uncertainty of 5.0 mm
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Figure 4-19: MCE vs. NAI for the Pelvis Model for random and synthesized configurations. Data collection uncertainty of 10.0 mm.
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Figure 4-20:  MCE vs. NAI for the Femur Model for random and synthesized configurations. Data collection uncertainty of 5.0 mm.
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Figure 4-21: Clinical Pelvis Registration Results
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As discussed in this chapter, increasing uncertainty in the Data collection process will have
an adverse effect upon the utility of IDS. The amount of uncertainty which can be tolerated
is a function of the shape of the object being registered and the number of points which can
be collected. Data collection uncertainty has the largest effect upon the NAI when the size of
the Data configuration is small and there are many regions of high curvature on the object.

Noise in the Data collection sensor will affect the accuracy which can be achieved by shape-
based registration, but does not seem to have a strong effect on the utility of the IDS method
(as measured by the relative performance of random and synthesized configurations as a
function of increasing sensor noise). Of course, if sensor noise becomes too large, it will
also increase Data collection uncertainty, and thus the utility of IDS will decrease.

While the experiments in this chapter have not dealt with the magnitude of noise in the
Model (i.e., how well the Model represents the true shape), it is likely that this will also be
an important factor in assessing the benefit of IDS. One reason that Model noise was not
investigated is the difficulty in developing realistic mathematical models of noise in the
Model generation process. This process includes not only image formation (i.e, from CT or
MRI), but also the process of extracting geometric surface descriptions from the 3-D image
data. It is unlikely that simple Gaussian noise models would realistically represent the errors
introduced by these complex and highly non-linear processes. In addition, such a simple
noise model is very similar to the one used to generate corrupted Data points in this chapter.
Therefore, it is likely that corrupting the Model with Gaussian noise would result in similar
experimental outcomes to those reported.

There are several other factors which will affect the decision of whether to apply IDS in a
given situation, including:

• The registration accuracy required for the given task.

• The incremental costs of acquiring Data.

When registration accuracy requirements are low, manually-selected Data configurations
may result in sufficient registration accuracy. When the costs of acquiring registration Data
are low, the need for IDS is reduced. Increasing the quantity of registration Data collected
will typically result in improved registration accuracy (assuming that the noise characteris-
tics are stationary over the collected Data). Therefore, when Data are cheap, collecting large
quantities will always result in improved registration accuracy, thus reducing the benefit of
IDS.

In the ongoing assessment of the IDS method, each new situation (i.e., shape of the registra-
tion object, Data collection device, Model generation method, etc.) is being evaluated on a
case-by-case basis to determine whether application of IDS is appropriate. By performing
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stability and registration experiments such as those outlined in this chapter, it is possible to
systematically evaluate the utility of IDS, and to better understand the influence of noise
upon registration accuracy for the given situation.

The next chapter applies the IDS methods to several registration problems in a laboratory
environment. In addition, it is shown that the constraint analysis method can be useful for
the purpose of estimating registration accuracy during the registration process. In addition to
laboratory studies, the IDS methods are currently being incorporated into a computer-
assisted surgical system for use in total hip replacement surgery [DiGioia et al., 1995]. As
demonstrated in the next chapter, constraint analysis and constraint synthesis appear to be
useful in real-world problems.
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Chapter 5

Applying Constraint Analysis and
Synthesis

The previous chapters have outlined methods for performing registration, for assessing reg-
istration accuracy via geometric constraint, and for automatically synthesizing Data config-
urations which maximize geometric constraint. The current chapter brings all of these
components together to demonstrate how accuracy can be improved on a real-world regis-
tration problem. The resulting framework encompasses all of the components outlined in
Figure 5-1. The most important results presented in this chapter demonstrate that synthe-
sized Data sets collected by a human from a physical object result in significantly better reg-
istration accuracy compared to manually-selected Data sets.

Another problem addressed in this chapter is minimizing the quantity of Data needed to sat-
isfy a given accuracy requirement. It is shown that solving this problem requires the ability
to estimate registration accuracy online, during the registration process. A method for online
accuracy estimation is proposed which combines a residual error measure defined in Chap-
ter 2, with the NAI criterion measure from constraint analysis. A second method is proposed
which uses this online accuracy estimate together with Intelligent Data Selection to mini-
mize the quantity of Data required to satisfy accuracy requirements.

The remainder of this chapter is organized as follows. Section 5.1 examines the problem of
generating minimally-sized Data configurations. A method for solving this problem is pre-
sented, and variants are suggested for reducing the effects of Data collection uncertainty and
sensor noise. Section 5.2 proposes a method for generating reliable online estimates of reg-
istration accuracy based upon a residual error measure and the NAI criterion measure.
Section 5.3 describes the experimental setup used to perform the registration experiments
reported in this chapter, and Section 5.4 presents the results of these experiments.
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5.1  Minimally-Sized Data Configurations

One motivation for using the framework outlined in Figure 5-1 is to minimize the quantity
of Data required to satisfy registration accuracy requirements. As demonstrated in
Sections 3.4 and 4.4, there are many factors which affect registration accuracy including: the
geometry of the registration object; the quantity of registration Data; the geometric con-
straint provided by the Data (i.e., the NAI value); the Data collection uncertainty; and the

Figure 5-1: All of the components of the object localization framework are combined in this
chapter to demonstrate accuracy improvements in a real-world registration
problem.
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magnitude of noise in the Data and Model. In the experimental results reported in previous
chapters, nominal values for the noise parameters were selected for each experiment
(e.g., expected sensor noise magnitude, , Data collection uncertainty radius,ru). Given
these parameters and a particular Data configuration, it was possible to estimate the result-
ing registration accuracy using the experimental method outlined in Figure 3-15. Unfortu-
nately, in practice it may be difficult or impossible to reliably estimate sensor noise and Data
collection uncertainty parametersa priori.

For example, in the experimental results presented in this chapter, an optical digitizing probe
was used for Data collection (see Section 5.3 for details). With such a probe, sensor noise is
a function of several parameters including the quality of probe calibration, the probe’s loca-
tion within the sensor’s workspace, the characteristics of the particular probe which is used,
and the skill of the Data collector. Similarly, Data collection uncertainty is a function of fac-
tors such as the geometry of the registration object and the skill of the Data collector. In gen-
eral, it is impossible to reliably estimate sensor noise and Data collection uncertainty
a priori. Therefore, it is difficult to estimate registration accuracy (and thus the number of
Data points required to satisfy accuracy requirements) without additional information.

Fortunately, additional information is available online, during the registration process.
Recall from the discussion of Section 2.5 that there are several registration accuracy mea-
sures which do not require the availability of the known pose transformation. Based upon
one of these measures, a method is presented in Section 5.2 for online estimation of the true
registration accuracy. Given this online accuracy measure, it is possible to minimize the
quantity of Data needed to satisfy accuracy requirements using the following approach.

Method for Achieving Minimum-Sized Data Sets (“MSDS Method”)

1. Offline, before the registration process, use Intelligent Data Selection to synthe-
size multiple Data configurations of increasing size, each of which is a superset
of the previous configuration. For example, synthesize 5 configurationsP10, P20,
P30, P40 andP50, containing 10, 20, 30, 40, and 50 points, respectively, such that
the following relation holds: .

2. Online, during the registration process, collect all of the points in the first config-
uration,P10. Compute the registration transformation using these points.

3. Compute the online registration accuracy estimate and determine if accuracy
requirements are satisfied. If so, EXIT.

4. Collect the points within the next configuration set (e.g.,Pi+10) which have not
already been collected. If all Data configurations have been collected, EXIT.

5. Compute the registration transformation using the new, larger set of Data. Goto
Step 3.

µ∆

P10 P20 P30 P40 P50⊂ ⊂ ⊂ ⊂
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The basis for this approach is demonstrated in the experimental results of Section 4.4. For
example, Figure 4-20 shows that both the NAI and MCE increase as a function of increasing
configuration size for synthesized configurations on the Femur object. Therefore, by apply-
ing the MSDS method, registration accuracy should increase monotonically with increasing
configuration size. In terms of implementation, only minor modifications of constraint syn-
thesis are necessary in order to synthesize configurations which are supersets of pre-existing
configurations.

An interesting question regarding this method is the effect of the superset condition upon the
NAI-optimality of a configuration. For example, assume that a configuration of 30 points,
P30, is synthesized by first synthesizing a configuration of 10 points,P10, and then a config-
uration of 20 points,P20, such that . Now assume that a second configura-
tion of 30 points, , is synthesized without any conditions. How do the NAI values of the
two 30 point configurations compare? Experiments to answer this class of questions have
not yet been conducted. If synthesizing many intermediate configurations degrade the even-
tual NAI value, then the choice of the intermediate set sizes will be crucial. A particularly
interesting question is how the MSDS method behaves when the point-size increment
between subsequent sets is one (e.g., ). If the behavior of the method is
reasonable in this case, it may be possible to synthesize configurations online, during the
registration process in real-time.

Recall that the registration solution method described in Section 2.3 contains a step which
removes outlier Data points based upon a residual threshold,εo (see Section 2.3.3). In some
situations, points removed as outliers may be valuable with respect to geometric constraint,
and removing them may significantly reduce the effective NAI value. Therefore, in Step 4 of
the MSDS method, it may be desirable to re-collect points which have been removed by out-
lier elimination on the previous iteration.

In the MSDS method, it is possible to terminate without satisfying accuracy requirements
(see Step 4). Recall that one of the most significant factors influencing registration accuracy
is the magnitude of sensor noise. If the effects of sensor noise can be reduced, registration
accuracy should improve. This observation suggests the following procedure for handling
termination without satisfying accuracy requirements.

MSDS Method (continued)

(replace “EXIT” in Step 4 above with “goto Step 6”).

6. Reduce the outlier elimination residual threshold,εo, by a fixed amount, and
recompute the registration transformation using all previously collected Data.

P10 P20 P30⊂ ⊂
P30

*

P10 P11 P12...⊂ ⊂
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7. Compute the online measure of registration accuracy. If accuracy requirements
are satisfied, EXIT.

8. Re-collect all of the Data points which were eliminated as outliers during the last
registration trial (i.e., during Step 6 or Step 9).

9. Compute the registration transformation and the online accuracy estimate.

10. If accuracy requirements are satisfied, EXIT. If there were any points removed
by outlier elimination in Step 9, then goto Step 8. If the residual error threshold,
εo, is below a minimum value,εo-min, then EXIT. Else goto Step 6.

This procedure is based upon the assumption that points eliminated as outliers during the
registration process are “noisy”, and tend to increase the average sensor noise magnitude.
By eliminating and re-collecting these outliers, the newly collected replacement Data may
have improved noise characteristics, thus resulting in smaller registration errors. This proce-
dure also assumes that sensor noise results from a random process, and not a systematic (and
thus repeatable) sensor error.

A final variant of the MSDS method addresses the problem of Data collection uncertainty.
Recall that Data collection uncertainty results in deviations between the locations ofdesired
andcollected Data points. As explained in Section 4.3, this deviation may result in a reduc-
tion in the NAI, especially when there is a large discrepancy between the surface normals
corresponding to the desired and collected points. As outlined in Figure 5-1 and demon-
strated in Section 5.3, it is possible to use current estimates of the registration transforma-
tion to guide the Data collection process. Using this guidance mechanism, better
transformation estimates result in reduced Data collection uncertainty. The above observa-
tions suggest a modification to the MSDS method in which points from relatively flat
regions of the surface are collected first, and those in regions of high curvature are collected
later. By collecting points within flat regions when the transformation estimate is poor (and
Data collection uncertainty is large), it may be possible to reduce the effects of uncertainty.
After Data in the flat regions are collected and used in registration, the transformation esti-
mate should be more accurate, and thus Data collection uncertainty will be reduced. With
reduced uncertainty, points from regions of higher curvature which are relatively sensitive to
uncertainty can be collected more precisely.

A method for implementing the above multi-resolution Data collection is outlined in
Figure 5-2. This method requires the use of the high-curvature point elimination filter
described in Section 4.3. This filter eliminates regions from a Model based upon surface
normal variations within the region. As a first step, high curvature regions of a Model are
eliminated, and a configuration,P1, is synthesized from the resulting filtered Model.1 Next,

1. In this example, the subscript on a configurationPi is an index, not the configuration size.
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the filter is run on the surface again with relaxed parameters, thus including higher curvature
regions in the second filtered Model. A second configuration,P2, is then synthesized such
that . This process is repeated several times, increasing the included curvature and
point size each time. Once these configurations have been synthesized, the original MSDS
method can be applied as before.

5.2  Online Accuracy Estimation

To implement any of the methods for selecting minimally-sized Data sets described in the
previous section, the ability to generate online estimates of registration accuracy is required.
To be useful, an online accuracy estimate must relate a quantity which can be measured dur-
ing the registration process, to a second quantity which has physical meaning to the task for
which registration is being performed. The estimate of this second quantity can then be used
to determine whether accuracy requirements have been satisfied. Throughout most of this
dissertation, the maximum correspondence error (MCE) has been used as a generic measure

P1 P2⊂

Figure 5-2: A method for minimizing Data set size and reducing the effects of Data
collection uncertainty. The sets are generated such that .P1 P2 … P⊂ N⊂ ⊂
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of true registration accuracy; however, other measures which are more specific to a given
task may be desired, as discussed in Section 2.5.

This section outlines a method for estimating an upper bound on the true registration accu-
racy as a function of a residual error which can be measured online. The measure of registra-
tion accuracy used in this discussion is MCE; however, it is likely that the method can be
extended to other measures of registration accuracy. It is shown that online computation of
the NAI is required in the process, since the proposed method breaks down when the effec-
tive NAI value is too small. The feasibility of the proposed method is demonstrated via
experimental results presented in Section 5.4.2.

Recall from the discussion of Section 2.5 that there are several error measures based upon
the residuals computed during the registration process. For example, the root-mean-square
error(RMS) is defined in Equation 2.11 as:

(5.1)

whereN is the number of points in a Data configuration; eachDi is a Data point;R andT are
a rotation and translation which collectively comprise the registration transformation; and
eachMi is the Model point which is closest (in terms of Euclidean distance) to the corre-
sponding transformed Data point, . The RMS error is a measure of the distance
between the Data points and the Model. One advantage of this measure is that it can be com-
puted using only information available during registration. The method proposed in this sec-
tion is based upon the observation that there is a strong relation between RMS and MCE
when both are computed at the termination of the registration process.

In Section 3.4.1, the results of several registration experiments are presented which relate
MCE to effective NAI for the Femur, Pelvis and Venus Models (see Figure 3-24). The
parameters used in these registration experiments are reported in Table 3-14. Using a subset
of the data from the same registration experiments, the plot of Figure 5-3 was generated and
shows the relationship between MCE and RMS for the Femur Model. Each datum repre-
sents a registration experiment performed using a different random configuration, sensor
noise value and initial pose transformation. An important feature of this plot is that a line
passing through the origin provides a good upper bound estimate of MCE as a function of
RMS. In Section 5.4.2, it is shown that the slope of this upper bound line does not change as
a function of sensor noise or configuration size; however, the MCE-RMS relationship does
break down when the effective NAI value is near zero. This is expected since NAI values of
zero reflect a singularity condition in which the MCE can increase indefinitely with no
change in RMS error. Based upon these observations, the following method is proposed for
online estimation of registration accuracy.

RMS
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N
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Online Accuracy Estimation Method

Offline Steps:

1. Before registration, perform a series of registration experiments such as those
used to generate the plot of Figure 5-3 (see Figure 3-15 for a description of the
experimental method).

2. For each registration result of Step 1, compute the effective NAI value at the ter-
mination of registration. Eliminate MCE-RMS pairs which have corresponding
NAI values below a threshold, NAImin.

3. Estimate the slope of the MCE-RMS upper bound line based upon the data
remaining after the elimination procedure of Step 2.

Online Steps:

4. After a registration trial has terminated, compute the RMS and effective NAI val-
ues from the registration results.

5. If the effective NAI value is below NAImin, it is necessary to collect additional
registration Data since the relation between MCE and RMS will be unpredictable.
Collect the additional Data and goto Step 4.

6. Using the online RMS measurement and the pre-computed slope of the upper
bound line, compute an upper bound estimate for MCE.

Figure 5-3: Relation between the maximum correspondence error (MCE) and root-mean-
square error (RMS) for a series of registration trials using the Femur Model.
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The feasibility of this method is demonstrated in the experimental results of Section 5.4.2.
In particular, it is shown that the slope of the upper bound line is relatively independent of
sensor noise, data collection uncertainty, configuration size and NAI, assuming that effective
NAI values are above the specified threshold. In addition, it is shown that estimates of the
slope of the upper bound line computed via both simulated and actual registration experi-
ments are very similar.

In Section 5.4.2, it is also shown that the slope of the upper bound line is Model dependent.
Therefore, each new registration object may require offline computation of this slope. An
interesting question is whether the slope of the upper-bound line must be computed for each
new registration object for which online accuracy estimates are required, or whether slope
estimates based on a single prototype Model can be used for each class of objects (i.e., all
femurs). This question remains to be addressed in future investigation.

5.3  Experimental Setup

To evaluate the registration accuracy achieved in physical experiments, a precise estimate of
the actual registration transformation must be available to use as ground-truth. The frame-
work in Figure 5-4 uses fiducial-based registration to provide the high-accuracy ground-
truth required to evaluate shape-based registration. The fiducial markers, 0.5 inch diameter

Bone Specimen

Raw CT Data

CT - fiducial locations Surface Model

Bone Specimen

Sensor fiducial

Sensor Data

Ball-finding Model Generation

Sensing

Fiducial
Based

Registration

Accuracy Shape
Based

Registration

Figure 5-4: Validating shape-based registration accuracy using the result of fiducial-based
registration as ground-truth.

Validation

 locations
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aluminum spheres mounted on plastic stand-offs, were carefully designed to maximize the
accuracy with which they could be localized in CT images and in the surgical coordinate
system (e.g., using a digitizing probe). After determining the locations of the markers in the
CT and surgical coordinate systems, a corresponding point registration method (see
Figure 2-3) was used to establish the ground-truth registration transformation [Horn, 1987].
Validating the accuracy of the fiducial-based method is a difficult problem since a more
accurate standard is required for this purpose. In the experiments described below, the aver-
age residual errors for fiducial-based registration are on the order of 0.1 mm, with similar
values for the maximum residual errors. Relating these numbers to true registration error
depends upon the relative positions of the fiducial markers on the registration object, and
requires that certain assumptions be made regarding the source of the residual errors.
Assuming a Gaussian noise model for the residual errors, it can be argued that maximum
correspondence errors resulting from fiducial-based registration of the Femur object are
roughly equal to the maximum residual errors (i.e., about 0.1 mm).

The registration object used in the current experiments was a human femur with attached
fiducial markers as seen in Figure 5-5. The femur was CT scanned in air using a General
Electric “High-Speed Advantage” clinical CT imager at a resolution of 0.29 mm x 0.29 mm
x 1.0 mm with 1.0 mm slice thickness. A CT cross section of the femur which includes one
of the fiducial markers is seen in Figure 5-6. The location of the fiducial markers can be
automatically extracted from the CT data by intensity-thresholding the images, computing
the volume and eccentricity of the resulting connected regions, identifying the regions likely
to be spheres, and computing the resulting 3-D centroids. A surface Model of the femur such
as the one shown in Figure 3-21 was generated from the CT images by extracting bounding
contours of the femur from each CT image, and then linking these contours into a triangle
mesh surface using the method described in [Geiger, 1993].

To collect the registration Data points and to estimate the centroids of the fiducial markers in
surgical coordinates, the optical digitizing system shown in Figure 5-7 was used. This sys-
tem is capable of determining the location of a digitizing probe’s tip to within 0.1 mm at
rates of 100 Hz and faster. The two digitizing probes shown in Figure 5-8 were used to col-
lect the Data points for the experiments. As demonstrated in Section 5.4, these two probes
have very different noise characteristics. A similar probe was used to estimate fiducial
marker centroids, as seen in Figure 5-9.

The Data collection process of Figure 5-1 includes a human Data collector who uses a sen-
sor (i.e., a digitizing probe) to collect Data on the surface of the registration object based
upon the Data collection plan. In order to guide the Data collector, a display such as the one
shown in Figure 5-10 was used. The display contains a graphical rendering of the registra-
tion object with a semi-transparent, colored sphere centered at the location of the current
desired Data point. In the absence of additional information, this display is useful for visu-
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ally communicating the location of the desired point to the Data collector. The radius of the
sphere can be used to indicate the expected region of collection.

Incremental registration transformation estimates are available from the registration process
after the collection of each new Data point, as indicated in Figure 5-1. Using these esti-
mates, the location of the digitizer’s probe-tip can be transformed into the Model’s coordi-
nate system and superimposed on the display of Figure 5-10. When the collector moves the

Figure 5-5: A human femur with attached spherical fiducial markers.

Figure 5-6: CT cross-section of the human femur and a spherical fiducial marker mounted
on a plastic stand-off. Determining the centroid of the marker within the CT data
set is done with a simple thresholding operation and 3-D centroid calculation.
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Figure 5-7: An optical digitizing system. The 3-lens camera system seen in the background
determines the locations of the light-emitting-diodes (LEDs) mounted on the
digitizing probe seen in the foreground. The location of the digitizing probe-tip
can be determined to within 0.1 mm at rates upwards of 100 Hz.

Figure 5-8: The 6- and 24-marker digitizing probes.

6-Marker Probe

24-Marker Probe
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Figure 5-9: Determining the location of a fiducial marker’s centroid in surgical coordinates.
The above probe is calibrated such that the probe-tip’s origin is coincident with
the centroid of a spherical fiducial marker when the probe-tip (a hollow cylinder)
is mated with a fiducial. This allows estimation of a fiducial’s centroid using a
single measurement.

Figure 5-10: Display provided to the human Data collector which provides navigational
guidance during the Data collection process. The large, semi-transparent
sphere indicates the location of the desired point. The small dark sphere
indicates the estimated location of the digitizer’s probe-tip.

Sphere indicating

Sphere indicating
the estimated position
of the digitizer probe-tip

the region of the
desired Data point
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probe-tip, its location on the display is updated in real-time. The goal of the Data collector is
to align the sphere representing the probe-tip position and the sphere representing the
desired Data point. Each time a Data point is collected, the display automatically updates to
show the next desired point. The viewing direction is also updated so that the desired point
is always facing towards the viewer.

When the registration transformation estimate is poor, the sphere representing the probe-tip
location can appear to be floating in space, even when the probe-tip is positioned on the
object’s surface. Since this effect can be disconcerting, it is possible to project the sphere
representing the probe-tip location onto the closest point of the rendered surface. While this
approach often leads to good results, care must be taken since it can be misleading in certain
regions of the Model.

5.4  Experimental Results

The first set of results in this section presents the very encouraging outcome of applying
constraint analysis and synthesis to a practical registration problem. The second set of
results demonstrates the feasibility of performing accuracy estimation online, during the
registration process.

5.4.1  Comparing Synthesized and Manually-selected Data Configurations in a
Practical Registration Problem

The results presented in this section are perhaps the most important of the entire disserta-
tion. They demonstrate that the Intelligent Data Selection method can significantly improve
registration accuracy and reduce the need for large quantities of registration Data in real reg-
istration problems. The registration experiments used to generate these results are similar to
those performed earlier in the dissertation (e.g., see Figure 3-15) with several important dif-
ferences.

1. All registration Data points were manually collected by a human using the optical
digitizing probe on the Femur registration object.

2. Instead of randomly generated Data configurations, manually-selected Data con-
figurations were used.

3. No sensor or Data collection uncertainty noise was added to the Data since the
Data already contain these noise components.

The experimental parameters used in these experiments are summarized in Table 5-1. Syn-
thesized and manually-selected configurations of 6, 10, 25 and 50 points were collected
using both the 6- and 24-marker digitizing probes shown in Figure 5-8. For each configura-
tion size / digitizing probe combination, 50 manually-selected and 25 synthesized configura-
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tions were collected by a human Data collector (i.e., the author). The navigational guidance
display outlined in Figure 5-10 was used for collection of all synthesized configurations.
The particular synthesized configurations used were the same ones reported in the “PBIL-
NAH” row of Table 4-2, with a new set of configurations synthesized for the 6-point config-
urations. Each of the 5 synthesized configurations reported in the table was independently
collected 5 times, for a total of 25 collected synthesized configurations.

Initial pose estimates for registration were derived using anatomical landmark-based corre-
sponding point registration. Three landmark points were identified on the Femur Model
(i.e., in CT coordinates), and the Data collector attempted to acquire these same three points
on the Femur object using the digitizing probe (i.e., in surgical coordinates). New landmark
points were collected in surgical coordinates for each registration trial; however, the same
CT landmark points were used for all trials. Minima suppression and outlier elimination
were both enabled during the registration trials.

The results of the femur registration experiments are shown in Figures 5-11 and 5-12 as
plots of maximum correspondence error (MCE) versus the effective noise amplification

Table 5-1:  Registration parameters for the experiments
reported in Section 5.4.1.

Parameter Value

Data sources Manually selected & Synthesized

Data configuration size 6, 10, 25, 50 points

Noise state Disabled

Uncertainty noise Disabled

pose_count 1

set_count 50 manually selected, 25 synthesized

Minima suppression Enabled

τp-max 5.0 mm

θp-max 3.5 degrees

Ip 8 iterations

Outlier elimination Enabled

εo (threshold) 1.5 mm

ρo (ratio) 0.1
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index (NAI). There are 8 graphs in the two figures, one for each configuration size / digitiz-
ing probe combination. Graphs in the same row represent experiments using the same num-
ber of Data points, while graphs in the same column represent experiments using the same
digitizing probe. Within each graph, the open circles represent manually-selected configura-
tions, and the closed circles represent synthesized configurations. The y-axes of the two
graphs within each row have the same scale; however, the x-axes of the graphs within each
column have different scales. It is important to recognize that the effective NAI values plot-
ted along the x-axes are computed online, after the registration process has terminated, and
can thus be used for online accuracy estimation.

Consider the two graphs in the top row of Figure 5-11 corresponding to the 6-point Data
configurations. As shown at the end of Section 3.3.1, six is the theoretical minimum number
of Data points required to unambiguously localize an arbitrarily-shaped object using shape-
based registration. Both of these graphs demonstrate that the synthesized 6-point configura-
tions have significantly smaller MCE values (and larger NAI values) than manually-selected
configurations. In fact, the majority of manually-selected 6-point configurations resulted in
very poor performance despite fairly good initial pose estimates. This is a significant result
because it suggests that it is difficult for humans to select six Data points which completely
constrain an arbitrarily-shaped object.1

In the graphs generated using the 6-point Data configurations, there are several synthesized
configurations which result in relatively poor registration accuracy. This is most likely
caused by the effects of large Data collection uncertainty resulting in reduction in the effec-
tive NAI compared to the ideal NAI, as explained in Section 4.3. Fortunately, using the
methods of online accuracy estimation discussed in Section 5.2, configurations resulting in
large MCE values can be identified during the registration process based upon the RMS
error and effective NAI value. Once identified, the accuracy for such configurations can be
improved via additional Data collection.

Due to physical differences between the two digitizing probes shown in Figure 5-8, the
probes have very different noise characteristics. These differences are apparent in the results
of Figures 5-11 and 5-12 by comparing MCE values between the two graphs of each row.
Both average and maximum MCE values are smaller for each 6-marker configuration com-
pared to the same-sized 24-marker configuration. This suggests that the 6-marker probe has
smaller noise magnitudes (i.e., higher accuracy) than the 24-marker probe, an observation
which is supported by the digitizer’s manufacturer [Northern Digital Inc., 1992]. There are
two reasons for these differences in noise magnitudes. First, the 6-marker probe has a larger
separation between LEDs perpendicular to the probe’s central axis than the 24-marker
probe. This separation results in greater probe-tip localization sensitivity. Second, the LEDs

1. For the results presented in this section, the author performed all Data collection. A subset of these
experiments was repeated using other human Data collectors with similar results.
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Figure 5-11: MCE versus Effective NAI for 6- and 10-point Data configurations using the 6- and 24-Marker Probes
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Figure 5-12: MCE versus Effective NAI for 25- and 50-point Data configurations using the 6- and 24-Marker Probes
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in the 6-marker probe all point in the same direction, while the LEDs on the 24-marker
probe are all oriented outward on the surface of a cylinder. This variation in LED orientation
in the 24-marker probe results in apparent shifts of the LED centroids, thus decreasing
probe-tip localization accuracy.

The benefit of using synthesized as opposed to manually-selected configurations is more
apparent with the less accurate (i.e., 24-marker) probe, independent of configuration size.
For example, using the 6-marker probe, for both the 25- and 50-point configurations, there is
little apparent improvement in MCE values between the manually-selected and synthesized
configurations. However, using the 24-marker probe, the advantage of the synthesized con-
figurations is significant. This suggests that constraint synthesis is more beneficial for
smaller configuration sizes and larger sensor noise magnitudes, a trend which is apparent in
some of the experimental results of Chapter 4.

The results of Figures 5-11 and 5-12 also demonstrate the importance of minimizing inaccu-
racies in a Data collection device if high accuracy registration results are desired. This is
true independent of the method used for generating Data configurations. For example, in the
graphs of the 25- and 50-point configurations, random configurations using the more accu-
rate probe result in smaller values of MCE than synthesized configurations using the less
accurate probe. Whether to use a less accurate probe with constraint synthesis or a more
accurate probe without constraint synthesis is a decision which will depend upon several
factors including the relative costs involved.

The results of Figures 5-11 and 5-12 clearly demonstrate the benefits of Intelligent Data
Selection on a practical problem. It should be noted that collecting the Data for these figures
was a long, tedious process, requiring manual collection of over 15,000 Data points. Never-
theless, similar experiments must be repeated in the future using several registration objects
to fully evaluate the benefits of this approach in practice.

5.4.2  Online accuracy estimation

This section demonstrates the feasibility of the online accuracy estimation method proposed
in Section 5.2. The experimental results presented in this section demonstrate three key
points.

1. That the upper bound lines resulting from plots of MCE versus RMS are rela-
tively independent of sensor noise, configuration size and NAI, assuming that
results with effective NAI values close to zero have been eliminated.

2. That upper bound lines estimated based upon offline registration experiments are
sufficiently similar to corresponding online estimates.
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3. That the slope of the upper bound line is dependent upon the shape of the regis-
tration object.

In order to demonstrate point 1 from the above list, several graphs of MCE versus RMS
were plotted using registration results from the same online experiments reported in the pre-
vious section. These graphs are shown in Figures 5-13 and 5-14. Each graph shows the rela-
tionship between MCE and RMS for a different subset of the experimental results of
Section 5.4.1. The four graphs of Figure 5-13 correspond to the experiments performed with
Data configuration sizes of 6, 10, 25 and 50 points. The four graphs in Figure 5-14 corre-
spond to experiments performed using the 6- and 24-Marker digitizing probes, and to trials
which resulted in small effective NAI values (0.1 < NAI < 0.5) and large effective NAI val-
ues (0.5 < NAI). Each datum plotted within the 8 graphs represents a single registration
experiment with the indicated values of MCE and RMS. The results of registration trials
with effective NAI values less than 0.1 were not included in any of the graphs. The upper
bound lines are drawn with a solid diagonal line, and the slopes of these lines are indicated.
The significance of the dotted diagonal lines will be explained below. The important feature
of these graphs is that the slope of the upper bound lines are very similar, ranging from a low
value of 3.7 to a high value of 4.1. This suggests that the MCE-RMS upper bound relation-
ship is relatively independent of configuration size, sensor noise and NAI value (for effec-
tive NAI values > 0.1).

In order to apply the upper bound relation demonstrated above to the problem of online
accuracy estimation, it is necessary to determine the slope of the upper bound offline, before
registration is performed. Once the slope of this line is known, it can be used online to esti-
mate an upper bound on MCE given a measured value of RMS. The next set of results dem-
onstrates that it is possible to estimate the slope of the upper bound line based upon offline
registration experiments. The parameters used in these offline experiments are presented in
Table 5-2. The registration parameters are identical to those used in the online experiments
of Section 5.4.1. Experiments were performed using synthesized and random configurations
containing 6, 10, 25 and 50 Data points. The synthesized configurations are identical to
those which were physically collected in the experiments of the previous section. Sensor
noise with expected magnitudes of 0.5 mm, 1.0 mm and 2.0 mm was added to the Data, and
collection uncertainty noise with a bound of 5.0 mm was also added. There were a total of
250 random configurations evaluated at 2 initial poses each, and 5 synthesized poses evalu-
ated at 100 initial poses each.

Figures 5-15 and 5-16 contain 8 graphs of MCE versus RMS for this set of offline experi-
ments. These 8 graphs are similar to those presented in Figures 5-13 and 5-14. The slopes of
the upper bound lines in each of these graphs are similar to each other, with slopes ranging
from 4.3 to 4.5. Once again, this result suggests the independence of the MCE-RMS relation
as a function of configuration size, NAI value, and noise magnitude.
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Figure 5-13: MCE versus RMS error for the online registration experiments of Section 5.4.1 using the Femur object. The four graphs
contain subsets of the results based on configuration size. Slopes of the upper bound lines are indicated.
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Figure 5-14:  MCE versus RMS error for the online registration experiments of Section 5.4.1 using the Femur object. The four graphs
contain subsets of the results based on digitizing probe and NAI value. Slopes of the upper bound lines are indicated.
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Comparing the slopes of the upper bound lines from the offline (low: 4.3, high: 4.5) and
online (low: 3.7, high: 4.1) experiments, it appears that the offline experiments have consis-
tently higher slopes. This is probably the result of the much larger number of experiments
performed in the offline experiments. The slope of the upper bound line is determined by the
maximum value of the MCE/RMS ratio over all experimental trials. As the number of
experiments increases, it is expected that this ratio will also increase as the “tails” of the dis-
tribution fill out. Therefore, it is likely that the slopes computed in the offline experiments
are more realistic estimates of the true upper bound slopes than those computed in the online
experiments. It is expected that if the number of online experiments were significantly
increased, the corresponding slope of the upper bound line would approach the high value of
4.5 estimated by the offline experiments. For reference purposes, lines with a slope of 4.5
were added to all of the graphs in the online results of Figures 5-13 and 5-14 (dotted diago-
nal lines in the graphs). In all of these graphs, and especially for small values of MCE, the

Table 5-2:  Registration parameters for experiments reported in
Section 5.4.2.

Parameter Value

Data sources Random & Synthesized

Data configuration size 6, 10, 25, 50 points

Noise state Enabled

 - expected noise magnitude 0.5 mm, 1.0 mm, 2.0 mm

Uncertainty noise Enabled

ru - uncertainty radius 5.0

pose_count 2 for random, 100 for synthesized

set_count 250 random, 5 synthesized

Minima suppression Enabled

τp-max 5.0 mm

θp-max 3.5 degrees

Ip 8 iterations

Outlier elimination Enabled

εo (threshold) 1.5 mm

ρo (ratio) 0.1

µ∆
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Figure 5-15:  MCE versus RMS error for offline registration experiments using parameters similar to those of Section 5.4.1. The four
graphs contain subsets of the results based on configuration size. Slopes of the upper bound lines are indicated.
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Figure 5-16:  MCE versus RMS error for offline registration experiments using parameters similar to those of Section 5.4.1. The four
graphs contain subsets of the results based on expected noise and NAI values. Slopes of the upper bound lines are shown.

0.0 0.5 1.0 1.5 2.0
RMS (mm)

0.0

2.0

4.0

6.0

8.0

10.0
M

C
E

 (
m

m
)

Expected Noise Magnitude - 0.5 mm - Simulated

Slope 4.4

0.0 0.5 1.0 1.5 2.0
RMS (mm)

0.0

2.0

4.0

6.0

8.0

10.0

M
C

E
 (

m
m

)

Expected Noise Magnitude - 2.0 mm - Simulated

Slope 4.5

0.0 0.5 1.0 1.5 2.0
RMS (mm)

0.0

2.0

4.0

6.0

8.0

10.0

M
C

E
 (

m
m

)

Small NAI Values - Simulated

Slope 4.5

0.0 0.5 1.0 1.5 2.0
RMS (mm)

0.0

2.0

4.0

6.0

8.0

10.0

M
C

E
 (

m
m

)

Large NAI Values - Simulated

Slope 4.5



Chapter 5. Applying Constraint Analysis and Synthesis

160

effect of the differences between online and offline slope estimates for the purposes of
online accuracy estimation is minimal.

As mentioned, the upper bound relation between MCE and RMS breaks down for very small
values of the NAI. This is expected since NAI values of zero reflect a singularity condition
in which the MCE can increase indefinitely with no change in RMS error. Initially, it was
expected that the slope of the upper bound line would be a function of NAI for large values
of NAI as well; however, experimental results have not demonstrated this relation. In the
experimental results presented in this section, all registration trials with effective NAI values
below 0.1 were eliminated. This threshold was determined empirically. Further study is
required to determine how this threshold should be selected on an object specific basis.

The final experimental result of this section demonstrates that the slope of the upper bound
line depends upon the registration object which is used. In Figure 5-17, MCE is plotted ver-
sus RMS error for the Venus object based upon offline registration experiments. As seen in
the graph, the slope of the upper bound line is 6.2, which is significantly larger than the
slope estimates of roughly 4.5 for the Femur object. Additional study of the factors which
affect this slope is warranted. In particular, it will be interesting to determine the sensitivity
of the upper bound line slope to the shape of the object. If the sensitivity is small, it may be
possible to estimate the upper bound line slopes for entire classes of objects (i.e., all Faces
or all Femurs) so that offline slope estimation would not be required for each new Model.

Figure 5-17: The MCE versus RMS error for the Venus Model exhibits a different upper
bound line slope than the previous results for the Femur Model.
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5.5  Discussion

This chapter has presented important results which suggest that the object localization
framework of Figure 5-1 can be used in practice to improve the accuracy of shape-based
registration. Despite these encouraging results, there are several questions which remain to
be answered regarding the practicality of the proposed methods. These questions are cur-
rently being studied by applying the object localization framework to a problem in com-
puter-assisted orthopaedic surgery [DiGioia et al., 1995]. Several of the proposed
registration methods have already been used in human cadaver studies, and clinical patient
trials are scheduled to begin within the next several months.

The experimental results of Section 5.4.1 demonstrate that it is possible to use Intelligent
Data Selection to improve registration accuracy in a real registration problem. Whether or
not this method will be useful in practice depends upon several factors including the noise
characteristics of the Data collection sensor, the registration accuracy requirements, the
costs associated with Data collection (i.e., time, anatomical exposure), and the difficulty of
acquiring Data based upon a specified Data collection plan (i.e., using the interface shown in
Figure 5-10). The need for the Intelligent Data Selection framework is more important when
accuracy requirements are high, expected sensor noise magnitudes are large, or the physical
act of collecting Data is time consuming. If large quantities of high quality Data can be
acquired in minimal time, then the benefits of Intelligent Data Selection may be reduced. In
such situations, it may be possible to manually select Data points, and use online accuracy
estimation to determine if requirements are satisfied. If requirements are not satisfied, the
Data collector can be prompted to manually select additional Data.

The proposed method for estimating registration accuracy online appears to be quite useful.
Several questions remain to be answered before this method can be widely used in practice.

1. Is the slope of the upper bound line dependent upon the particular Model used?
Will a change in the resolution of the Model affect the slope? Will small changes
in the shape of the Model affect the slope?

2. Is the slope of the upper bound line sensitive to registration parameters such as
the outlier elimination threshold,εo?

3. The results of Figures 5-13 through 5-16 show that offline estimates of the slope
of the upper bound line agree with online estimates. Will this similarity between
online and offline estimates hold for other object shapes?

The proposed method for achieving minimally-sized Data sets (MSDS method) may also be
useful in practice. Data collection efficiency will play an important role in determining when
this method is practical. If it is difficult and time consuming to collect specified Data points
from a Data collection plan, it is less likely that the proposed MSDS method will be practi-
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cal. However, for certain applications in which automated Data collection is possible (e.g.,
using a robot or a numerically controlled machine), collecting a specific Data point may be
no more difficult than collecting a random one. In such applications, the MSDS method is
likely to be quite beneficial.
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Chapter 6

Conclusion

This dissertation presents techniques for improving the speed and accuracy of shape-based
registration. The goal of fast registration was achieved via a high-speed registration solver
which increases registration speed by a factor of nearly two orders of magnitude compared
to conventional methods. The capabilities of this solver were demonstrated via a system for
tracking the position and orientation of arbitrarily-shaped objects at rates of nearly 10 Hz
using range data from a high-speed sensor developed at Carnegie Mellon University.

The goal of accurate shape-based registration was achieved via two mechanisms: Intelligent
Data Selection and online accuracy estimation. Intelligent Data Selection is based on the
observation that all Data are not equally beneficial for performing registration accurately.
Judicious selection and careful collection of a limited amount of Data can result in better
registration accuracy than random use of larger amounts of Data. Benefits of the Intelligent
Data Selection method were demonstrated on several practical registration problems.

Estimating registration accuracy online, during the registration process, is a difficult prob-
lem which has not received much attention in the literature. This dissertation proposes and
demonstrates a method which can be used to establish an upper bound between a conven-
tional root-mean-squared error, and a correspondence error which is a measure of true regis-
tration accuracy. Given this upper bound relation, it is possible to estimate worst case
registration errors based on online measurements of the root-mean-squared error. These
worst case estimates can then be used to determine whether accuracy requirements have
been satisfied.

Most of the results of this dissertation have value to a wide class of problems despite the
specialized nature of the application area used in the examples (i.e., surgical registration).
Many of the techniques, analyses and experimental results contribute to the general knowl-
edge of shape-based registration, and to the role of shape in the registration process. The
remainder of this chapter summarizes the contributions of this dissertation, and proposes
directions for future research.
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6.1  Contributions

The most significant contributions of this dissertation are the development and demonstra-
tion of a new set of tools for analyzing, understanding and reasoning about accuracy in
shape-based registration. These tools include constraint analysis and synthesis, a method for
achieving minimum-sized Data sets, and a method for estimating registration accuracy
online. These tools should be useful to other researchers or system developers for exploring
novel methods of shape-based registration, or for studying fundamental issues involving
object shape and the registration process.

Constraint Analysis

While previous researchers have suggested methods similar to the proposed constraint anal-
ysis method, the presentation in this dissertation is significant for several reasons.

1. The important problem of scale dependence in constraint analysis is identified,
the mechanism of this dependence is illustrated, and a solution is proposed. It is
shown that variations in object scale affect the relative contributions of rotational
and translational motions in the resulting constraint analysis. The proposed solu-
tion is to normalize an object’s scale so that the average radius vector has a mag-
nitude of unity when measured about the centroid. It is shown that this
normalization will cause translations and rotations to be treated equivalently in
the analysis on average, and will provide a method for ensuring repeatable results
despite changes in object scale.

2. The equally important problem of coordinate system dependence in constraint
analysis is identified and studied, and a solution for this dependence is proposed.
It is shown that varying the location of the origin of the constraint analysis coor-
dinate system affects the sensitivity of constraint analysis. It is argued that an ori-
gin location which results in the smallest rate of change in least-squared energy
for a rotation of the Data relative to the Model is preferred for maximizing con-
straint analysis sensitivity. It is demonstrated that this condition can be achieved
by placing the origin at a location which is a function of the Model’s surface nor-
mals and surface points.

3. A strong connection is demonstrated between the criterion measure provided by
constraint analysis (i.e., the noise amplification index, or NAI) and the accuracy
resulting from experimental registration trials. The effect of registration Data
noise upon the resulting accuracy is clearly illustrated, and it is shown that the
NAI is a good predictor of the sensitivity to Data noise which a given Data con-
figuration will exhibit (as measured by registration accuracy).
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Constraint Synthesis

Based upon the criterion measure from constraint analysis, the constraint synthesis problem
is defined and several solution methods are explored. It is shown that constraint synthesis
requires the solution of a high-dimensionality optimization problem in which the goal is to
select a Data configuration which maximizes the NAI criterion measure. Several optimiza-
tion methods including two hillclimbing algorithms and a variant of genetic algorithms
(Population-Based Incremental Learning, or PBIL) were applied to the constraint synthesis
problem. It is shown that a hybrid PBIL-hillclimbing approach results in superior perfor-
mance in terms of maximizing the NAI; however, one of the hillclimbing algorithms per-
formed almost as well, and had significantly faster execution times.

The effect of uncertainty in the Data collection process and the resulting implications on
Intelligent Data Selection are described and illustrated via experimental results. An impor-
tant observation is that constraint analysis can be performed using either the output of con-
straint synthesis (i.e., a Data collection plan or DCP) resulting in theideal NAI, or using the
registration Data which is actually collected resulting in theeffective NAI. It is demonstrated
that Data collection uncertainty tends to reduce the value of the effective NAI relative to the
ideal NAI. The ratio of effective to ideal NAI provides a measure of the NAI stability of a
given Data configuration with respect to Data collection uncertainty. Ideally, configurations
generated by constraint synthesis should maximize both the ideal NAI value as well as the
expected value of NAI stability. Unfortunately, it is shown that incorporating the NAI stabil-
ity criterion into the constraint synthesis problem results in exponential complexity. An
alternative method is proposed for maximizing expected NAI stability based upon the elimi-
nation of high curvature regions from a Model before constraint synthesis is applied. It is
experimentally demonstrated that this method improves the NAI stability for certain objects.

Results are presented based upon both simulated and actual registration experiments which
demonstrate that the Intelligent Data Selection framework can be useful for improving regis-
tration accuracy. It is shown that several factors influence the benefit of Intelligent Data
Selection compared to manual or random Data selection including: the magnitude of noise
in the Data collection process; the magnitude of uncertainty in the Data collection process;
the incremental cost of acquiring registration Data; and the number of Data points which can
be “afforded”. In the registration experiments performed using real Data, the accuracy
improvements resulting from Intelligent Data Selection varied between a factor of roughly
five (for 6-point configurations with low noise) to almost no improvement (for 50-point con-
figurations with low noise).

Measures of Registration Accuracy

Several registration accuracy measures are defined and their strengths and limitations are
noted. Accuracy measures are divided into two categories based upon whether a ground-
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truth transformation (i.e., the true registration transformation) is available or not. Since
ground-truth transformations are typically not available during the registration process,
ground-truth-based measures are most useful in the evaluation and development phase of a
registration method, and as a means for specifying registration accuracy requirements.

It is shown that there is a fundamental ambiguity which arises from certain common accu-
racy measures that represent registration error in terms of separate translation and rotation
components. This ambiguity arises due to a dependence between the magnitude of the trans-
lation components and the location of the coordinate system about which the error is
expressed. An example is presented in which a commonly used translation error measure is
shown to vary by a factor of 10 depending upon the choice of coordinate system, despite the
fact that the physical transformation is the same in all cases. This example emphasizes the
importance of careful definition of accuracy measures and related coordinate systems.

A class of ground-truth-based accuracy measures referred to ascorrespondence error mea-
sures are proposed which do not suffer from the above dependence upon coordinate system.
A proof is presented which shows that the maximum correspondence error (MCE) when
computed over the surface of an object provides an upper bound on maximal point displace-
ment both on the object’s surface and within its entire volume. The MCE is used as a generic
measure of registration accuracy throughout most of the dissertation.

In the context of registration accuracy requirements, it is important that task-specific mea-
sures of registration accuracy be used. Task-specific measures express the effect of registra-
tion inaccuracies in terms which can be physically related to a particular task for which
registration is being performed. An example is presented in the context of orthopaedic sur-
gery in which the task is to place a prosthetic implant within a bone. It is argued that regis-
tration accuracy requirements should be expressed in terms of the implant misalignment
which would result as a function of registration error.

Selection of Minimum-Sized Data Sets and Online Accuracy Estimation

The Intelligent Data Selection process, comprised of constraint analysis and synthesis,
requires that the number of Data points be specified as an input. Minimizing the quantity of
registration Data needed to satisfy a given accuracy requirement is an important problem,
especially when the incremental cost of Data collection is high. A method is presented for
achieving this goal which requires computation of multiple, near-optimal Data configura-
tions via Intelligent Data Selection, each of which is a superset of its predecessors. An inte-
gral part of this method is the ability to estimate registration accuracy online, during the
registration process. Each time additional Data are collected, the expected registration accu-
racy is computed, and the resulting accuracy estimate is used to determine whether accuracy
requirements are satisfied. If not, additional Data can be collected. Experimental results are
presented which demonstrate the feasibility of the minimum-sized Data set method.
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To be useful, an online estimate of registration accuracy must relate a quantity which can be
measured during the registration process, to a second quantity which has physical meaning
to the task for which registration is being performed. A method is proposed which relates a
conventional root-mean-squared (RMS) registration error, to a second ground-truth-based
measure of registration accuracy. For the purposes of demonstrating this method, the maxi-
mum correspondence error (MCE) is used; however, other task-specific measures of regis-
tration accuracy could be substituted. It is shown that a linear relation exists between the
RMS error and an upper bound on the MCE. Furthermore, it is demonstrated that the param-
eters of this upper bound relation can be computed offline, before registration. Given an
RMS error value computed at the termination of the registration process, the pre-computed
upper bound relation can be used to estimate a worst-case MCE value. It is shown that this
upper bound relation breaks down when the NAI from constraint analysis is very close to
zero. This is expected since NAI values of zero reflect a singularity condition in which the
MCE can increase indefinitely with no change in RMS error. To account for this, the effec-
tive NAI value is computed at the termination of the registration process as well. If the
resulting NAI value is sufficiently close to zero, additional Data must be collected since it
becomes impossible to estimate any measure of true registration accuracy based upon the
RMS error.

Registration Solution Methods

In the area of registration solution methods, the most significant contribution is the demon-
stration that shape-based registration can be performed at much higher speeds than other
methods previously reported in the literature. Results are presented which demonstrate that
the speed-enhanced iterative closest point (EICP) algorithm developed for this work is
roughly two orders of magnitude faster than the un-enhanced version. The capabilities of
this algorithm are demonstrated in a system for tracking the position and orientation of arbi-
trarily-shaped objects at speeds approaching 10 Hz using a high-speed range sensor devel-
oped at Carnegie Mellon University.

Miscellaneous

In the process of conducting the experiments for this dissertation, a variety of software and
hardware tools were constructed which stand as contributions on their own. Among these
are the tools for acquiring highly accurate registration ground-truth transformations via fidu-
cial-based registration. Design of a fiducial-based registration system capable of achieving
the error tolerances required for use as a ground-truth is a non-trivial engineering problem.
Special care was taken in the design of the fiducial markers themselves, as well as the meth-
ods for locating these markers within the computed tomographic (CT) and surgical coordi-
nate systems.
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Development of the infrastructure required to perform the hundreds of thousands of registra-
tion trials required to generate the results reported in this dissertation was a non-trivial
endeavor. Software was written to automate much of the experimental process. Experiments
were often distributed over 30 or more computer workstations, and software systems were
developed to automatically invoke the experiments and record the results. Analysis of the
data was also semi-automated, and software was written to automatically convert the volu-
minous output of a single registration experiment to the various graphs presented in the dis-
sertation. Performing the reported experiments would have been impossible without
distributing the computation over multiple workstations, and without the automated infra-
structure for collecting and analyzing the results.

A navigational display mechanism was implemented to guide a human Data collector in the
process of collecting the particular Data points specified by a Data collection plan. This
mechanism uses the best estimate of the registration transformation to map the current loca-
tion of the Data collection sensor into the Model’s coordinate system. As additional Data are
collected, the registration transformation estimate should improve. This mechanism will be
evaluated shortly as the Intelligent Data Selection method is used in upcoming clinical trials
of a computer-assisted orthopaedic surgical system.

6.2  Future Work

The registration and accuracy methods described in this dissertation have assumed that the
Model is a triangle-mesh surface, while the Data are composed of discrete points. Many of
the methods presented in this dissertation can be generalized to other representations. For
example, a recently popular method of shape-based registration in computer-assisted sur-
gery matches surface models from pre-operative CT or MRI images to bounding contours
extracted from intra-operative X-rays. In this framework, it is desirable to minimize the
number of X-rays needed to satisfy accuracy requirements, and thus reduce the patient’s
exposure to radiation. The Intelligent Data Selection method can be applied to this problem
via modifications to constraint synthesis. The goal of constraint synthesis in this case would
be to select two or more bounding contours from the surface Model which maximize the
NAI. Rather than evaluating the NAI over sets of discrete points, the NAI would be evalu-
ated over closed contours on the Model (which could be approximated via sets of discrete
points which lie along closed contours). The resulting Data collection plans would specify
approximate view directions of the X-ray imager with respect to the registration object with
the goal of maximizing geometric constraint in the subsequent registration process.

In this dissertation, it is assumed that accuracy requirements are uniform in all directions
(i.e., isotropic). In general, this may not be the case. For example, consider the problem of
localizing a pelvis for the task of placing an implant into the pelvic cup (i.e., the acetabu-
lum). Many acetabular implants are symmetric about the central axis, and therefore localiza-



 6.2. Future Work

169

tion of the pelvis about this axis may not be critical. In this example, Intelligent Data
Selection would select points in a manner which completely localizes the registration object.
Potentially valuable Data points would be “spent” localizing the pelvis about the acetabu-
lum’s central axis, an unnecessary task. It may be possible to reformulate the constraint
analysis criterion measure to consider transformations only in certain pre-specified direc-
tions. Similarly, it might be desirable to weight certain localization directions more heavily
than others. For example, for a given task it may be desirable to localize a human femur
translationally along its central axis less accurately than in other directions.

Despite the encouraging experimental results which demonstrate the potential benefits of the
Intelligent Data Selection and online accuracy estimation methods, additional study is
required to assess the practicality of these methods for use in particular application areas
(e.g., computer-assisted surgery, factory automation). Data collection efficiency will play an
important role in determining when the proposed methods are practical. If it is difficult and
time consuming to collect specified Data points from a Data collection plan compared to
unconstrained Data collection, it is less likely that the Intelligent Data Selection method will
be practical. The efficiency of Data collection is likely to be application dependent. For
example, using a robot or numerically controlled machine, the cost of collecting a specified
Data point may be the same as the cost of collecting a random one; however, when Data col-
lection is performed manually by a human, this may not be the case. Additional study is nec-
essary to evaluate these issues.

In the current constraint synthesis process, there is no way to incorporate the fact that certain
Data points may be more expensive than others to collect. For example, in computer-
assisted orthopaedic surgery, certain Data points can be collected directly from exposed
bony surfaces, while other Data points may require percutaneous (i.e., through the skin) col-
lection, with associated higher collection costs. In this example, it may be desirable to limit
the quantity of percutaneous Data collection, if possible. Modifications could be made to the
constraint analysis measure to incorporate Data collection costs which vary between
regions.

In the framework presented in this dissertation, surface Models are built from CT image
data. In general, it is desirable to minimize the number of CT images required to build suffi-
ciently accurate surface Models. CT acquisition parameters such as inter-slice spacing, slice
thickness, and in-slice resolution, should be adjusted to minimize radiation exposure to the
patient while ensuring that the resulting surface Models are accurate enough to satisfy regis-
tration accuracy requirements. Studying this problem requires an understanding of how sur-
face Model accuracy varies as a function of CT imaging parameters. By applying a signal
theoretic approach to this problem, it may be possible to vary CT resolution parameters dur-
ing the scanning process in a manner which reflects the spatial frequency of the underlying
anatomical structure.
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In the area of high-speed tracking and registration via the speed-enhanced ICP algorithm, it
should be possible to parallelize the registration process by dividing the closest point com-
putations over multiple processors. This should result in speed improvement roughly pro-
portional to the number of processors. It would also be interesting to examine the Intelligent
Data Selection method in the context of high-speed tracking. In this application, there are
high costs associated with the collection of large amounts of registration data (i.e., reduction
in tracking speed). Therefore, Intelligent Data Selection may be useful for identifying
regions of the registration object in which Data collection should be concentrated with the
goal of minimizing the quantity of Data, and thus the maximizing tracking speed, required
for accurate tracking.
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Appendix A

Application of the Speed-Enhanced ICP
Algorithm to High-Speed Tracking

This appendix describes a system for tracking the position and orientation of arbitrarily-
shaped objects from range data at speeds of roughly 10 Hz. The Carnegie Mellon University
(CMU) high-speed range sensor, which is capable of acquiring 32x32 cell range images at
500 Hz, provides the data used for tracking. The primary software component of the system
is the speed enhanced iterative closest point (EICP) algorithm described in Section 2.4.
While other researchers have addressed the problem of pose tracking using range data
[Grimson et al., 1994] [Yamamoto, 1993], to this author’s knowledge none have demon-
strated sub-second performance without the use of fiducial markers.

A.1  The Tracking Algorithm

An outline of the tracking algorithm is shown in Figure A-1. Each box in the diagram repre-
sents a processing step, and the processing sequence is indicated by the large-headed
arrows. Inputs to a processing step are indicated by the quantities to the left of each box,
while outputs are indicated by the quantities to the right.

During initialization, a pre-computed triangle mesh Model,M, is loaded into memory, and a
k-d tree is built fromM. In the tracking experiments,M is constructed offline using a tech-
nique based on deformable surfaces [Delingette et al., 1992]. This technique can fuse range
data collected from multiple views into a single triangle mesh surface model. The surface
model was created from range data acquired using three identical, commercially available
light-stripe range finders [Sato and Inokuchi, 1987]. These sensors were calibrated so that
all data were expressed in a single, world-centered coordinate frame.

To initialize the tracking algorithm, the transformation between the Model,M, and the initial
object Data,D[0], must be calculated. This transformation, , can be found in several
seconds using the EICP algorithm with a starting transformation provided by the user. Fully

TM
D 0[ ]
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automatic initialization would be possible using techniques similar to those described in
[Johnson and Hebert, 1996]. Initial pose errors as large as 15 degrees of rotation about each
axis, and 50% of the object size in translation along each axis will typically converge to the
global minimum. Once  has been calculated, it is used to transform the Model,M to
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Figure A-1: Framework of the high-speed tracking algorithm.
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the initial object pose. All future pose estimates are measured with respect to this initial
starting pose.

After initialization, the algorithm enters a tracking loop. Within the loop, Data are acquired
by the high speed range sensor, and the object pose is estimated via the speed enhanced iter-
ative closest point (EICP) algorithm in roughly 0.1 - 0.3 sec. These high speeds are possible
for two reasons. First, the difference in object pose at timej and timej-1 is typically small.
For example, translational velocities of 10 cm per second and rotational velocities of 20
degrees per second lead to incremental object pose discrepancies of roughly 2 cm and
4 degrees. Thus, since the EICP algorithm uses  as the starting point when find-
ing , the algorithm can perform registration in a small number of iterations, typically
3-10. Second, the resolution of the range Data used in the tracking loop, usually 16x16, is
less than the full sensor resolution of 32x32. The reduced number of Data points in the set
D[j] results in a faster calculation of the pose estimate.

During each data acquisition cycle, two simple preprocessing steps are performed on the
range Data: noise reduction and background-foreground separation. For the CMU high
speed range sensor, noisy data is associated with poor reflection of projected light from the
object. Such data can be reduced by thresholding the reflected intensity values which can be
measured by each cell in the sensor. Background-foreground separation determines which
data points lie on the surface of the object to be tracked. Since the tracking experiments
were performed in an uncluttered environment, range data on the object surface can be dis-
tinguished by thresholding the Z component of the range data. While this simple operation
has worked well in this setup, a more sophisticated approach would be required if the object
were in a cluttered environment.

Using  as the starting point for incremental pose estimation works well when
object motion is erratic and unpredictable. In some situations, object motion may be smooth,
continuous and thus easier to predict using an extrapolation method such as Kalman filter-
ing. A Kalman filter has not been implemented for this purpose; however, both first and sec-
ond order extrapolation methods have been applied and tested. Since the extrapolated pose
is often closer to the true pose than , the time required to compute the pose via
EICP is reduced.

A.2  Experimental Setup

The experimental setup is shown in Figure A-2. The CMU high speed VLSI range sensor
[Gruss et al., 1992] consists of two primary components: the sensor head and the light stripe
generator. The tracked object, in this case a small bust of the goddess Venus, is mounted on
the end effector of a Microbot robot. The CCD imager is not a primary component of the
system, but is used for display purposes only. Not shown is a Sparc-10 workstation used for
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computing the pose estimate and for graphically displaying a 3-D model of the tracked
object. The pose of the graphical 3-D model is updated at high speed to reflect the current
object pose estimate.

The CMU high speed range sensor is based on a modified version of the traditional light-
stripe range imaging technique known as the cell-parallel light-stripe method. The primary
advantage of the cell-parallel method is that range image acquisition time is independent of
the number of data points in each frame.

The current version of the CMU range sensor can acquire a complete 32x32 cell range
image in as little as one millisecond. The range data is acquired at 10 bits of resolution, and
is accurate to 0.1% or better (e.g., 0.5 mm accuracy at a distance 500 mm) [Gruss
et al., 1992]. The sensor workspace is shaped like a four sided pyramid. As configured for
the reported experiments, a cross section of the workspace is an 11.5 cm square at a distance

Figure A-2: Experimental apparatus for the high-speed tracking system.
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of 55 cm from the sensor along the optical axis. Thus, the lateral sensor resolution at this
distance is about 2.8 range measurements per centimeter in each direction.

The results presented in the next section were collected using the face object shown in
Figure A-3. This object was manufactured directly from a triangle mesh CAD model using a
stereolithographic process [Marcus and Bourell, 1993]. The advantage of this approach is
that the physical object is very accurately represented by the corresponding CAD model.
Thus, for purposes of characterizing system accuracy, errors caused by differences between
the physical object and the Model,M, are reduced.

All pose estimates presented below are specified in an object centered coordinate system as
shown in Figure A-3. The object itself is roughly 8 cm x 10 cm x 6 cm in the X, Y, and Z
directions, respectively.

A.3  Pose Estimation Results

There are two results presented in this section. The first demonstrates the ability of the track-
ing system toaccurately estimate the pose of stationary, or slowly moving objects. The sec-

Figure A-3: Face object used in the tracking experiments.
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ond demonstrates the ability to track complex motions in a highlyrepeatable manner. At the
time these experiments were performed, the equipment required to generate complex and
accurately calibrated dynamic trajectories which were precisely known at each point along
the trajectory was not available. Therefore, it remains to be shown that the system canaccu-
rately track high-speedmotions.

A.3.1 Static Accuracy Results

The graphs in Figure A-4 demonstrate the absolute accuracy of the system when the object
is assumed to be stationary. To collect this data, the object was manually positioned to
selected points along a trajectory using a high precision positioning device. At each point,
100 pose estimates were computed, and corresponding mean and standard deviation values
were calculated. Each data point in the graphs compares the object’s ground truth position to
the mean of the corresponding estimated position. The solid line represents the zero error
case, and vertical deviations from this line can be interpreted as error.

The object trajectory for these experiments consisted of coupled translations along each
axis, and rotations about the y-axis. It was not possible to generate rotations about the x and
z-axes due to limitations in the experimental apparatus. Multiple data points at a given
actual position arise since certain translations or rotations may be visited multiple times as
the object is moved through the trajectory. The measurement errors visible in the graphs
should therefore be interpreted as pose-dependent inaccuracies. For example, the errors vis-
ible in X rotation represent the range of X rotation estimates over all points along the trajec-
tory (recall that X rotation of the physical object remains constant). The average error
between ground truth and estimated positions is 0.93 mm in the translation components and
1.4 degrees in the rotation components. The standard deviation of each pose estimate is less
than 0.06 mm in translation and 0.1 degree in rotation. Part of the measured error may be
caused by the fact that the physical axis of rotation (i.e., the y-axis) may not correspond
exactly to the y-axis in the Model.

The results of Figure A-4 demonstrate that the system can generate accurate pose estimates
for stationary or slowly moving objects. In these experiments, the full resolution of the sen-
sor was used, and the EICP termination thresholds,εRr, εTr, were small. In the current imple-
mentation, the system is only capable of tracking very slowly moving objects using these
parameter settings. When tracking faster motions, such as those described in Section A.3.2,
the sensor resolution is typically decreased by a factor of 2, while the EICP termination
thresholds are increased.
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Figure A-4: Experimental static accuracy results for the high-speed pose tracker.
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A.3.2 Dynamic Tracking Results

Figure A-5 contains plots of estimated pose as the object is moved through a complex trajec-
tory by the Microbot. Pose estimates are specified with respect to the object’s initial pose at
time 0. Maximum object velocities are roughly 100 mm/sec in translation and 22 degrees/
sec in rotation. Each graph in this figure actually contains 2 overlaid data sets corresponding
to 2 different executions of the trajectory. Furthermore, each single execution of the trajec-
tory is periodic with two cycles shown. It is evident from these graphs that therepeatability
of the pose estimation system is quite good. These results also demonstrate that the system
can perform pose estimation fast enough to track object motion at the velocities specified
above. The average cycle time in these experiments was about 0.3 seconds (3.3 Hz), with
variation between about 0.1 seconds (10 Hz) and 0.5 seconds (2 Hz). This variation in cycle
time reflects variation in the initial pose estimate, , relative to the final pose esti-
mate, . Large transformations between initial and actual pose result in an increased
number of iterations required by the EICP algorithm, and thus a longer overall cycle times.
Therefore, faster object velocities typically lead to longer cycle times, while slower veloci-
ties lead to shorter cycle times.

A.3.3 Human Face Tracking

The high-speed pose tracker has also been used to estimate the pose of real human faces. A
polygonal mesh surface Model of one of these faces is seen in Figure A-6. The data in this
figure was acquired using a commercially available light-stripe range finder [Sato and
Inokuchi, 1987].

While no quantitative results were obtained for the human face tracking experiments, sev-
eral results which qualitatively demonstrated the speed, accuracy and viability of the
approach were performed. Figure A-7 shows a sequence of video images of a human face,
together with images of a 3-D graphical icon which represent pose estimates of the corre-
sponding face image. Use of the icon allowed much faster graphical rendering than if the
full surface mesh were displayed. In the icon, the pupils and the tip of the nose lie in a raised
plane relative to the other elements of the icon, thus allowing visualization of out of plane
rotations. The motion observed in the sequence is primarily within a single plane. A small
amount of out-of-plane rotation is evidenced by a shifting of the pupils within the icon’s
eyes.

A.3.4 Discussion

High-speed, 3-D pose tracking has potential uses in a variety of applications. In manufactur-
ing, 3-D tracking could allow a mechanism (e.g., a robot) to perform an operation
(e.g., grasping) on arbitrarily-shaped moving parts. In human computer interaction, high-

TM
D j 1–[ ]

TM
D j[ ]
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Figure A-5: Experimental dynamic repeatability results for the high-speed pose tracker.
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speed pose estimation could be used to track body movements for subsequent interpretation
as input to a computer. In medical registration, patient tracking could help eliminate invasive
and bulky fixation devices.

This appendix describes an approach for estimating the full 3-D pose of arbitrarily-shaped,
rigid objects at speeds up to 10 Hz. The approach uses a high speed VLSI range sensor
capable of acquiring 32x32 cell range images in 1 millisecond or less; however, the tech-
nique is independent of the particular sensor used. The primary software component of the
tracker is the speed enhanced iterative closest point (EICP) algorithm described in
Section 2.4.

As demonstrated in this appendix and Chapter 2, the EICP algorithm is capable of very
high-speed registration. To this author’s knowledge, the implementation of EICP described
in this work is capable of shape-based registration at speeds which are significantly faster
than systems developed by other researchers (based upon a qualitative assessment of other
systems described in the literature). It is difficult to know precisely how much faster EICP is
due to a lack of standardized test data for making such evaluations.

There is an interesting phenomenon observed in this work which is common to many sys-
tems for tracking moving objects. As noted above, there is a direct relationship between the
magnitude of the true registration transformation and the computation time required to esti-
mate this transformation. In general, slower object velocities (or higher computational
power) result in the ability to estimate the registration transformation in shorter periods of
time, possibly using simpler algorithmic approaches. There is a positive feedback effect

Figure A-6: Surface mesh of the author’s face.
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Figure A-7: Demonstration of high-speed human face pose tracking.
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implied by this phenomenon. The ability to solve for the registration transformation at
higher speeds will result in smaller changes in the object pose transformation between track-
ing cycles. Smaller changes in pose transformation will, in turn, result in the ability to solve
for the transformation faster, thus reducing the pose transformation. An interesting question
arises from this observation. Assuming that the object pose transformation between cycles
of the tracking loop are small, what is the simplest possible registration algorithm which can
be used to solve for the pose transformation? Identifying such a simplified registration algo-
rithm may result in the ability to perform pose estimation at significantly higher speeds than
those reported in this work.
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Appendix B

Derivation of the Sensitivity Vector

As suggested in Equation 3.2, the following expression is an approximation of the distance
between a point and a surface:

where  is the implicit equation of the surface,  is the magnitude of the
gradient to the surface, and  is a point which may or may not lie on the surface. The choice
of an implicit surface as a representation is relaxed below so that the final result is indepen-
dent of surface representation.

Assume that there exists a point , which lies on the surface such that . This
point can be perturbed with respect to the surface by applying a differential transformation,
T to the point.T can be represented by a homogeneous transformation, and is a function of 6
parameters  where  are rotations about theX, Y, andZ
axes, respectively, and  are translations along the newly rotatedX, Y, andZ axes.
Define:

(B.1)

as the 6-vector of parameters. If rotations are applied in the order:
, followed by translations along the newly rotated

axes: , then the corresponding homoge-
neous transformation matrix,T is:

D x( ) F x( )
F x( )∇

--------------------=

F x( ) 0= F x( )∇
x

xs D xs( ) 0=

tx ty tz ωx ωy ωz, , , , ,( ) ωx ωy ωz, ,( )
tx ty tz, ,( )

t tx ty tz ωx ωy ωz

T
=

Rot X ωx,( ) Rot Y ωy,( ) Rot Z ωz,( ), ,
Trans X∗ tx,( ) Trans Y∗ ty,( ) Trans Z∗ tz,( ), ,
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(B.2)

where , , and likewise for they andz components. In order
to determine the variation of the distance,D, as the surface point is perturbed, the gradient
of D about  is calculated:

(B.3)

Thus, it is necessary to calculate the partials of:

with respect to each of the parameters of . By applying the quotient rule for derivatives:

(B.4)

where the second term has dropped out, since by the definition of an implicit surface:

Applying the chain rule to find the partials with respect to each element of :

(B.5)

where  is a shorthand used to represent thei’th  element of the parameter vector, . Note
that the unit gradient evaluated at a point on the surface , is simply the surface
normal evaluated at that point. Thus:

(B.6)

T
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where  is the unit surface normal evaluated at the point . Equation B.6 allows the final
result to be expressed independently of surface representation.

Expanding each of the elements of , and using the fact that the rotations are infini-
tesimal:

(B.7)

Multiplying each of the above by , grouping into a matrix, and eliminating the last col-
umn (which results from the homogenous coordinates), results in the Jacobian,J, of the
transformationT.

(B.8)

Combining Equations B.5, B.6 and B.8, results in:

(B.9)

This expression can be simplified further by expanding the right hand side:

(B.10)
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This is the final result which relates a small change in the position of a point originally on
the surface to a change in distance between the point and the surface. The result does not
depend upon the implicit surface representation, but only upon the location of the surface
point, and the surface normal at that location. Throughout the thesis, the subscript from the
normal vector is dropped, so that . A geometric interpretation of Equation B.10 is
presented in Section 3.3.

nxs
n=
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Appendix C

Effect of Scale upon Constraint Analysis

As discussed in Section 3.3.3, the size of a rigid body will change the relative contribution
of rotations and translations in constraint analysis. The effect of object size is demonstrated
in Figure C-1 for the case of the cube using Data configuration C2. Recall from Table 3-7
that the constraint analysis eigenvalues for this configuration can be separated into rotational
and translational components. All rotational eigenvalues in the table are the same, as are all
translational eigenvalues. Figure C-1 plots the magnitude of the translational and rotational
eigenvalues, and the NAI as a function of cube size. A scale of 1 is equivalent to the default
constraint analysis scaling of Equation 3.28. The magnitude of the three translational eigen-
values remains constant as a function of scale. In contrast, the magnitude of the rotational
eigenvalues (and thus the rotational contribution to constraint analysis) increases as a func-
tion of size. The NAI increases until the rotational eigenvalues become larger than the con-
stant translational eigenvalues, and then it begins to decrease. The result of this experiment
demonstrate that the mechanism for pre-scaling an object described in Section 3.3.3 has the
desired behavior, at least for the case of a cube. For more complex objects, similar results

Figure C-1: Magnitude of the translation and rotation eigenvalues, and the noise
amplification index as a function of scale for the cube Data configuration, C2.
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can be obtained; however, near an object scale of 1, the rotational and translational compo-
nents of constraint analysis are usually coupled, and can therefore not be represented using
the simple graphical representation of Figure C-1.
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