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Structural Indexing: Efficient 3-D Object Recognition

Fridtjof Stein, Student Member, IEEE, and Gérard Medioni, Member, IEEE

Abstract— We present an approach for the recognition of
multiple 3-D object models from three 3-D scene data. We
work on dense data, but neither the models nor the scene
data have to be complete. We are addressing the problem in
a realistic environment; the viewpoint is arbitrary, the objects
vary widely in complexity, and we make no assumptions about
the structure of the surface. Our approach is novel in that it
uses two different types of primitives for matching: small surface
patches, where differential properties can be reliably computed,
and lines corresponding to depth or orientation discontinuities.
These are represented by splashes and 3-D curves, respectively.
We show how both of these primitives can be encoded by a
set of super segments, consisting of connected linear segments.
These super segments are entered into a table and provide the
essential mechanism for fast retrieval and matching. We address
in detail the issues of robustness and stability of our features.
The acquisition of the 3-D models is performed automatically by
computing splashes in highly structured areas of the objects and
by using boundary and surface edges for the generation of 3-D
curves. For every model, all features are recorded in a database.
The scene is screened for highly structured areas, and splashes are
computed in these areas and encoded. 3-D curves, corresponding
to depth or orientation discontinuities, are also encoded. These
features are used to retrieve hypotheses from the database.
Clusters of mutually consistent hypotheses represent instances of
models. The precise pose of a model instance in the scene is found
by applying a least squares match on all corresponding features.
We present results with our current system (three dimensional
object recognition based on super segments (TOSS)) and discuss
further extensions.

Index Terms— Feature detection, hashing, indexing, model-
based recognition, pose esimation, range-image understanding,
3-D object recognition.

1. INTRODUCTION

E PRESENT an object recognition system that is able

to match general 3-D objects from partial 3-D data in
an efficient way by using a method called structural indexing.
By saying 3-D, we talk about models and scenes having a 3-D
representation. By talking about “general objects,” we make
very few restrictive assumptions about their shape; therefore,
we only exclude statistically defined shapes (e.g., foams) and
crumpled objects (e.g., fractals). Matching and recognizing in
an “efficient way” is based on a fast indexing and retrieval
system that has a complexity that grows as O(kN) when N
is the number of models, and & < 1.
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Representing a 3-D solid object is either possible by using
a surface or a volumetric description. Volumetric descriptions
from a single view require a difficult inference step to com-
pensate for the unseen part; therefore, we will use descriptions
based on visible surface instead. The task of object recognition
involves identifying a correspondence between a part of one
range image and a part of another range image with a particular
view of a known object. This requires the ability to match one
feature of one range image against a feature of another range
image. A feature can be either a surface patch or a general 3-D
curve. The question is “How can we represent such features
so that they can be matched in an efficient way?”

Reviewing the existing systems, none thus far (known to

the authors) is able to represent, match, and recognize general
3-D objects. An excellent overview regarding the problem of
matching free-formed surfaces can be found in [1]. Most object
recognition systems to date either rely on exact, CAD-like
models or make restrictive assumptions on the possible shape
of the surface patches. The following is a summary of related
work:

* Grimson and Lozano Pérez [11], [12] describe a system
that is able to recognize objects from sparse scene data.
If there are m known objects with n; segments each and
5 scene segments, there are 3°", (n;)° combinations of
pairings between scene and model segments. The system
tests these combinations using a tree search. Not all
these combinations need to be tested because distance
and angle constraints are used to prune almost all the
combinations. Still, the number of combinations that need
to be tested grows rapidly with object complexity. For
those combinations not ruled out, the system tries to
find an object position and orientation consistent with
the segment assignments. If a consistent transformation
is found, the object is recognized. In [10], Grimson
shows that under some simple assumptions, the expected
complexity of recognizing isolated objects is quadratic in
the number of model and scene fragments but that the
expected complexity of recognizing objects in cluttered
environments is exponential in the size of the correct
interpretation.

* Bhanu [2] presents a 3-D scene analysis system for the
shape matching of real-world 3-D objects. Object models
are constructed using multiple-view range images. At
first, range images of each model object from different
views are acquired. The relative orientation between each
pair of views is assumed to be known. Then, the surface
points of the object in each view are isolated from the
background by removing pixels with large depth values
(far away from viewer). Second, a large number of object
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surface points are obtained by transforming points from
each individual views into a common object-centered
coordinate system. Finally, the object is represented as
a set of planar faces approximated by polygons. This is
accomplished by a two-step algorithm. In the first step,
a three-point seed algorithm is used to group surface
points into face regions, and in the second step, the
face regions are approximated by 3-D planar convex
polygons. Shape matching is performed by matching the
face description of an unknown view with the stored
model using a relaxation-based scheme called stochastic
face labeling. The face features obtained above are used to
compute the initial face-labeling probabilities for possible
matching between each model face m,; and each face in
the unknown view s;. Then, the labeling probabilities are
updated by checking the compatibilities in the geomet-
ric transform for each pair <m;, s;>. The compatibility
between m; and s; is obtained by finding the transfor-
mation T; between them and applying 7; to other pairs
<mg;, s;>, computing the error in feature values after the
transformation. The match is less compatible if the error
is large.

Horaud and Bolles [18] and Bolles ef al. [3] present the
3DPO system for recognizing and locating 3-D parts in
range data. The model consists of two parts: an augmented
CAD model and a feature classification network. The
CAD model describes edges, surfaces, vertices, and their
relations. The feature classification network classifies
observable features by type and size. The model objects
are represented by a tree-like network such that each
feature contains a pointer to each instance in the CAD
models. In the range images, discontinuities are detected
and classified into cylindrical and linear curves. A local-
feature-focus method is used for the matching process.
At first, the system searches for features that match a
feature for some model, for example, a cylindrical curve
with a given radius. Then, objects are hypothesized by
determining whether a pair of observed segments are
consistent with a given model feature. The system shows
good results on bin-picking tasks of industrial parts.
Faugeras and Hebert [8] developed a system to recognize
and locate rigid objects in 3-D space. Model objects are
represented in terms of linear features such as points,
lines, and planes. Range images are used as input. The
same features such as significant points, lines, and planes
are used to describe scene objects. Edges such as surface
discontinuities are extracted using nonmaxima suppres-
sion on maxima of surface normals. Planar surfaces are
then extracted by using a region-growing method. The
system uses rigidity constraints to guide the matching
process. At first, possible pairings between model and
scene features are established, and the transformation is
estimated using quaternions. Then, further matches are
predicted and verified by the rigidity constraints.
Ikeuchi {13] developed a method for object recognition
in bin-picking tasks. Object models are generated under
various viewer directions, and apparent shapes are then
classified into groups. The models consist of surface

inertia, surface relationship, surface shape, edge relation-
ship, extended Gaussian image, and surface characteristic
distribution. Since this system is mainly designed for the
task of bin picking, only one type of object, which is
the same one as in the model, appears in the scene. The
same surface features used in models are extracted and
classified by the help of the model. An interpretation
is generated according to various model views. The
orientation and location of the scene object are then
decided by comparing their surface features and classified
by the interpretation tree.

Fan et al. [6], [7] use elementary surface patches as the
primitives of description and recognition. The method
consists of two stages. In the first stage, surfaces of 3-
D objects are segmented at discontinuities. Then, these
detected discontinuities are used to segment a complex
surface into simpler meaningful components called sur-
face patches. These patches can then be approximated by
simple surface models. Finally, these surface patches are
grouped to refer to meaningful 3-D objects, and attributed
graphs are generated to describe these objects. In the
second stage, the descriptions of objects are used to build
multiview models. These views are arranged such that
most of the significant features of the model object are
contained in at least one of these views. Finally, partially
occluded objects in a given scene are described using
the same descriptions and identified as one of the model
views. The recognition process contains three modules:
the screener, the graph matcher, and the analyzer. In
the first module, to avoid a search for every possible
match between model views and scene objects, for every
scene object, all the model views are ordered according
to their similarities to the scene object. Then, in the
second module, a graph matching procedure is used,
starting from the first ordered model view, to find the
best correspondences between this view and the scene
object. Finally, in the third module, the chosen matches
are refined according to their geometric similarities. They
present results on a variety of complex objects in scenes
with multiple objects occluding each other.

The work conceptually closest to our approach was done
by Radack and Badler [20]. Their representation of a
surface patch is based on a radial decomposition. They
introduce a new surface representation called distance
profile. These profiles are used for the matching process.
This method reduces the matching of 3-D surfaces to
the matching of 2-D curves. They use points with high
curvature to position the centers of the distance profiles.
In their paper, they present results with artificial data.
With 3-D POLY, Chen and Kak [5] developed a system
in which they present a novel approach of organizing the
feature data for 3-D objects. They present a data structure
that they call the feature sphere. The matching and ver-
ification step is based on comparing spatial relationships
of special feature sets. They show very fast recognition
results for cluttered scenes with several industrial objects.

This brief survey is summarized in Table I. Many systems,

based on different assumptions about shape, such as polygonal
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TABLE 1
3-D FROM 2.5-D, 3-D
! PRNTYY ey
|Year | System Primitives Scene Input | CDAM | Distinct Features
‘ sparse 3D position N
| 1984 | Grimson face segments and orientation o2
1 measurements
1§ al face L.
11984 | Bhanu P ments range data 0@Y | model is multiview
" in general fast
1986 3Dro significant features range data o2 (because of use of
rich features)
Faugeras
1986 and points, lines, faces range data 0(2“)
Hebert
1987 | Dkeweni | OSSOt 3D data o™ CAD model
faces organized in n . -
1988 Fan adjacency graph range data [¢]¢] model is multiview
1989 | Radack dzgﬁgﬁ&is range data n/a artificial data only
significant feature
1989 Chen and sets organized in a range data O(nz) fast
Kak feature sphere

CDAM = Cost of Detection of Absence of Model
This may be considered a somewhat subjective performance measure, since many of these systems
have been designed to perform in scenarios where such a situation is extremely unlikely to occur.

n = number of scene primitives

shapes, solids of revolution, or generalized cylinders, were
developed. In contrast, we believe that our proposed system
(three dimensional object recognition based on super segments
(TOSS)) is able to recognize rigid objects whose shapes are
not constrained by any simplifying assumptions. Our algorithm
uses a combined representation that captures information about
both smooth patches and discontinuity lines.

This paper is organized as follows: In Section II, we briefly
outline our previous work on recognition of flat objects from
an arbitrary viewpoint and show some results. Section III
presents our approach to recognize objects in range imagery.
We focus on the choice of our two features:

The 3-D Curve: For some objects, such as polyhedra, it
is natural to use a representation based on edges. For that
reason, we introduce in Section III-A our basic feature for the
representation of surface and depth discontinuities: the 3-D
curve. We achieve a robust and stable representation by using
multiple line fitting tolerances to obtain a set of polygonal
approximations. The polygonal approximations are grouped in
sets of connected segments. These super segments are encoded
based on the angles between consecutive segments, providing
invariance with respect to rotation, translation, and scale (even
though scale is not needed in 3-D object recognition).

The Splash: For some objects, however, such as objects
bounded by free-form surfaces, it is difficult to use edges for
the representation. Therefore, in Section III-B, we present a
new representation (the splash) based on small surface patches,
where we can compute differential properties in a reliable way.
A splash consists of a radial decomposition of surface normals.
It is a local Gaussian map describing the distribution of surface
orientation along a geodesic circle. A splash can be represented
by two 2-D periodic functions, which can also be combined
into one compact, 3-D curve. This allows us to use a unified
representation scheme for the splash and the above-mentioned
3-D curve.
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In Section III-C, we address in detail the issues of robustness
and stability of these two features. In Section III-D, we
describe how we use a table to store our features and retrieve
them efficiently for hypotheses generation. We provide a brief
complexity analysis with respect to the number of models in
the database and with respect to the scene complexity. We
present two experiments that we performed to analyze the
behavior of the TOSS system for large databases (100 models).

Finally, in Section IV, we present some results on real data
and provide some concluding remarks.

For clarity of presentation, we give, in the Appendices, the
least squares method with which we compute transformations
of matched data and the details of the geometrical constraints
used for verification.

IL. OUR PREVIOUS WORK: STRUCTURAL INDEXING IN 2-D

Our approach is an extension of our early work [23], which
addressed the problem of recognition of multiple flat objects
in a cluttered environment from an arbitrary viewpoint (weak
perspective). The models are acquired automatically and ini-
tially approximated by polygons with multiple line tolerances
for robustness. Individual points or line segments are too local
to be useful as matching primitives. Grouping a fixed number
of adjacent segments provides us with our basic features: the
super segments. To encode the super segments, we quantize
the angles between the segments and the eccentricity of the
vertices of the super segment. These quantized values serve
as a key for a table, where we respectively record the super
segments as entries. This provides the essential mechanism
for indexing and fast retrieval. Once the database of all
models is built, the recognition proceeds by segmenting the
scene into a polygonal approximation; the code for each
super segment retrieves model hypotheses from the table.
Hypotheses are clustered if they are mutually consistent and
represent the instance of a model. Finally, the estimate of
the transformation is refined. This methodology allows us to
recognize models in the presence of noise, occlusion, scale,
rotation, and translation. We can also handle weak perspective
in a certain range, which depends on the quantization intervals
of the encoding mechanism. Unlike most of the other existing
systems, the complexity of our algorithm grows as O(kN)
when N is the number of models, and £ < 1.

We have tested the performance of the system with several
examples. We show one of them here. We obtained the animal
shapes from coarsely digitized binary images (see Fig. 1(a)).
The animal scene was taken by printing the three animals,
enlarging them, and cutting them out. Finally, we put the three
silhouettes on a light table and took a picture with a video
camera. The camera made an angle of about 20° with the
normal to the light table. This procedure guaranteed scaling,
occlusion, rotation, translation, weak perspective, and noise
(thanks to our skills in cutting, especially around the ears of
the giraffe). The recognition time (not including representation
generation time) for the scene (see Fig. 1(b) and (c)) is 4.1 s
on a Symbolics 3675 Lisp machine.

III. STRUCTURAL INDEXING IN 3-D

In recent years, object recognition in 3-D has been either
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Fig. 1. Animal shapes: (a) Database; (b) scene; (c) detected animals.

performed based on boundary and edge information (see [1],
[15]) or by using surface descriptions (see, for example, [1],
[6], [9], [19]). This creates problems when edges are not well
defined or when the objects cannot be segmented into stable
elementary patches.

We present a system that combines both approaches with
the following strategy: “Use for the recognition task whatever
information is available.” We extract edges corresponding to
depth and orientation discontinuities and use them as primi-
tives. These are not sufficient, however, to represent smooth
free-form surfaces. Therefore, we also compute differential
properties called splashes in smooth areas. We describe both
of theses primitives in the following subsections.

A. The 3-D Curve

For some objects, such as polyhedra, it is natural to use a
representation based on edges. For this reason, we extract 3-D
curves that are likely to correspond to depth and orientation
discontinuities. Edge data consist, in general, of noisy, missing,
or broken edges (see, e.g., the surface discontinuities between
the fuselage and the wing in Fig. 3). We take that into account.
Our effort is not to develop a system that can only deal with
perfect edges. We want to use whatever data current state-of-
the-art edge detectors can generate. When we get noninvariant
edges (such as limbs, which are viewer dependent), we treat
them just like all other edges. When they are matched against
scene edges, they might generate wrong hypotheses, which are
then discarded in the verification step. The most stable edges
leading to the best matches are the edges that correspond to

segment 1

Fig. 2. Example of 3-D super segment of cardinality 4.

discontinuities of depth and surface (such as the boundary of
the wings in Fig. 3).

Our representation of a general 3-D curve is based on
a polygonal approximation. We do not rely on any specific
feature detection algorithm, and we do not explicitly handle
distinguished points such as corners or inflection points. Cur-
vature and torsion are the most important features of a general
3-D curve. They are invariant with respect to rotation and
translation. By using a polygonal approximation, we lose most
of the curvature and torsion information, but we approximate
it by computing the “curvature” and “torsion” angles between
consecutive line segments (see Fig. 2).

Obviously, there is no unique polygonal approximation for a
curve. Therefore, for the purpose of robustness, we use several
polygonal approximations with different line fitting tolerances.
Since we want to handle occlusion, we do not expect to obtain
complete curves in our scenes but only portions of them. On
the other hand, individual segments are too local to be useful
as matching primitives. Grouping a fixed number of adjacent
segments provides us with our first basic features: the 3-
D super segments. The 3-D super segment is an extension
of the 2-D super segment we used for recognition of flat
objects in [23]. In accordance with Fig. 2, 3-D super segments
are characterized by their cardinality (number of segments),
curvature angles (between consecutive segments), and torsion
angles (between consecutive binormals).

As mentioned before, we are mainly interested in the
curvature and torsion information implicitly captured by the
3-D super segment curvature and torsion angles. This is the
reason we use them to encode a 3-D super segment. The
curvature (x;) and torsion (7;) angles are defined in the
following way:

—1 Si41 " Si
[si+1]s:]
cos ™ 1(b; - biy1)

Ki = COS

7%

with the binormals
8i+1 X 8

 sigallsi

o~
&7

and s; is the ith segment of the 3-D super segment. To encode
a 3-D super segment ss with cardinality n, we use a simple
encoding scheme. The list of the quantized curvature and
torsion angles values is the code of the 3-D super segment ss:

Code(ss) =(Quant(x1), Quant(ks),...Quant(K,_1),
Quant(7y), Quant(7z), ...Quant(7,_2)).
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All the encoded 3-D super segments serve as keys into a table
(the database), where we record the corresponding 3-D super
segments as entries, as explained later. We now address the
following issues:

Curve Extraction: Thus far, we have not discussed the
curve extraction process (see Fig. 3). We compute the edges
of the range image. We use the edge detection algorithm
proposed by Saint-Marc et al. [21]. It detects surface and
depth orientation discontinuities. These features are inferred
by examining the zero crossings and extremal values of the
surface curvature. The method uses adaptive smoothing to
smooth a range image, which preserves discontinuities and
facilitates their detection. This is achieved by repeatedly
convolving the image with a very small averaging filter whose
weights are a function of the local gradient estimate. In order
to extract curvature extrema and zero crossings, instead of
smoothing the original range image R, the original derivatives
P = g—f and Q = % are computed first. Then, the images
P and ) are repeatedly smoothed. Finally, the curvature
values are computed from the smoothed images P and Q.
The curvature extrema and zero crossings are extracted using
hysteresis.

Polygonal Approximation: Because a polygonal approx-
imation with a fixed tolerance is, in general, not stable, we
use multiple line fitting tolerances. A complete analysis is
given later. The 3-D super segments are built by grouping
adjacent segments. Because we cannot assign a specific direc-
tion to a 3-D super segment, we use both directions for our
representation.

Choice of Cardinality: Which cardinalities should we use
to define the link length of the 3-D super segments? To use
a fixed cardinality is possible, but it reduces the flexibility
of the matching process. However, when we have long 3-
D super segment matches, why not use them? Therefore, we
compute all possible cardinalities; that means that an open
curve approximated by eight linear segments is represented
by two 3-D super segments of cardinality 8 (one for each
direction), four 3-D super segments of cardinality 7, six 3-D
super segments of cardinality 6, and so on. Higher cardinalities
of matched 3-D super segments increase the probability of
having a good match.

B. The Splash

1) Basic Idea: For some objects, however, such as smooth
objects, it is impossible to use edges for the representation.
Therefore, we come up with a new representation based
on small surface patches where we can compute differential
properties in a reliable way.

129

y P = geodesic radius N = reference normal
, 40 =stepangle n, = sample normal
0 =angle P = location vector

@ ®)
Fig. 4. Splashes: (a) Milk splash; (b) splash.

Extending the super segment idea is not straightforward.
The polygonal approximation of a curve has a property that
is crucial but is not extendable to higher dimensions: the well
defined order of the neighborhood of a linear segment. Every
segment on a polygon has two adjacent neighbor segments.
Based on this fact, super segments can be generated by group-
ing adjacent segments together. In surface approximations,
however, this ordered neighborhood property does not exist.
Polygonal or other segmentations of a surface (or volume)
lead, in general, to patches that can have any number and order
of neighbor patches. This is a reason why we decided not to go
the path of a polygonal (or higher order) surface segmentation
to obtain a representation for matching and recognition. What
are the requirements that a representation for general 3-D
objects has to meet? We want the representation to be

1) translation invariant

2) rotation invariant

3) general, meaning that we do not have to make any
assumptions about the shape of the object

4) local enough, so that we can handle occlusion

5) robust enough, so that we can handle noise.

In the following, we will use lower case letters to
describe vectors (n, p. ..) and upper case letters to describe
coordinate frames (N, O. ..). The basic feature for representing
a general surface patch is the splash. The name originates from
the famous picture of Prof. Edgerton (at M. I. T.) showing
a milk drop falling into milk (see Fig. 4(a)). This picture
bears a resemblance to the normals in our basic feature. A
splash is best described by Fig. 4(b). At a given location p,
we determine the surface normal n. We call this normal the
reference normal of a splash. A circular slice around n with the
geodesic radius p is computed. Starting at an arbitrary point
on this surface circle, a surface normal is determined at every
point on the circle. Practically, we walk around the reference
normal with a Af angle (typically 1° < Af < 15°) and obtain
a set of sample points on the surface circle. The normal at the
angle 6 is called ng. A super splash is composed of splashes
with different surface radii p; with ie{1,...m}, where m is
the number of splashes in a super splash.

In other words, the splash is the representation of a surface
patch by the Gaussian map in the vicinity of the center of
the patch, mapping the tangent with respect to a geodesic
distance p. One question that is often asked is why do
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Fig. 5. n and ng: (a) Relationship between n and ng; (b) definition of ¢

and wyg.

we not use Gaussian curvature for the splash computation
(which is invariant to rigid transformations)? Why do we use
the tangent information? The answer is straightforward: The
computation of curvature requires a higher order derivative
than the tangent. This implies that the signal-to-noise ratio is
lower for a curvature-based representation than for a tangent-
based scheme. Therefore, from the practical viewpoint, we
prefer a more reliable representation for the purpose of efficient
matching.

We compute a normal in our system by approximating the
environment of a normal with triangular patches of small sizes.
Every triangle votes for a triangle normal. The average of the
three closest triangle normals is the surface normal. This is a
very rough method, but the results were always good enough
for our approach.

The frame Ny (see Fig. 5(a)) is defined in the following way:

1) The surface normal n is the z axis.

2) At every location of ng, the location of the reference
normal p and the tip of the reference normal n + p
describe a plane E. The x axis is defined as the vector
that is perpendicular to n and lies in the plane F.
Furthermore, the angle between the x axis and a vector
r, which is defined between the origin of Frame Ny and
the location of ng, has to be in the interval [—90°,90°].

3) The y axis is perpendicular to the z and the 2 axes in a
right-handed coordinate system.

This frame has the property that the zy plane always approxi-
mates the tangent plane of the surface in p. We represent ng in
spherical coordinates; we compute the two angles ¢g and 1)g:

$¢ = angle(n,ng)
by = angle(x,n;=").

For every sample point of a splash, we obtain such a pair.
Now, we have a 2-D mapping ¢(f) and another one (6).
In an earlier implementation (see [24]), we used these two
mappings in parallel for our algorithm. However, it is in fact
possible to combine these two mappings into one compact 3-

45(9)3
, (6)
in the 3-D space (¢,¥,0). By doing so, we are able to use
the representation for the general 3-D curve from Section
[II-A for the representation of the mappings of the splash.
Drawing a mapping for ¢ and 3 with respect to 6 results

D vector mapping 7(6) = , which describes a curve

in a mapping illustrated in Fig. 6(a). This mapping has the
following properties:
1) Dependent on where ng is, the mapping is shifted along
the @ axis.
2) The mapping is periodic with respect to the 4 axis.
3) The variation of the curve represents the structural
change in the surface environment around the reference
normal n.

a. For a splash on a sphere or a plane, the mapping
is constant.
b. A creased surface results in a curved mapping.

4) Splashes that are located close to each other have a
similarly shaped mapping. By using the word similar, we
mean similarity in the sense that a human would classify
them as “pretty much the same.” That does not automat-
ically imply that the pairwise difference results in small
values (we discuss the issue of robustness further in
Section III-C). To be able to compare two mappings, we
therefore need a difference measure, which is introduced
below.

2) Encoding: At this point, we have reduced the original
question (“How do we capture the shape of a general surface
patch into a representation?”) into the much simpler question
“How do we capture the shape of a mapping into a repre-
sentation?” The solution is straightforward based on our 3-D
approach for representing a general 3-D curve (see Section
I1I-A).

1) For all splashes of a model, we compute their mappings.
In Section II-B-3, we discuss the selection of the
locations of the splashes.

2) For each splash, the mapping is approximated by polyg-
onal approximations (see Fig. 6(b)). It is important to
note that the mapping is periodic, and therefore, the
polygon is closed. For the purpose of robustness, we
use multiple line fitting tolerances. Therefore, we get a
set of polygons for each mapping.

3) For every polygonal approximation, we compute a 3-
D super segment. The start of the 3-D super segment
is defined at the point with the maximal distance of
the @ axis. This corresponds to the point at which the
sample normals have the strongest tilt with respect to
the reference normal. If there is more than one global
maximum, we use one 3-D super segment for each of
the maxima. With this 3-D super segment choice, we
obtain rotational invariance in our representation. By
starting all 3-D super segments at the maximum of
the approximation, two shifted polygons with the same
shape produce the same 3-D super segment.

4) All the obtained 3-D super segments are encoded. The
encoding works as described in Section III-A. As en-
codable attributes, we take

a. the curvature and the torsion angles of a 3-D super
segment

b. the maximum distance of the mapping from the
6 axis

c. the surface radius of the splash.
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)

Fig. 6. Vector mapping #(6): (a) Mapping of ¢ and % into the (0,v,6)
space; (b) polygonal approximation of the mapping.

Incorporated in the code of the angles of the 3-D super
segments is also the cardinality (number of segments)
of the 3-D super segments (by the number of angles).
That avoids matching 3-D super segments of different
cardinality. The encoding of the maximal distance allows
one to distinguish between different curved surfaces
of the same shape (e.g., two spherical surfaces with
different sphere radii). The encoding of the radius avoids
matches between splashes with different splash radii. In
summary, the code for one splash mapping is

Code(splash-mapping) =
(Quant (), Quant(ks),. ..
Quant(k,), Quant(r; ), Quant(7y), ...

Quant(7,), Quant(max), Quant(radius))

where £; is the i** curvature angle of the 3-D super
segment, 7; is the 4th torsion angle of the 3-D super
segment, and n is the cardinality of the 3-D super
segment.

5) All the encoded 3-D super segments serve as keys into a
table (the database), where we record the corresponding
splashes as entries, as will be explained later.

3) Interest Operator: One question remains open: At which
locations of an object should we compute the splashes? The
brute force answer would be the following: at every pixel (in
a range image). A more realistic answer would include the
observation that we will not get structurally rich splashes,
which lead to good and unambiguous matches, at every
point. Splashes in flat areas result in 3-D super segments
with extremely low cardinality (e.g., a splash on a plane
maps on a 3-D super segment consisting of one segment that
corresponds to a cardinality of one). Super segments with such
low cardinalities are less descriptive than super segments with
higher cardinalities, which represent high structured surface
patches. Therefore, to obtain good and unique matches, we
are interested in matches of structured patches and high
cardinality. These can be found at or near points of high
curvature. Our simple selection method works as follows (see
Fig. 7):

1) To compute the edges (surface and depth discontinu-

ities), we use the algorithm mentioned in Section III-A.
2) We want to position the splashes in areas where we can
expect structured patches on one object. This property
Is not given on a boundary. A boundary edge typically
has the object as one neighborhood and other objects
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Fig. 7. Interest operator scheme on an example: (a) Scheme; (b) Brahms
head range data; (c) Brahms head (artificially shaded); (d) curvature zero
crossings and extrema; (¢) interest mask; (f) locations.

or background information as the other neighborhood.
Therefore, we use only the “inner object edges” and
throw away the boundary edges.

3) For positioning the splashes, we are interested in areas
around the edges. Placing a splash on a high curvature
point has the disadvantage of an unreliable reference
normal. A reliable reference normal is important for
a stable splash. Nevertheless, we want to capture the
structure of the edges in the splash. Therefore, the best
place for a splash is in the neighborhood of an edge. We
get this area in three steps:

a.  We dilate the edge image by replacing every
pixel on the edges by a disc of a certain radius
(e-g., 71 =8 pixels). The resulting image is called
dilatation 1.

b. We dilate the edge image with another radius (e.g.,
r2 =3 pixels with 71 > ry). The resulting image
is called dilatation 2.

c.  The subtraction of dilatation 1 and dilatation 2
gives us a mask. This mask describes an area with
the above-described characteristics. Points in this
mask are not high curvature points, but they are
close to edges.

4) We compute a grid of splashes on the range image with
respect to this mask.
This is obviously not the only way to choose the locations of
splashes, but as we will see in the result section, this simple
method works quite well. Therefore, we have not emphasized
the direction of this research.

C. Robustness and Stability of the Splash Representation

In order for our representation to be useful in recognizing
objects from real data, it is necessary to address the issues
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Fig. 8. Corner surface: (a) Location of the reference splash; (b) qualitative
side view; (c) 25 x 25 grid of splashes.

of robustness and stability of the splash representation in the
presence of noise.

Location: We cannot make the assumption that two splashes
on different views of the same object are at exactly the
same location with respect to the object. Therefore, we have
to examine the robustness of a splash regarding location
uncertainty. We discuss the problem in Section III-C-1.

Orientation: Even when the location is correct, we cannot
assume that the reference normal in both splashes is exactly
the same. What are the effects on representation and matching
of an error in the reference normal orientation? We address
the issue in Section III-C-2.

Stability: How much noise can be added to the surface
patch and still have a stable representation? We discuss the
stability problem in Section III-C-3.

We have found empirically that our representation is ade-
quate since our system performs well on real data. We would
have liked to model the behavior of our scheme on arbitrary
free-form surfaces, but they are too general to be of any help.
Instead, we present a full analysis on a simple analytic model
of a specific surface patch, as shown in Fig. 8(a) and (b), for
all three issues (location, orientation, and surface stability).
Furthermore, for the orientation robustness issue, we study the
effects of noise in the general case of a 3-D curve (representing
either one of our features).

1) Robustness in the Location: To answer the question of
how robust the representation of a splash is with respect
to location accuracy, we use empirical data based on an
example environment as described above. This range image
was generated artificially and smoothed with a Gaussian filter.
As shown in Fig. 8(a), our reference splash is centered
southeast of the corner. We show only the location of the
splash. The corner has a height of 5 pixels. The reference
splash has a radius of 30 pixels, and the linear approximation
of the mapping leads to a cardinality of 3. This result was
observed for the whole set of fitting tolerances (15, 20, 25,
30). This means that the key consists of six values: three
curvature and three torsion values. For reasons of simplicity,
we did not encode the maximal distance from the § axis. In
our test results, we got qualitatively similar results as the ones
shown here. We can also ignore the encoding of the splash
radius because in our example, we deal only with splashes
of one fixed radius. A qualitative side view of the reference
splash, its sample normals, and the shaded underlying surface
is displayed in Fig. 8(b). The lines on the surface are artifacts
from the rotation.

We use our reference splash and match it against a grid of
625 splashes (see Fig. 8(c)) in the vicinity of the reference

@ () © @

Fig. 9. Matched splashes with different quantizations.

splash spaced 2 pixels apart. In Fig. 9, we show the results
for different quantizations of the matching key. We show in
Fig. 9(a) the matched splashes between the reference splash
in Fig. 8(a) and the splashes in Fig. 8(c), quantized with an
interval size of 10° (the same result was observed for 20°).
Fig. 9(b) shows the matches for a quantization of 30°, Fig.
9(c) for 40°, and Fig. 9(d) for 60°.

For small quantizations, the patch is recognized only if the
splash is very close to the location of the original splash,
whereas larger quantizations allow a much larger latitude in
location uncertainty. Of course, if the quantization is too
large (as in Fig. 9(d)), the splash may be confused with
splashes from other locations. We therefore observe the desired
robustness with respect to location uncertainty for this surface
patch for the quantizations 30 and 40.

2) Robustness in the Reference Normal: Influence of Noise
on the Mapping—In this section, we examine the influence
of noise in the reference normal on the representation of a
splash. In a first step, we focus on the effect on the mapping.
In other words, adding an error angle ¢ in the direction §

to the reference normal, how is the curve 7(6) = g‘igg)))

influenced? In Fig. 12, we show the frame F, which is the
frame for a certain ng. The frame F consists of the axis z, ¥,
and z. As in Section III-B-1, z is equivalent to the reference
normal n. By adding an error angle ¢ in the direction ¢ to z,
we get 2. Without loss of generality, we can set 6 = 6. The
frame F’ consists of the axis z/, ¢/, and 2’ with

sin(e) cos(8)
2’ = | sin(e)sin(d)
cos(e)
Y =z2xr 2=y x2=(Exr)x?
with r defined as in Fig. 5 in Section I1I-B-1. The computation
of the change of ¢ with respect to # is straightforward:
Adg = ¢o — ¢y

arccos(zng) — arccos(z'ng)

= arccos(nj) — arccos [sin(e) cos(6)n§

+ sin(e) sin(@)ny + cos(z)nj].

The computation of Ay is not as straightforward. The
problem lies in the fact that the 2 axis is dependent on the
data in the vicinity of the splash, expressed by the vector r. To
overcome this problem, we have to introduce some simplifying
assumptions:

1) We can assume that ¢ is small (smaller than 10°).
2) We can further assume that the angle between r and z
is small. We observed this angle for several thousand
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Fig. 11. Example for Ao(8) and A (8): (a) Ad(6); (b) Av(8).

splashes on real data, and we obtained the result that in
approximately 75% of the cases, the angle was smaller
than 15°. In Fig. 10, we show the histogram of the
distribution of the angles computed from real data (we
used the data of the busts, which we discuss in the results
section). The abscissa represents the angles in degrees,
and the ordinate represents of the number of occurences.

This allows us to approximate r ~ z and nj =° ~ n;=°.
We therefore get
'~ (2 xr)x 2
and
Avpg = b — 9
= arccos(znj=") — arccos(z'ni _0)
= arccos(ng) — arccos[n§ cos?(e)+
nj sin®(e) sin?(9) — nZ sin®(e) sin(6) cos(8)].
The graphs of A¢y and Agg with ng = (0, \/- \/—)

(assuming the sample normals are all equal) and ¢ = 5° are
displayed in Fig. 11(a) and (b), respectively. We have verified
qualitatively the shape of the curves with real data.

Our second step is to look at the maximum error on the
curve #(6). Based on the triangle equation, which is also valid
for the spherical geometry, we can bound the maximal error
for A¢ by

agl =llé - ¢'|| <.
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(a) Frame F and frame F'; (b) envelope of curve in Fig. 7(a).

Fig. 12.

For the maximum of Ay, we can show under the above
defined assumptions that the transformation T with T : F — F’
is a rotation by the angle ¢ around an axis k, which lies in the
zy plane and intersects the origin of F (and F’). This implies
that the angle between z and z’ can be at most £. Therefore, we
get, based on the triangle equation, a bound for the maximal
error for A as

Ayl =l — ¥l <e.

We can now address the problem of how the representation
might vary. Instead of a single curve #(6), we have now to
deal with an envelope of curves V(6,¢), which is a disc of
radius € swept along ¥ (see Fig. 12(b)).

Influence of Noise on the Polygonal Approxima-
tion—What are the polygonal approximations that approx-
imate such a set of curves? How are the angles between
consecutive line segments affected? To make a general
statement is very difficult. Therefore, we try to approach the
problem by making some simplifying assumptions:

* We look at the 2-D problem.

* We assume constant curvature.

This means that we try to do a polygonal approximation along
a circular section with a radius 71, and we examine the changes
of the polygonal approximation when we change the radius
by an error € to 73 (re = r; + €, curvature k; = —-) In Fig.
13, we start the polygonal approximation with the line fitting
tolerance ¢ at the point P. The first segment from P to @ is
a linear approximation for the circle Cy with the radius r; for
the curve from P to Q;. The second segment from Q; to R
is a linear approximation for the circle C; for the curve from
@1 to R;y. The two segments form the angle ;. Changing the
radius of the circle from 71 to r2 and starting the polygonal
approximation at P with the same line fitting tolerance ¢ leads
to the points ()2 and R,. The two segments form the angle as.
Our interest lies in the question of the difference Aa between
a; and as.

From Fig. 13 and with the relationship ¢ = r;(1 —cos(&)),
we can derive geometrically the following relationship be-

tween Aa = ||a; — az||, 71, 72, and the tolerance ¢:
Aa =
f2acos| (1= D)1= Dy + /o= De- by
acos - —)(1-— —(2-—)2-— .
T1 T2 T172
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Fig. 13.

Linear approximation: (a) Two different curvatures; (b) closeup.

This equation is plotted in Fig. 14 for the values ¢ = 5 and
t = 5,10,15,20,25,30 with respect to radius r;. Our goal
is to obtain a stable polygonal approximation. We choose a
tolerance ¢ >> ¢ for the following reasons (the numbers after
the item correspond to the graph in Fig. 14):

Small Radius (0-20): A small radius, which corresponds to
a sharp corner is a “wanted” breakpoint for the approximation.
A small radius, which corresponds to noise, is ignored by an
approximation with large ¢ (see the start of the curves for the
tolerances ¢ = 15,20,... in Fig. 14). A small tolerance leads
to extremely large values for Aa.

Large Radius (50+): The approximation of parts of the
curve with a large radius are very stable (see the low values
for Ac in Fig. 14). The choice of the tolerance is not crucial.
All tolerances provide small values for Ac.

Medium Radius (20-50): The problems of an unstable
approximation start when the radius is in between the above-
discussed large and small radius. We observe two effects:

1) The values for Aa are fairly large.

2) The linear approximation might “break” at different

points, depending on little changes of the curve.
This is the reason why we do not use one fixed tolerance for
the approximation but a whole set of tolerances.

‘We use the splash described in Section III-C-1 to examine its
redundancy with respect to the reference normal. The results
can be seen in the graphs in Fig. 15 for different quantizations
(10, 20, 30, 40, and 60). The distance from the origin of
the graph represents the angle «, and the direction, starting
north and counting counterclockwise, represents the angle 4.
Whenever a splash with the corrupted normal defined by (¢, 6)
matches the original splash (defined by the error (0,0)), we
plot a dot. Notice the different scales of the graphs.

To summarize, for small quantizations, the patch is rec-
ognized only if the reference normal is very similar to the
reference normal of the original splash (see Fig. 15(a)). An
uncertainty of up to 2° is bearable only for a certain é direction.
Larger quantizations allow a much larger error in the reference
normal and more freedom in the § direction. The shape of the
different distributions with respect to § is dependent on the
underlying surface and the quantization.

3) Stability with Respect to Noise: We want to address the
question of how corrupted can the underlying surface be to
reduce the stability of the splash representation. We added
zero mean Gaussian noise aG(0, o) with the amplitude a (in
pixels) and the standard deviation o to the surface s to get the

\\ae. : . ﬁ
B H : .
s : :
S——= .
18 20 38 4“8 68 78 88 90 188
{dalpha|[eps=5.80,t01=(5 18 15 28 25 38)](radius)

Fig. 14. Aa.

corrupted surface cs:
es(z,y) = s(z,y) + aG(0,0).

Then, we compute the splash at the same location as the refer-
ence splash on the corrupted surface. For a given quantization,
we then match the “corrupted” splash against the reference
splash. If both splashes match, we put a point in the graph for
the corresponding quantization at the coordinate (o,a). We
show the scatter graph for the quantization 40 in Fig. 16(a),
and the graphs of the envelopes for the quantizations 10, 20,
30, 40, and 60 are shown in Fig. 16(b), respectively.

Our conclusion is that if the quantization is larger, the more
stable is the splash representation, and if the quantization
is smaller, the less stability we can observe. The matching
behavior is not affected by either increasing the amplitude
of the noise and keeping the standard deviation small or
decreasing the amplitude and having a large noise deviation.

D. Recognition

1) Object Representation: As mentioned in the previous
sections, we want to represent our model (or scene) with super
segments for curve representation and splashes for surface
patch representation. We want the representation to be compact
and fast accessible, and the storage of multiple objects should
be possible. We chose, for these reasons, a table that is
implemented as a hash table (for more about hashing, see
[25]). A hash table allows efficient storage (only pointers are
recorded), the hashing scheme allows fast access, and different
features with the same keys can be stored in cellar-like buckets.

The representation of an object consists of the following
steps (see Fig. 17):

1) Compute the features "F; of model m with respect to the
algorithms described in Section I1I-A for super segments
and Section III-B for splashes.

2) Encode the features:

a. Encode the curvature and torsion angles for the
3-D super segments (Section III-A).

b. Encode the curvature angles and the other at-
tributes of the mappings of the splashes (Section
1I-B-1).
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3) For every feature "F;, several codes Code;("F;) are
computed. They are related to the different line fitting
tolerances. Every code of every feature serves as a key
for an entry in a table (the database) where we record
the feature.

When we build the database for more than one object,

we perform the three steps for every object. The table (data

m

.
Fl

(Feature i of model m)

model

+ Splash
*x Super Segment

Fig. 17. Object representation.

base) grows in size with the number of recorded models. This
process of building the database can be done off line.

2) Hypotheses Generation: Candidate Retrieval—The task
of hypotheses generation is the process to establish
correspondences between features of stored models and
features of the scene. This process results in a set of matching
hypotheses that consist of good and false matches. To extract
the good hypotheses from all hypotheses, we have to find
consistent clusters; this process will be discussed in Section
II-D-3. Our main interest for the candidate retrieval lies in
the discriminative power of the hypotheses generation itself.
By using indexing, we gain a lot of this power. Several
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Fig. 18. Hypotheses generation.

systems of the past (see Section I) use, in this respect, very
weak features, such as points or edges. This leaves all the
discriminative work to the verifying step. We believe that our
indexing mechanism reduces the ratio of false hypotheses to
good hypotheses tremendously. One positive side effect is that
in our experiments, models that were not in the scene and
therefore provided only false matches had very few hypotheses
and could be excluded fairly fast by the verification.

The hypotheses generation (see Fig. 18) consists of the

following steps:

1) The scene is preprocessed to generate all the features Fy
(splashes and super segments) as explained in Section
I-D-1.

2) The features are encoded.

3) The encoded features are used to retrieve the candidate
hypotheses between the features of model and scene.

Quantization and Cardinality—A crucial parameter for

the hypotheses generation is the quantization size for the
encoding of the features. Two features match when both keys
are exactly the same. This means that all the pairwise values
have to fall into the same quantization intervals. Several
questions have to be raised:

* Which quantization (interval size) is the best?

* Should we use different quantizations for different cardi-

nalities?

* Which cardinalities occur in real data and with which

frequency?

To answer the first two questions, we have to look at the
probability of a match, given a certain key length n. We
assume equal quantization for all keys. Suppose the range is
quantized into intervals of the same size q. Each value v is
then assigned a key based on which interval v falls into. If
the value v is corrupted by a random additive term bounded
by e, the probability that v + ¢ is assigned the same key as
v is simply

p(klv):1—p(k—1|v+s)—p(k+l]vve)=1—2.

When we have a vector of such values v of length n, the
probability that the corrupted vector is assigned the same entry
as the original one is

p(klv) = (1 - a)”-

Looking at this equation, it is obvious that the same quantiza-
tion for different keys increases the probability for matches of
small cardinality and decreases the probability for matches of
large cardinality. In our implementation, we try to counteract
this effect by using larger interval sizes for larger cardinalities.
Typical values are as follows (only for the quantization of the
curvature and torsion angles):

cardinality 3 4 5 6 7 8
number of keys 6 8 10 12 14 16
interval size 30 40 45 60 60 90 90

For extremely noisy data we use slightly larger values, for
data with little noise we use smaller values.

What kind of splashes do occur in typical range data?
Statistics for the three composers (see results section) and the
combined scene gives us the table at the bottom of this page.

From our experience, we get the best matches from cardi-
nalities 3 to 7. We believe that this is mainly due to the lower
probability of matches for larger cardinalities in the equation
discussed above.

3) Verification: The task of the verification is to distin-
guish good from bad hypotheses. Good hypotheses correspond
to true matches, and bad hypotheses correspond to wrong
matches. Good hypotheses have the following properties:

* They correspond to a rigid transformation.

» They can be grouped in geometrically consistent clusters.

Therefore, the verification stage consists of the following
steps:

1) We compute all possible matches for the features of
the scene with the model features to generate multiple
hypotheses. We remove the hypotheses that do not
represent a rigid transformation. This can be done for
every hypothesis by computing a least squares match
between the model feature and the scene feature. The
determinant of the resulting rotation matrix should be
approximately 1.0 to represent a rigid transformation
(see Appendix A). Next, we divide the resulting n
hypotheses H = {hi,hs,...h,} according the model
for which the model feature of the hypothesis votes.

cardinality 3 4 5 6 7 8 9 10 1 12 13 14 15 16
occurrence 2162 3240 3254 2923 | 2134 1336 715 300 114 36 8 8 1 1
percentage 133 19.9 20 18 13.1 8.2 4.4 1.8 0.7 0.2 0.04 0.04 ~0 ~0
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We store these into a correspondence table, where we
have the models m; as keys and the i) hypotheses
H; = {thy, ha, .. hy,} (with H; C H) as entries (see
Fig. 19).

2) The next step is the formation of consistent clusters.
For every model m;, we have to check the hypotheses
ih, and 'h, with ‘hy # ‘h, that are consistent with
each other. In theory, one matched feature is enough
to establish the complete transformation between model
and scene. In practice, we have to consider two aspects:

a. The splash is very local.
b. Due to this locality, noise has a lot of influence
on the transformation.

Therefore, we view, for the geometric analysis, a hypoth-
esis as a match equivalent to a point match. In practice,
we use the locations of the splashes as the match-
ing point pair, and because three noncollinear point
matches define a unique rigid transformation in three
dimensions, we adopt the criterion that three consistent
hypotheses are sufficient to instantiate the model in the
scene. We do not check every hypothesis against every
other; instead, if we have three consistent hypotheses
C = {*hy. hs' by} with C C H; for one model m;,
we examine the remaining hypotheses in H; \ C' and
collect those that are consistent with at least one of
the selected three in C. When we have found one
instance, represented by I = C U F, where F is the
set of the additional found consistent hypotheses, we
try to find more instances in the remaining hypotheses
H;\ I. What, however, is meant by consistency? We use
the powerful geometrical constraints (distance, direction,
and angle) introduced by Grimson and Lozano-Pérez
[11], [12] to efficiently prune their interpretation trees
and build our clusters. For a more detailed discussion
of the geometrical constraints, see Appendix B. In the
3.D domain, these three constraints define the attitude of
one feature relative to another since it specifies the five
degrees of freedom (three translational for the position
and two rotational for the orientation).

3) After this grouping of hypotheses into clusters, we can
compute the transformation from the model coordinates
to the scene coordinates by applying a least squares
calculation on all the matching features (see Appendix
A). Because of noise, we get, in general, a good first
guess for the transformation but not an exact match. A
second least squares match on corresponding corners or
segments can refine the result.

E. Complexity Analysis

The whole question of the complexity focuses on the
question: “What is the discriminative power of the features
in the system?” The answer to this question can be split in
half. The first part is the analysis of the retrieval process
and the number of generated hypotheses. The second part
is the discussion of the verification step and the cost of
grouping them into consistent clusters. When we talk in the
following about “scene features” we consider only the scene
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features, which lead to the generation of the minimum of one
hypothesis. For the complexity analysis, we ignore the scene
features whose code is disjunct from all the keys in the table
(they also do not add any cost in practice). Before we start to
answer the above question, we look at the parameters involved:

Fig. 19. Verification.

e n number of features in the scene

+ d number of features per table entry

» m, number of models in the scene

+ m number of models in the database.

To simplify the discussion, we make the assumptions that
every model has the same number of super segments and
that the entries are equally distributed over the table d =
const). Furthermore, we assume that every model consists of
f features (f = const).

1) Hypotheses Generation: When we have n features in the
scene, it is obvious that the cost to generate all candidate
hypotheses with indexing is O(n). The important issue for the
cost of the complete recognition is not the cost of retrieval,
but A, which is the number of hypotheses generated, because
this number has a crucial effect on the verification step. The
number h is proportional to the number of features per table
entry d (h = d-n). If h is larger, the clustering into consistent
clusters in the following verification is slower. Therefore, we
are interested in a small h, which corresponds to a small d.
This so called “ability to discriminate,” is influenced by the
following factors:

Noisy Data: Noisy data in the scene and in the models
forces the use of larger quantization intervals for the encoding
of the features. Larger quantization increases the number of
retrieved hypotheses and therefore decreases the ratio of good
versus bad hypotheses in the retrieval phase (see Section
[I-D-2).

Similar Models: Similar models consist of similar features.
Obviously, similar features are less discriminative than distinct
features, and therefore, d, which is the number of features per
table entry, increases. As a result, a scene feature generates an
increased number of candidate hypotheses. The work load of
clustering can only be done based on geometrical constraints
and is left to the verification step.

Grid Size: Choosing a large grid size for the interest
operator, we require the system to be robust to a larger location
uncertainty. This forces the user to choose a larger quantization
for the encoding of the features and therefore results in a
smaller ratio of good versus bad hypotheses.
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To summarize, the crucial value for the retrieval stage is
h, which is the number of generated hypotheses. In a best
case, this number is very low. The theoretical best case is
when every hypotheses votes for a different model (d = 1 and
n = m,). This results in A~ = n. The worst case corresponds
to a large value of h. There is only little discriminative power
in the features. This means that most features are encoded
with the same code (large d). Every scene feature generates
all possible candidate hypotheses, and therefore, the overall
number of retrieved hypotheses candidates is h = f - m - n.
This is the approach taken by many systems of the past, which
use either points or lines as basic features, and must therefore
perform the discrimination task during the verification step.

2) Verification: As mentioned above, the task of the verifi-
cation is to cluster the h hypotheses into mutually consistent
clusters. This is done for every entry in the correspondence
table.

Best Case: In the best case, there is a lot of discriminative
power in the features. This corresponds to a low d value. The
h = d - n hypotheses are divided in the correspondence table
according to the model for which the hypothesis votes. For m
models in the scene, we have m entries in the correspondence
table with mL hypotheses each. For every entry, these mi
hypotheses have to be grouped with respect to the geometrical
constraints. We distinguish the clustering process based on
different cases:

1) Every model in the scene occurs only once: In this case,
the hypotheses in one entry either vote for the model
instance, or they are the wrong hypotheses. The grouping
of the hypotheses can be done by finding three consistent
hypotheses (see Section III-D-3) and then screening the
remaining hypotheses in the entry for consistency with
the initial three. Under the assumption that the number
of wrong hypotheses is relatively small, this grouping is
done in O(mis). For the whole complexity, we therefore

get
h
Obest(n) = m - O(m—) =0(d-n) = 0(n).
The theoretical absolute best case is when d = 1,

and every hypothesis votes for a different model (n =
m,). The correspondence table has m entries with one
hypothesis each. The cost for the clustering is zero.
This results in Opese(n) = O(1). (Note that the pose
estimation computed from a single feature is likely to
be very coarse.)

2) Every model in the scene can occur more than once:
In this case, the clustering of the hypotheses in one
entry cannot be done in O(-2-). To find the three initial
hypotheses for every instance, we get the complexity
of O(%). Clustering these hypotheses for all entries
results in a complexity of

d? ~’Il2
- ) = O(n?).

s

h2
Obegt(n) =Mg - O(ﬁ) = O(

The best case has a noteworthy side effect. Assuming
the number of scene features n is fixed and examining the
complexity O,, with respect to the models in the database, we
find that it grows as O,, = O(k-m) when m is the number of
stored models and £ < 1. To show this effect, we performed
two experiments:

1) Large database using only edge information: We created

a database of 100 random polyhedra consisting of mutu-
ally intersecting random tetrahedra and parallelepipeds.
The scene was composed by taking three of these
polyhedra, rotating them, and overlapping them. For the
recognition, we used only 3-D super segments. The cost
for detecting the absence of a model is less than 10%
of the cost for the detection of the occurrence. This
underlines the discriminative power of super segments
in three dimensions.

2) Large database using only splashes: We created a data-
base of 100 random smooth range images. The scene is a
composite of four of these objects including translation,
rotation, and occlusion. For the recognition, we used
only splashes. In our results, the cost for detecting the
absence of a model is less than 50% of the cost for the
detection of the occurrence. We believe that the cause
for the higher relative cost of absence detection based on
splashes compared with the super segments lies in the
fact that splashes for surfaces are less descriptive than
super segments for boundaries.

The experiment gives us an upper and lower bound for that
which we have to expect for the detection of occurrence and
absence of a general 3-D object using a large database in the
case of discriminative features. Therefore, the complexity with
respect to the number of models stored is O,, = O(k - m)
with 0.1 < k < 0.5.

Worst Case: In the worst case, there is little discriminative
power in the features. This corresponds to a high value for
d. The overall number of retrieved hypotheses candidates is
h = d-n with d = m - f. These h hypotheses are divided
in the correspondence table according to the model for which
the hypothesis votes. For m models in the database, we get, in
the worst case, m entries in the correspondence table with h
hypotheses each. For every entry, these h hypotheses have
to be grouped with respect to the geometrical constraints.
Clustering these h hypotheses results in a complexity of

Oworst(n,m) = m - O(h%) = O(f% - n? - m3) = O(n? - m?).

In the worst case, the ratio of good versus bad hypotheses is
very small.
3) Summary: As a conclusion, we get the result that the
practical complexity of our system is
O(TL) S Orecognition < O(n2 ) m3)-

In the case of well-distinguishable models, such as the first
two examples in the results section, the complexity comes
close to the above discussed best case. An example where the
system slows down is shown in the third example of the results
section, which presents the results of a cluttered scene, which
is composed of three composer busts. The system detects the
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Mask

Mozarn

ipy,am|d Renault Part

Fig. 20. Databasc with nine objects.

correct models and computes the correct locations, but due t
noisy data and similar features, the discriminative power i
smaller, and the overall recognition process is slower than i
the other examples.

IV. RESULTS

The recognition mechanism for general 3-D objects is now
illustrated with real data examples. For the presentation of the
range data, we always display the artificially shaded images.
We choose four scenes:

1) a Mozart bust, which is not segmentable into stable

patches
2) a plane and a wagon, which shows that our method
works for objects that can be approximated by polygonal
surfaces (this input was used by Fan in [7] and [6])

3) a very complex and cluttered scene with similar objects
(busts of composers)

4) a terrain scene lacking significant features, which is an

interesting application regarding navigation tasks.

The Mozart scene and the plane-and-wagon scene were
recognized with a database consisting of nine objects. The
contents of the database is shown in Fig. 20.

A. Mozart

Our Mozart bust is highly curved and has a partially
structured surface. The range data was obtained with a laser
range finder. Because of lack of data, we cannot deal with a
complete 3-D model and a scene that consists of range data.
Therefore, we take the original data of the Mozart bust as
the model, and rotate the range data synthetically to obtain
the scene. We rotate pixel by pixel and fill the holes by
averaging the values of neighbor pixels. This rotation process
is guaranteed to add a lot of noise! Our input data is the range
image. For better visibility, we show the artificially shaded
images. Fig. 21(a) shows the rotated scene of the Mozart
bust, which is the model (see Fig. 20) rotated by 20° around
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Fig. 21. Example Mozart: (a) Scene 1; (b) detected model projected on scene
1; (c) final hypothesis of Mozart; (d) final hypothesis of scene.

a tilted axis. The recognition result is shown in Fig. 21(b).
(We overlayed a grid of the range image of the model, which
was transformed by the resulting transformation on top of Fig.
21(a).) In Fig. 21(c) and (d), we show the final hypotheses,
which lead to the result in Fig. 21(b). Hypotheses 2 and 3 and
18 and 19 are overlaid.

B. Plane and Wagon

We have four range images: two of the plane from different
views and two of the wagon from different views. The range
data of all four views was obtained with a laser range finder.
One wagon and one plane image serve as models. The scene
is composed synthetically by combining the other two range
images into the scene image as displayed in Fig. 22(a). Fig.
22(b) shows the best detected solution. In Fig. 23, we display
the final hypotheses. The splash hypotheses are displayed in
italic, and the super segment hypotheses are printed in bold.
Splash hypotheses are shown as the pointers to the corre-
sponding splash location, and super segment pointers point to
the middle vertex of the super segment (to display the super
segments themselves is difficult). Whenever more than one
feature pointer points to a location, we have multiple feature
matches based on different linear approximations (for super
segments) or different radii (for splashes). It is interesting to
note that the plane was recognized based on the super segment
information (only hypothesis 2 in Fig. 23(a) and (b) is a splash
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(®

Fig. 22. Example plane and wagon: (a) Scene 2; (b) detected models
projected on scene 2.

hypothesis), whereas the wagon was mainly detected based on
splashes (only hypotheses (1-3) in Fig. 23(c) and (d) are a
super segment hypotheses). This is a good illustration of the
system’s ability to use whatever information is available; for
the wagon, the splashes are the best matched features, and for
the plane, the 3-D curves are the best matched features.

C. Composers

We obtained three range images from the three busts shown
in Fig. 24 (a)~(c) with a liquid crystal range finder [22]. These
three busts serve as models and are the content of the database.
The scene is composed by overlaying three different views of
the busts (the range finder’s field of view and depth of field
are too small to acquire such an amount of data at once).
The data is smoothed with the adaptive smoothing algorithm
[21], and small holes are closed with bilinear interpolation. The
scene is displayed in Fig. 24(d). The algorithm finds the correct
correspondences and the correct positions despite the fact that
the three models are locally very similar (parts of the faces,
parts of the clothes). The hypotheses generation step retrieves
all possible candidates, and the verification step has to unravel
the consistent clusters. The projection of the detected models
on the scene is shown in Fig. 24(e). This example shows the
limits of our algorithm with respect to speed. The detection is
by far the slowest compared with all the other scenes (see the
complexity discussion in Section III-E). This is mainly due to
the similarity of the objects, the noisy data (the liquid crystal
range finder provides fairly noisy data due to interreflections
and coarse quantization), and the complexity of the scene. It is

\
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Fig. 23.  Final hypotheses for scene 2 (splash hypotheses are printed in italic,
and super segment hypotheses are printed in bold): (a) Plane on model; (b)
plane on scene 2; (c) (1-14) for wagon on model; (d) (1-14) for wagon on
scene 2; (e) (15-28) for wagon on model; (f) (15-28) for wagon on scene 2.

IS5 16 17 18 1920 21 22 73 24 25 26 27 28

interesting to note that the algorithm found multiple solutions
(e-g., an instance of the Chopin model was also found on Bach
in the scene), but they were later rejected based on the rigidity
assumption.

In Fig. 25, we show as an example the hypotheses that lead
to the recognition of Chopin. Hypotheses 11 and 13 illustrate
the location uncertainty very well.

D. Terrain Map

As a terrain map, we use the digital elevation model (DEM)
covering the Martin Marietta ALV test area. A DEM is a 2-
D array of uniformly spaced terrain elevation measurements.
Our DEM map consists of 810 x 702 pixels with a pixel
corresponding to a size of 5 X 5 m on the ground. For better
visibility, we exaggerated the elevation data. The DEM map
serves as the model in our database. We cut out a window of
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Fig. 24. Three composers: (a) Bach; (b) Brahms; (c) Chopin; (d) scene
3—three composers; (e) detected busts.

@ ®)

Fig. 25. Example of the hypotheses found for Chopin (hypotheses 4 and
6 are overlaid in the scene): (a) Hypotheses on Chopin; (b) hypotheses on
scene 3.

80 x 80 pixels, rotated it by 80° around a tilted axis and used
the resulting range information as the scene data. This kind
of recognition can be useful in navigation or mapping tasks.
Fig. 26 shows the shaded range image of the terrain map.
The rectangle represents the area we picked for the window.
Fig. 27(a) and (b) show the range and the shaded image of
the window, which was rotated by 80° around a tilted axis.
The marked arrow in Fig. 26 shows from which direction we
look at this window to get the view in Fig. 27. The final
hypotheses are displayed in Fig. 27(c) and (d). Fig. 28 shows
the best match.

E. General Observations

We can give some rough numbers about the running time
(on a serial Symbolics 3675 Lisp machine).

141

Fig. 26. Shaded DEM terrain map (= Model).

© (d

Fig. 27. Rotated DEM terrain window (= Scene) and final hypotheses: (a)
Range image of window; (b) shaded image of window; (c) final hypotheses
on closeup view of model; (d) final hypotheses on scene.

)

2)

3)

4)
5)

6)

The acquisition of one super splash (consisting of,
typically, three splashes with four line fitting tolerances)
takes about 12 s.

The Mozart bust consists of about 400 super splashes;
therefore, it took about 1 hr and 20 min to compute all
splashes.

The plane consists of about 60 splashes; therefore, it
took about 12 min to compute all splashes.

The computation of the 3-D curves takes less than 3 min.
The recognition process for the mozart scene takes about
50 s (retrieval: 10 s, verification: 40 s).

The recognition process for the plane and wagon scene
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Fig. 28.

Result of recognition (scene projected on model).

takes about 1 min and 30 s (retrieval: 15 s, verification:
75 s).

7) The recognition process for the bust scene takes about 30
min (retrieval: 2 min, rigidity filter: 7 min, verification:
21 min).

8) For the window of the DEM map, we compute 109
splashes (which takes approximately 20 min). The recog-
nition itself succeeds after 35 s (retrieval: 5 s, verifica-
tion: 30 s).

These numbers reflect neither the high parallelism, which is
theoretically possible, nor the data redundancy with which we
work at the moment. Simple improvements can significantly
increase the performance. This is one goal of our future work.

V. CONCLUSION AND FUTURE WORK

We showed with our implementation of the TOSS system
that structural indexing provides a powerful mechanism for
the recognition of general 3-D objects. We make very few
restrictive assumptions about the shape of the objects, and we
are able to acquire them automatically. By using two types of
primitives, we overcome the problem of recognition in the case
where either edge data or surface data does not provide enough
information for a correct classification. Our encoding scheme
allows us to match the primitives and verify the resulting
hypotheses in a reasonable time complexity. We are able to
handle large object databases. Our plan for the future is to
further exploit the fact that rich features such as the splash
or the super segment provide enough structural information to
recognize objects efficiently. Our long-term goal is to build a
recognition system that is able to recognize 3-D models in a
2-D gray-level image.

APPENDIX A
LEAST SQUARES METHOD

In this section, we introduce a least square method for
finding the transformation matrix between two sets of 3-
D points by minimizing the error. The correspondences are
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TABLE 1T
TABLE OF OBJECTS

["object # super # super \‘ splash radii grid recognition
(size in pixels) | splashes segments | (pixels) (pixels) time
car 208 [ 203040 8 '
(387x239) 1 ;
dinosaur 60 } 64 20,30.,40 8 |
(141x305) 1
mask 350 J 276 20.30.40 8 H
(294x290) ‘
Mozart 402 not computed 20,3040 6
(264x399)
phone 262 193 20,30,40 8
(395x217)
plane 60 239 20,30,40 8
(507x218)
pyramid 27 not computed 20,30,40 5

[ (105x97) !

\ Renault part 124 204 20,30,40 8
(315x367)
wagon 367 256 20.30,40 6

‘ 422x178) )

| Bach 306 not computed 15,20,25 6

| (230x389) _

| Brahms 640 not computed 15,20,25 5

‘ 232x351)
(_hupln 469 not computed 15.20,25 6

L (232x359) :
scene 1 329 not computed | 20,30,40 8 50 s
(240x390)

| scene 2 203 350 20.30,40 3 90 s
(458x324)
scene 3 849 not computed 15,20,25 7 30 min

| (446x424) )

i DEM window 109 not computed | 15,20.25 3 35s
(S0x80)

! DEM map 5544 | not computed ©  15.20.25 3

| s11x702) 1

known. The method is based on the 2-D approach in [16]
and [17]. The question is “What is the best match between
the sequences of points (u;)7_; and (v;)7_,?” The goal is to
find the transformation 7'(u) = Au + b, which minimizes the

distance between the sequences (Tu;)7—; and (v;)7_;:

n
. 2
(5_mT1n E | Tu; — v;|°.
=1

To later eliminate a second-order term, translate the set (u;)
so that

n
E U; = 0.
j=1

Then
. 2
5:12T}?ZIAUJ +b— v
1=1
n n
_ . _ 2 12
—min (0 10- i+ 3 | duf
3=1 J=1
n n
+22bAu]—QZAU] -’U]').
Jj=1 j=1
With

En:b'A'U/j =b~A(zn:uj)=0

Jj=1 =1
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we can eliminate one second-order term, and therefore, we can

e n 2 n 2 n
minimize Ej:l | —v;|” and Zj:l | Aujl _2Zj:1 Auj-v;
separately. The solution for b is simply

1 n

To minimize over A, we set

n

9(4) = g(a11,a12,.. . a33) = z | Auj|? - QZAuj - ;.

j=1 j=1

We have to find

nﬁng(A) = ml;ng(an,alz, ...033)
by solving the following system of nine equations (z =
1,2,3;5 = 1,2,3):

dg
Bai]—

=0 (1)

Since g is a quadratic function in each of its unknowns, (1)
is a system of nine linear equations with nine unknowns;
the nine equations are three independent sets of equations
with three unknowns. The computation of the unknowns (the
transformation matrix 7) is straightforward.

The determinant of the rotational part A of the transforma-
tion matrix provides us with a measurement for the volume
change imposed by the transformation. The transformation
is rigid if det(A) = 1. When we examine a hypothesis
on rigidity, we have to consider the effect of noise (see
Section III-D-3). Therefore, in practice, we validate the rigidity
assumption only if 0.5 < det(A) < 2.0.

APPENDIX B
CONSISTENCY BETWEEN HYPOTHESES

We simplify the presentation by regarding a hypothesis in
this section as a match between two splashes, whereas we
actually also have to consider matches between 3-D super
segments. The extension to a hypothesis based on 3-D super
segments is straightforward and is addressed at the end of
every subsection. It is important to note that with a match of
two features, we get a set of corresponding points:

* A hypothesis of two splashes of cardinality four provides
us with five corresponding point pairs. Four are in the
vicinity of the patch (along the sample normals). They
correspond to the vertices of the polygonal approximation
in the (6, ¢,%) space. The fifth pair corresponds to the
centers of the two splashes (the locations).

* A hypothesis of two 3-D super segments of cardinality
four provides us with five corresponding point pairs: one
for each vertex.

Suppose we have two hypotheses h; and ho; every h; consists
of a match between a splash on the model m; and a splash on
the scene s;. The reference normal of a splash s is n,. Now,
we address the question “When are the two hypotheses h;
and hy mutually consistent?” We basically have to reduce the
five degrees of freedom (dof’s) that describe the geometrical
relationship between our two features to completely constrain
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Fig. 29. (a) Distance constraint; (b) orientation constraint.

the attitude of one feature relative to another. We have to deal
with three dof’s for the relative position and two dof’s for the
relative orientation.

1) The Distance Constraint

* The distance between two splashes is the distance be-
tween their locations. To be consistent, the two splashes
on the model should have approximately the same dis-
tance as the splashes on the scene (since it is a rigid
transformation) as shown in Fig. 29(a).

* Therefore, we require

||dist,, — dists]| < eq.

* With this constraint, we reduce the dof’s for the position
to two.

* For 3-D super segments, we use the middle vertex (or, in
case of even cardinality, the middle point of the middle
segment) as the feature position.

* In our implementation, we use ¢4 = 0.1-max (dist,,, dists).

2) The Orientation Constraint

» For a splash, we use the reference normal as the ori-
entation vector. The angle «,,, which is formed by the
orientation vectors of the two splashes on the model,
should be approximately the same as the angle o, which
is formed by the orientation vectors of the two splashes
on the scene (Fig. 29(b)).

* Therefore, we require

lom — as|| < eq.

* This reduces the orientation dof’s to one.

* We use the vector from the last to the first vector as the
orientation vector for a 3-D super segment.

* In our implementation, we use ¢, = 25°.

3) The Direction Constraint

* For computing the direction angles 7;; and ~ys, for splash
s in relation to sy, we have to assign a unique frame F
to the splash s;, as shown in Fig. 30 (this frame should
not be confused with the frame we defined in Section
1I-B-1).

a. The frame F has its origin at the location of the
splash.
b. The z axis is the reference normal.
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Fig. 30. Orientation constraint: (a) Direction constraint; (b) closeup of the
frame F in splash s1; (c) assigning a frame to a 3-D super segment.

c. In Section III-B-2, we use the point with the
strongest tangent tilt as the start of the polygonal
approximation. This point p is the point where the
sample normals have the strongest tilt with respect
to the reference normal, and we know that p lies
on the circular slice of the splash. We know further
that p has a corresponding point on the matched
splash. Without loss of generality, we use p as a
reference point for defining the z axis.

d.  The z axis is defined as the vector that is perpen-
dicular to z and lies in the plane defined by z and
the point p.

¢.  The y axis is perpendicular to = and z (and z, ¥,
2 form a right-handed coordinate system).

Representing the vector 5155 in spherical coordinates in
frame F results in an angle pair (77',v5') (see Fig.
30(b)). To preserve the rigidity assumption, the values
for (7i',~;') must be approximately the same as for
(¥, v2'"). This reduces the dof’s for the position by two
to zero. In addition, requiring similar values for (v§2,v5?)
and (v{"*,v;'?) reduces the dof’s for the orientation to
zero.

Therefore we require, for 4,5 € {1,2)}

177 =9l < ey

For 3-D super segments, we assign a frame F in the
following way (see Fig. 30(c)):

a.  The frame F has its origin at the first vertex.
The z axis is the (normalized) orientation vector.

¢.  The x axis is perpendicular to z and lies in the
same plane as the first segment. If the first segment
and the orientation vector are aligned, take the
next segment.

d. The y axis is perpendicular to z and z in a right-
handed coordinate system.

In our implementation, we use e, = 25°.
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