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Abstract

Registering 3D point sets subject to rigid body motion is a
common problem in computer vision. The optimal transfor-
mation is usually specified to be the minimum of a weighted
least squares cost. The case of 2 point sets has been solved
by several authors using analytic methods such as SVD. In
this paper we present a numerical method for solving the
problem when there are more than 2 point sets.

Although of general applicability the new method is par-
ticularly aimed at the multiview surface registration prob-
lem. To date almost all authors have registered only two
point sets at a time. This approach discards information and
we show in quantitative terms the errors caused.

1. Introduction

Registering point sets subject to rigid body motion is a
common problem in computer vision. It occurs in many
applications where 3-D data are obtained by stereo, range
sensors, tactile sensing, etc. It is also encountered in prob-
lems such as registering free-form curves or surfaces. The
method presented in this paper is of immediate relevance
to model building from multiple range images. Free-form
surfaces taken from multiple viewpoints must be registered
prior to fusion.

For two 3-D point sets with known correspondences the
optimal alignment is usually defined as the minimum of an
appropriate cost. Usually the cost is a weighted sum of
the squared Euclidean distances between each pair of cor-
responding points.

In the case that there are 3 rigid objects or views with

pairwise point correspondences between set | and 2, and set
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1 and 3 the problem breaks down into 2 binary problems.
However if, in addition, correspondences are provided be-
tween set 2 and set 3 the pairwise approach no longer pro-
duces the optimal result. If the data is noisy this may result
in significant and unnecessary error.

In this paper we present a simple method to obtain the op-
timal solution to the multiple point set registration problem.
The method is numerical and iterative.

2. Literature Review

Several analytic solutions to the problem of registering
two point sets have been presented. For a discussion of the
various methods see Kanatani [3] and references therein. In
a recent paper [4] the various methods were compared. It
was concluded that the various analytical methods give an-
swers in good agreement with each other for non-degenerate
data sets.

Point set registration is needed in many applications in
range imaging. One application is CAD based inspection
where a point set is registered to a CAD model. Another
common problem is building complete surface models of
free-form objects from multiple range images. Free-form
surfaces taken from multiple viewpoints must be registered
prior to fusion. Typically more than 10 views are needed to
reconstruct an entire object and each view will overlap with
several neighbours [5, 6].

Most range image registration algorithms are variations
of the Iterative Closest Point (ICP) algorithm [1]. Most pub-
lished algorithms study the case of registering 2 surfaces at
a time. There are many situations where there are more than
two point sets to be combined. Turk and Levoy [6] address
a surface fusion problem where multiple surfaces may be
combined. In the absence of a suitable technique for mul-



tiple point set fusion they register all views to a single mas-
ter view. The master view is a cylindrical scan and the sec-
ondary views scanned over an z-y grid.

In this way they reduce the multiple fusion problem to
several binary problems that can be solved by existing meth-
ods. This is however not altogether satisfying. The solution
can be improved by considering also the overlap between
pairs of secondary views. The improvement may be very
slight, but range data is often used in applications where ac-
curacy is important. The problem of multiple view registra-
tion has also been addressed by Gagnon el al [2].

Most surface registration algorithms [1, 7, 6] generalize
immediately to multiple surfaces provided that a multiple
point set registration algorithm is available. It is for appli-
cations such as this that we present our method.

3. Problem Specification

‘We assume that there are M distinct rigid bodies. Each
rigid body could correspond to a view (range image) of an
object. We will denote views by e or § = 1..M. The points
originating from view « are denoted by £ a three compo-
nent column vector. The 2% may be transformed by a3 x 3
rotation matrix R® followed by a translation 7% into some
point §*. We write

9% = R*§* +T° ¢)]
In this paper there is one fixed coordinate system and the
transformations act on the point sets.

Next we suppose that there are P sets of pairwise corre-
spondences denoted by g = 1..P. The puth set of pairwise
correspondences is a set of correspondences between points
from view a(u) and points from view 8(y). The number of
points in pair set u is denoted N,,. The ith point pair in pair
set u consist of a point :f:'i)‘(“) from view a(p) and a point
:?:iﬁ(”) from view 3(p). The weighting assigned to this pair
is denoted wt'.

Different correspondence sets with points from the same
view may or may not use the same points from that view. In
other words there may be as few as M distinct point sets
{£2®|i = 1..N,,)} or as many as 2P.

(1) and

We assume that we are given all the points £
#7%) and the weights w”. We must now find the M opti-

mal rotations and translations for the M views, where the
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quantity we wish to optimize will now be defined. The ob-
jective function E[R!..RM T'..TM]is a weighted sum of
squared Euclidean distance defined as

P N,
E[R'.RM,T".TM) =" wk

p=1 i=1

2
g?(#) - ﬁf(u) (2)

The optimal set of transformations is the set that gives the
global minimum of the objective function.

It should be noted that the set will always have a global
degeneracy. The cost function is unchanged if the same rigid
body transform is applied simultaneously to all M views.
For this reason we may arbitrarily set the transform for view
1 to the identity transform with no loss of generality.

We do not do so during the computation because it is
preferable to maintain symmetry. This means that all views
may be programmed in the same way. When the computa-
tion is complete all views are transformed so that view 1 is
transformed by the identity transform.

4. Finding the optimal transform

In this section we present a method for finding a lo-
cal minimum of the cost function. Considerable insight is
gained by creating a fictitious physical system in which the
laws of classical mechanics are obeyed. In effect we will
present a solution based on a gradient descent method, how-
ever useful insights may be gained by the physical analogy.

We begin by considering the problem of two views and
one correspondence set, i.e. & = 1 and 3 = 2. The cost we
wish to minimize is
a7 -t

) N
ER' R*,T", T =) w; 3)

i3

For each of the M views we choose an arbitrary point in
space which we will call the center of mass and denote oy .
We defer discussion on how to choose ¢y until later. We
can now define points relative to the center of mass of a view
before and after applying equation (1). {The hat”is used to
distinguish points with and without the CM subtracted.]

)
(5)

We now define some averaged (mean) quantities. The mean

Ui = Yi + YoM

Ty =z +ToM

value of &; is denoted (Z) and given by

2 widi



Other averaged quantities are defined in the same way. For
convenience we define W = Zi w;. We note now a useful
formula which follows from the above definition.

@)

(@) = (& — zoum) = (2) — zom

In order to make it quite clear we note here that there are M
centers of mass, but 2P mean values (z). This is because
each view has a fixed center of mass but the (z) are com-
puted based on the actual points and weights for a given cor-
respondence set.

The pairwise point cost is given by the squared Euclidean
distance. This is similar to the harmonic oscillator poten-
tial in physics. The potential energy stored in a spring is the
square of its displacement from the resting position. The po-
tential gives rise to a force linearly proportional to displace-
ment. The force may be viewed as attached to a rigid object
(view) at ¢j. In figure 1 we attempt to illustrate the model by
showing 3 objects with fixed points joined by springs. This
is the dynamical system we base the model on. In the figure
there are 3 views and 3 correspondence sets.

Figure 1. The physical model

In physics a dynamical system with friction will evolve
towards states with lower potential energy and eventually
come to rest in a local minimum of potential energy. This is
very similar to the method of gradient descent in optimiza-
tion where the potential energy plays the role of the cost or
objective function. The physical forces play the role of the
gradients which specify the update direction.

The force on view « due to the correspondence set may

be computed as

Fo=—

@a— -—2W [Ra($a> + RQIIJ%M + T‘“

i

~RA(zP) - Rzl — Tﬁ] )

A similar expression is obtained for F*. The torque on view
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a, 7%, around the center of mass may be computed as

o «  OF
T B —Zilh Xa—g?—

i

+2(R%z® x RPzP)

Here we have used the fact that (z® x z) = 0.

It is possible to reduce the complexity of computing the
force and the torque from O(N) to O(N?) by precomput-
ing quantities such as the (z*) and storing them. The term
(R x RPz") is slightly more difficult to precompute. It
may be expressed in terms of the 3 x 3 correlation matrix.

It is now straightforward to generalize the 2 view case to
M views. From one correspondence set we obtain a force
and torque for each of the two participating views. By sum-
ming over all P correspondence sets we can obtain a total
force Ft‘;'t and torque Tt"‘o't for each of the M views.

Fgy =3 8o, a(m) Fo®) + 37 6(a!, () FA®)
I 1

(10)
A similar expression holds for the torque. Now that we have
the total force and torque we can consider the dynamical
equations of motion. We seek a system that moves towards
a potential minimum. The equations that we choose are the
friction dominated equations of motion, namely

dyd
=t = F an
Tw® =72, (12)

The parameters y and I" resemble the mass and moment of
inertia. In this system they are in fact the drag and rotational
drag coefficients. w is the angular velocity, i.e. the time rate
of change of orientation. [ The angular velocity forms a vec-
tor space whereas the orientation does not. ]

‘We note that Newtons laws are usually second order and
these equations are first order. This is because the mass
terms have been dropped leaving only the first order friction
terms. Hence we describe the equations as friction domi-
nated.

This system of equations can be solved by the Euler
method. Each view must be translated by Fi%, At and ro-
tated by RS A, which is obtained from wAt¢t in a standard
way. The update equation for 7%(t) is complicated because
the rotation is around the center of mass, not the origin.

T (14 At) = R0 [T (0) — yal +ylas + F At (13)

—2W[R*(z)] x [Ram%M +T% — Rﬁng - Tﬁ]

©)



R*(t+ At) = RS, R(1) (14)

A simple quality controlled Euler method can solve this
dynamical system with adaptive stepsize. It is guaranteed to
converge to a local minimum.

The method must be started at some initial guess. In the
results section we show convergence from rather crude ini-
tial guesses. To save time the pairwise method may be used
to supply quite good initial guesses.

There are some arbitrary parameters to be chosen. These
parameters do not affect the solution but can have a strong
effect on the convergence to the solution. The drag may be
set to v = 1 with no loss of generality. Our experiments
suggest that correct choice of the rotational drag I and the
center of mass for each view is very important. The center
of mass for a view should be chosen as the centroid of all
the data originating from that view in any correspondence
set. The rotational drag should be chosen as I = 0.5yR?
where R is a distance. The distance is selected as follows.
For each view we compute the rms distance of points from
the CM. R is then set to the largest rms distance of any view.

Choice of these parameters is important for the follow-
ing reason. Consider the potential E = az® + by?. Whena
and b are very different in size gradient descent is poor be-
cause it tends to zigzag down the valley in an inefficient way.
Rescaling so that a ~ b does not affect the position of the
minimum but does affect the speed of gradient descent. In
effect the above choices generate a reasonably shaped po-
tential surface on which to perform gradient descent.

5. Results

In the first example we show the convergence proper-
ties of the algorithm by displaying a graph of (pseudo)time
against rms residual r defined by

2
@?(u) (1)

N -3
2 Zu Zz g wf - Y

r[R*.RM,T*. TM
el ) i wh

(15)
The synthetic data set is created by selecting a random set
of 50 points on the surface of a bust of Beethoven. We do
not add noise. [In figure 4 we show the Beethoven bust and
the icosahedron that we will use later.] We then select 6 sub-
sets corresponding to views taken from the 6 directions +e,

+e,, +e., —e,, —e,, —e,. For example view 1 contains
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only points visible from the +e; direction. Thus M = 6.
Each view is then rotated by 10 degrees around a random
axis and translated by a random distance of about 2 units in
each direction. The bust is of size about 10 units. There are
15 distinct pairs of views but only 12 correspondence sets
(P=12) since views from opposite directions have no com-
mon points.

The first curve in figure 2 shows the residual error r as
a function of time ¢ for the case M
4 views and have P = 1) and M
terminated after 41 (quality controlled) iterations for M = 2
and 57 iterations for M = 6. It is clear that although the 6
view problem is considerably more difficult than the 2 view

2 (where we discard

6. The algorithm is

problem it needs only ~ 50% more iterations. The results
are good, the cost has been reduced uniformly over 12 orders
of magnitude.

In this problem ground truth is available and so we can
compute the error from the true value for the translation and
rotation. It is about 102 for distance and 10~1! degrees
for rotation.

Residual Error

0.20
Time

0.00 0.10 0.30

Figure 2. Convergence properties

In summary we have demonstrated fast convergence to
results of high accuracy. Typical vision users will probably
be satisfied with 6 decimal places or less. In addition the al-
gorithm may be started with the results of the pairwise fit-
tings. In practical situations no more than a few iterations
may be necessary.

Whether or not multiview registration will offer signif-
icant improvement over a binary approach will depend on
the details of the data in question. It is easy to construct ex-
amples where there is no advantage in using a multiview ap-
proach (e.g. no noise!). Next we present quantitative results



for an example where there is a significant difference. We
select 60 points at random on a icosahedron inscribed in a
sphere of unit radius. We then obtain 3 views each from di-
rections in the xy plane at 120° intervals. The directions are
(1/2,/3/2,0), (1/2,—-+/3/2,0) and (-1, 0,0). There are
3 correspondences sets, namely views 1-2, 1-3,2-3, and we
load each set with those points common to both views. The
pairwise approach can only use two correspondence sets.

We then add Gaussian noise of zero mean and variance ¢
to each coordinate of each point in each view, and solve for
the optimal transformation. In figure 2 we show the residual
plotted against o. The residual is the full residual summed
over the 3 correspondences sets in each case. The pairwise
method minimizes over sets 1-2 and 1-3, whereas the iter-
ative method minimizes over all 3 sets. The improvement
is consistently larger than a factor of 2 which can be signifi-
cant. Naturally the additional errors in the pairwise method
will be found mainly in the set 2-3 which is not used in the
minimization.

10
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Figure 3. A graph of Residual » vs Data Noise
o comparing the pairwise method with the it-
erative method

6. Discussion & Conclusion

It remains an open question whether the cost function is
convex. However we do know that the case of 2 point sets is
convex (with respect to proper rigid body transformations).
From this we can make a deduction. If we find a local min-
imum and fix the pose of all views except one, say a, then
the cost is a global minimum with respect to variations of
T and R*.
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Figure 4. The two surfaces used in the results
section

We are aware of one weakness of the algorithm. In cases
of near degeneracy, such as aset of points lying very close to
astraight line, we find slow convergence (although the resid-
ual error r rapidly becomes small).

We have developed a simple and fast method to solve the
multiview point set registration problem. After a very brief
precomputation of O(N) the method is of O(N?).

We have shown an example where use of this method
makes a significant improvement to the estimate of pose.
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