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Abstract

This paper presents a new method for determining the min-
imal non-rigid deformation between two 3-D surfaces, such
as those which describe anatomical structures in 3-D medi-
cal images. Although we match surfaces, we represent the
deformation as a volumetric transformation. Our method per-
forms a least squares minimization of the distance between
the two surfaces of interest. To quickly and accurately com-
pute distances between points on the two surfaces, we use a
precomputed distance map represented using an octree spline
whose resolution increases near the surface. To quickly and
robustly compute the deformation, we use a second octree
spline to model the deformation function. The coarsest level
of the deformation encodes the global (e.g., affine) transfor-
mation between the two surfaces, while finer levels encode
smooth local displacements which bring the two surfaces into
closer registration. We present experimental results on both
synthetic and real 3-D surfaces.

1 Introduction

The matching of 3-D anatomical surfaces between anatomi-
cal atlases and patient data, or between different patient data
sets, is an important element of 3-D medical image analy-
sis and quantification. Matching between atlases and patient
data enables more accurate and reliable segmentation and the
functional labeling of medical images, as well as multimodal-
ity data registration and integration. In computer vision, this
problem corresponds to finding the non-rigid deformation be-
tween two surfaces, with applications to model-based object
recognition and deformable object tracking.

In previous work [20, 9], we developed a fast and accurate
technique for determining the rigid transformation between
two surfaces, and also between a 3-D surface and its 2-D pro-
jections. In this paper, we extend our technique to recover
smooth non-rigid deformations between 3-D surfaces. Our
approach is based on describing the deformation as a warping
of the space containing one of the surfaces. In particular,
we use a multiresolution warp or displacement field based
on concepts from free-form deformations [28], octree splines
{20], and hierarchical basis functions [30]. Our approach en-
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ables us to locally adapt the resolution of the deformation field
to bring the two surfaces into registration, while maintaining
smoothness and avoiding unnecessary computation. The re-
sult is a rapid and efficient registration algorithm which does
not require the extraction (manual or automatic) of features
on the two surfaces, and which can work on arbitrarily shaped
surfaces with highly complicated deformations.

The main intended application of our technique is model-
based segmentation of 3-D medical images. Segmenting med-
ical structures is important both in medical diagnosis and
as a component of computer assisted medical interventions
[18, 19]. While unsupervised segmentation based on purely
local operators can be very difficult, the a priori knowledge
contained in anatomical models can make the segmentation
process easier and more robust. Such anatomical models can
either be digitized from textbooks, or they can be built by
elastically registering data sets from many patients.

A second application of our technique is in quantification
of normal anatomical structures and deviations from normal
(morphometrics [6}), e.g., studies of brain asymmetry, and in
deviation from self over time, e.g., changes in liver tumors.
In some cases, a volume registration between a patient data
set (e.g., a 3D MRI data set) and a model (e.g., a brain atlas)
is made possible by the existence of some common reference
surfaces in both data sets (e.g., the surface of brain ventri-
cles). This registration can be used to infer the location of
specific features (e.g., thalamus brain nuclei) in the patient
data set. Such an inference would not be possible if the elas-
tic registration was a surface deformation instead of a volume
deformation.

Another application of our technique is the calibration of
non-linear distortion in medical imaging devices such as MRI
through elastic registration with CT images which do not
have such distortions. Our technique can also be used in other
applications of deformable model-based vision, e.g., in the
tracking of deformable objects such as the beating heart [15]
or animate motion [32]. Another novel application could be in
performing morphing [3] between 3-D data sets for computer
animation effects.

We begin the paper in section 2 with a review of related
work in the fields of medical image registration, computer



vision, and computer graphics. In section 3, we present our
formulation of the problem. In section 4, we present the
Levenberg-Marquardt iterative nonlinear least-squares algo-
rithm which we use to compute the deformation estimate.
Section 5 presents the octree spline 3-D distance map we use
to rapidly compute minimal distances between points on the
two surfaces. Section 6 describes in more detail the hier-
archical octree spline used to represent the multiresolution
non-rigid deformation. Section 7 presents some experimental
results, with both synthetic data and real data. Finally, the al-
gorithm, extensions of the method, and future improvements
are discussed in section 8.

2 Previous work

The registration of 3-D and 2-D images has been widely stud-
ied in both medical image processing and computer vision.
In medical imaging, the problem of image registration is usu-
ally solved using external fiducial markers placed on the body
of the patient or by interactively selecting pairs of matching
points. An automated algorithm for matching 3-D surfaces
with other 3-D surfaces (such as the head skin surface) has
been developed by Pelizzari [25). Our previous algorithm
solved this problem by minimizing the sum of squared dis-
tances between the transformed points on one surface and a
stationary description of the other surface [20, 9] (see also
[4]). It also solved the more difficult problem of registering a
3-D surface with its 2-D projections [20, 7]. Methods based
on the registration of 3-D curves (ridges) have been proposed
in [14, 23].

The registration of 3-D medical images under non-rigid
deformations has been studied by Bajcsy and Kovacic [1]
using volumetric deformations based on physical properties,
and more recently by Christensen et al. [10]. Another ap-
proach from Evans et al. [12] is based on approximating a
3D warping function by 3D thin-plate splines fitted to manu-
ally matched reference points. Jacq and Roux {17] estimate
a global warping function by minimizing an L,-distance in
3D images using genetic algorithms. In computer graph-
ics, non-rigid deformations are widely used for modeling and
animation purposes [2, 35]. In computer vision, non-rigid de-
formations have been used for fitting flexible models to both
image and range data [8, 33, 32], and for fitting models to
3D volumetric data [15, 22]. The approach we use in this
paper is based on free-form deformations [28], which use vol-
umetric, 3-D tensor-product splines to describe the warping or
displacement of points embedded in the space. For increased
efficiency, we represent the deformation spline using a mul-
tiresolution representation [13, 341, based on the concept of
hierarchical basis functions [36, 30]. Deformable models
have also been used for the segmentation of 3-D medical data.
Leitner and Cinquin [21] use a tensor-product spline surface
model to segment complicated structures such as vertebra.

3 Problem formulation

We formulate our deformable matching problem as follows.
Given a model object in a coordinate system Refyoqe and
sensed data in a coordinate system Refgensor, €stimate the
transformation T parameterized by a parameter vector p
which relates Refgensor to Refimodel. More specifically, we as-
sume for now that both data sets are surfaces, with the sensed
data represented as a collection of points {q;,2 = 1...N},
and the model surface S represented in some arbitrary way.
The estimation task is then to find a geometric transformation
T such that the transformed coordinates r; = T(q;; p) all lie
on the surface S.

In practice, due to noise and the inability to perfectly regis-
ter two surfaces, this condition will never be satisfied. Instead,
we pose the problem as a minimization of the cost function

N
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where d(r;, S) is the minimum Euclidean distance from the

point r; to the surface S,

d(rs, ) = d(T(aip), S) = minlies =l @

and o? is the variance associated with point z [20, 4]. In addi-
tion to the distance-based cost function (2), which corresponds
in a Bayesian interpretation to the log likelihood of the mea-
surements q;, we add an additional regularizing or stabilizing
cost function P(p) on the parameters p, which corresponds
to a prior distribution on the unknown parameters [29]. The
exact form of this function depends on what parameters are
used (see sections 3.1 and 3.3).

To solve the minimization problem, we require three com-
ponents: an iterative minimization algorithm (section 4), an
efficient method for computing d(r, S) along with its gradi-
ent (section 5), and a suitable representation for the geometric
transformation T(q;; p), which we discuss next.

3.1 Global polynomial deformations

The simplest representation for T(q;; p) is a rigid body trans-
formation which can be parameterized by 6 degrees of free-
dom (3 for the translation, and 3 for rotation.) In our previous
work [20], we used the Euler angle representation for the ro-
tation matrix R. The rigid body representation is appropriate
when working with rigid anatomical structures where only
the pose of the patient (e.g., on the operating table or in the
scanner) is unknown.

A more general class of transformations are the affine trans-
forms, which can be parameterized with 12 degrees of freedom
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Figure 1: Sample global deformations: rigid, affine, trilinear and quadratic.

where q; = (z:, %, z) are the coordinates of point % in
Refensor. Affine transforms have scaling along each dimen-
sion as well as shearing. The trilinear class of transformations
adds another 12 degrees of freedom for a total of 24,
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The trilinear transformation can also be parameterized by the
3-D positions of the 8 corners of a bounding cube, but the
equations are somewhat more complicated. Finally, the 30-
parameter quadratic family of transformations can be similarly
formed,

1
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Figure 1 shows an illustration of the above four global trans-
forms where a unit cube has been deformed by arepresentative
sample from each transformation class.

Each of these global transformations is more general than
the previous one, which means that it can model a wider range
of deformations, but at the expense of having more parameters
whose values may be difficult to estimate reliably. All of
these transformations share the property that the position of
the transformed point r; = Tg(q;; p) is a linear function of
the parameters in p, i.e., the transformation can be written
as r; = M(qi)p = M;p [35]. For example, the affine
deformation can be represented with

100z 0 0 v 0 0 2 0 O
M;=|010 0 2 0 0w 0 0 2z 0],
0010 0z 0 0 v 0 0 %

where we have ordered the parameter vector as p
[ Poo P10 P23 ]T-

As more global parameters are added to the transformation
model, the ability to recover them reliably starts to deteriorate.
While in practice we have found that the rigid motion param-
eters are always recovered reliably, it is usually necessary to
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add prior constraints on the parameters for affine or more
general models. We do this using an additional cost function

P(p) = o; *|lpl* ®
for some suitably chosen o,.

3.2 Local spline deformations

To obtain a wider range of more flexible deformations, we
could continue increasing the order of the polynomial. How-
ever, this suffers from the same problems as high degree poly-
nomial fitting, €.g., instability and the presence of ringing.
Instead, we model the deformation using a family of volumet-
ric tensor product splines,

Ti(qip) = @ + Y wniB;(2:)Br(v:)Bi(=),
]

M

where the ujx; are the spline deformation coefficients which
comprise the parameter vector p, and B;, By, and B; are B-
spline basis functions [28]. The u;x,; vectors are located on an
adaptive 3-D grid, which we call the octree-spline (see section
6). Each basis function (a piecewise polynomial function)
only has a limited range of support, i.e., it is non-zero only in
the interval z;_, < ¢ < Zj40, Where the z;, j = 0... M.,
form a subdivision of each coordinate axis in Refgensor. This
implies that only a small number of the u;x; will contribute to
the value of r;, or, equivalently, that the matrices M; in this
representation will be extremely sparse (only a few non-zero
entries). In general, this means that the deformations required
to bring a local area of two surfaces into registration will not
affect the registration at far-away portions of the surface. The
u;ji; can be thought of as local estimates of the displacements
required to register the two surfaces, which are smoothed and
interpolated through the action of the spline functions.

3.3 Regularization

To put prior constraints on the spline deformation parameters
uj, we could simply take their norm as before. A more
general solution, which we prefer, is to use regularization
[1, 30]. A fairly general form for a regularizer is

P(u) = % Y wnRon () @®)
=0



where u is the d-dimensional displacement spline (the second
term in (7)), wy, are weights, and
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is the m-th order stabilizer [29]. The Oth order stabilizer is
similar to the regular norm on the u;xg, while a first-order
stabilizer penalizes linear variations in u(x). In practice, we
have been using a linear combination of Oth and 1st order
stabilizers.

To compute the discrete cost function defined on the Wjkt
corresponding to (8), we can take one of two approaches.
The first is to use finite element analysis, which involves
analytically evaluating (8) using (7). This has the advantage of
yielding more accurate smoothness measures, but at the cost
of more complicated discrete energy equations. The approach
we take is Lo use finite differences, where we approximate the
integrals with averaged squared discrete derivative estimates,
e.g., for Ro we use h* 37, [lujuilf?, whereas for R, we use

Ri{ujm}) b)Y [pips — w4+, ©9)
ki

where A is the size of each cube in the spline domain.

4 Least squares minimization

To perform the nonlinear least squares minimization, we use
the Levenberg-Marquardt algorithm because of its good con-
vergence properties [26]. Least squares techniques work well
when we have many uncorrelated noisy measurements with a
normal (Gaussian) distribution.!

In order to update the current estimate of the parameters
p(*), Levenberg-Marquardt requires the evaluation of the dis-
tance function d(r;, S) along with its derivative with respect to
all of the unknown parameters. Efficient techniques for com-
puting the distance function d, as well as its spatial gradient
g = Vrd, are presented in the next section. The evaluation
of the derivative involves a straightforward application of the
chain rule,

ad; or;

p gia—p‘ = giM; 10)

in the case when the transformation can be written as r;
M;p.

Once the distance samples d; and their derivatives 8d; /p
have been computed, the Levenberg-Marquardt algorithm
forms the approximate Hessian matrix A and the weighted
error gradient vector b,

1 0d ()T |
o?dp \dp /) '’ _—i_l
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P
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1Under these assumptions, the least squares criterion is equivalent to
maximum likelihood estimation.

147

and then computes an increment dp towards the local mini-
mum by solving

(A + X diag(A))Ap™) = b, (12)
where A is a stabilizing factor which varies over time [26].2
After setting pt**+1) = p(*) 4 Ap(*), this process is repeated
until C(p) is below a fixed threshold, the difference between
parameters |p*) — p(*~1)| at two successive iterations is be-
low a fixed threshold, or a maximum number of iterations is
reached.

The solution of the system of equations (12) is straight-
forward when the number of parameters being estimated is
reasonably small (as in rigid and global deformations). We
currently use the Gauss-Jordan elimination algorithm given
in [26]. For systems with more parameters, such as local de-
formations, it becomes impractical to explicitly compute the
Hessian A, which takes O(M?) space, where M is the num-
ber of parameters (say 16° .. .64%), or to directly solve (12),
which takes O(M?) operations. Instead, we use a single step
of preconditioned conjugate gradient descent [30]. Section
6 discusses how to use hierarchical basis preconditioning to
make this process converge faster.

Once the Levenberg-Marquart algorithm has converged, we
compute a robust estimate of the parameter p by throwing out
the measurements where d? >> o7 and performing some more
iterations [20, 5] (this technique is called using metrically
Winsorised residuals [16]). This process removes the influ-
ence of the outliers which are likely to occur when only part
of the two data sets is in proper registration.>

When using a gradient descent technique such as
Levenberg-Marquardt, there is a possibility that the mini-
mization might fail because of local minima in the high-
dimensional parameter space. We try to avoid this by first
estimating the simplest possible transformation (arigid match-
ing), and then estimating successively more complex defor-
mations (affine, then possibly trilinear or quadratic). For
the local spline deformations, we begin with a low-resolution
spline (typically a single cube), and then use the optimal spline
parameters to initialize the estimates at the next finer level.

S Fast distance computation using oc-
tree splines

The method described in the previous section relies on the
fast computation of the distance d(r, S) and its gradient. To
speed up this computation, we precompute a 3-D distance

2Note that the matrix A is an approximation to the Hessian matrix, as the
second derivative terms in d; are left out. As mentioned in {26}, inclusion of
these terms can be destabilizing if the model fits badly or is contaminated by
outlier points.

3The threshold for outlier rejection must be fixed according to application-
specific knowledge or by experimentation. In our case, we chose 1o set this
threshold to 30 where o is a mean a priori standard deviation of the noise.



map, which is a function that gives the minimum distance to
S from any point r inside a bounding volume V that encloses
S[11].

In looking for an improved trade-off between memory
space, accuracy, speed of computation, and speed of con-
struction, we developed a new kind of distance map which we
call the octree spline (20, 7, 9]. The intuitive idea behind this
geometrical representation is to have more detailed informa-
tion (i.e., more accuracy) near the surface than far away from
it. We start with the classical octree representation associated
with the surface S [27] and then extend it to represent a contin-
uous 3-D function that approximates the Euclidean distance
to the surface. This representation combines advantages of
adaptive spline functions and hierarchical data structures (see
[20, 31] for details).

6 Hierarchical octree spline deforma-
tions

The benefits of using a hierarchical data structure for repre-
senting the distance map can be extended to the representation
used for the tensor-product (local deformation) displacement
spline. In this case, the coefficients associated with the spline
are 3-D vectors representing the displacement between the
model and sensor reference frames. As in the distance octree
spline, we use the octree to determine at what resolution the
spline coefficients are interpolated. To ensure continuity, we
must enforce “crack filling” [27]. In this case, however, since
the coefficients in the octree spline are unknown parameters
being estimated, this is equivalent to controlling which coef-
ficients are free variables and which are determined by their
parents’ values.

As mentioned in section 4, the inner update loop of the
Levenberg-Marquardt requires the solution of a large system
of linear equations. Because direct methods are prohibitive,
we use a single iteration of preconditioned conjugate gradient
descent algorithm [26]. To accelerate its convergence, we
use a hierarchical basis representation of the octree spline
[36,30]. In this representation (Figure 2), displacement values
at finer levels are added to the displacements interpolated from
the parents, making this a relative or offset representation
[29, 34]. Ina true hierarchical basis representation, only nodes
not coincident with their parents in location have a non-zero
offset (Figure 2), which keeps the number of variables in the
hierarchical and regular (nodal) representations the same [36].

In our implementation, we keep both the hierarchical and
nodal representations, and map between the two as required.
For accumulating the distances and gradients required in (11),
we compute the interpolated displacements and the derivatives
with respect to the parameters in the nodal basis. We then
use the hierarchical basis to smooth the residual vector b
before selecting a new conjugate direction and computing the
optimal step size (for details, see Figure3 and [30]). Using

coarse

Figure 2: Multiresolution pyramid
The multiple resolution levels are a schematic representation
of the octree spline (we represent it in 2D for simplicity).
The circles indicate the nodes in the hierarchical basis. Filled
circles (o) are free variables in the restricted octree spline,
while open circles (o) must be zero (sec Figure 4).

this technique not only makes the convergence faster but also
propagates local corrections over the whole domain, which
tends to smooth the resulting deformation significantly.

The hierarchical basis also makes it easier to understand the
influence that the octree has on which displacement parame-
ters are free to change. In the hierarchical basis, a node is free
1o change (has non-zero value), if all of the cubes within its
support region have been subdivided to at least its level. In
other words, a basis function associated with a non-zero node
cannot extend into a larger cube where its influence would not
be accounted for (Figure 4).

To use the hierarchical octree spline for modeling defor-

1. r. = b—Ap,=-VC(p)

2.1 fn, = SSTD !r,

3. ﬁn = Tp 'rn/i:n—l R

4.1 d, = — Bpdn_y

5. a, = dy-rn/dlAd,

6' Pr+i = Pn + and'n

7. increment n, loopto 1.

1 S = mapping from hierarchical to nodal basis [30],
D = diag(A)

1 atiterationn =0, B, =0andd,_; = 0.

Figure 3: Hierarchical basis preconditioned conjugate gradi-
ent descent algorithm (simplified from [30])
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Figure 4: Quadtree associated with spline function
The nodes with filled circles () are free variables in the as-
sociated hierarchical basis, whereas the open circles (o) (and
also the nodes not drawn) must be zero (in the nodal basis,
these nodes are interpolated from their ancestors).

mations, we still have to devise a strategy for deciding how
to adaptively subdivide the octree spline. The heuristic we
use is 1o measure the distance to the surface at the center
of each cube, and to subdivide all cubes which are within a
given distance of the surface (this threshold is a linear func-
tion of the current octree resolution). We do this in a recursive
top-down fashion, dividing cubes in the octree only after we
have finished iterating over the displacement coefficients Uk
at a given resolution. Figure 6d shows a slice through the
deformation spline clearly showing how the octree cubes are
divided more finely closer to the mode! surface.

The hierarchical octree spline favors smoother displace-
ment solutions because it smooths out the local deforma-
tion corrections (the coarse-to-fine registration algorithm de-
scribed in Section 4 also has a similar effect). However, to
achieve sufficiently smooth displacements, we have to use
regularization. To implement the regularization, we evaluate
the average squared finite differences inside each cube of the
octree. Thus for the Oth order stabilizer, we evaluate the aver-
age of the 8 squared corner values in each cube scaled by its
volume. For the 1st order stabilizer, we evaluate the average
of the squared differences along each of the 12 edges scaled
by the cube size.

7 Experimental results

To determine the reliability of our global and local defor-
mation estimates, we first performed a series of experiments
on both real and synthetic surfaces under simulated (known)
motion. For a given synthetic surface, we first compute the
octree distance map. Next, we select a subset of the surface
points (typically 5%) and transform these through the inverse
of the deformation we are simulating.* We then initialize the
Levenberg-Marquardt algorithm with some initial rigid pose

4For affine transforms, this inverse has a closed form solution. For other
non-linear transforms, we use an iterative inversion technique.
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cube cube cube
Deform. | (affine) | (trilin.) | (quadr.) | face | vertebra
rigid 32.81 10.94 10.11 | 0.89 3.83
global 425 4.54 444 | 0.76 3.01
local 0.57 1.77

Table 1: Root mean square (RMS) error after each stage of
algorithm for the five test data sets [31]. The RMS error is in
octree units (the surface diameter is 32 units).

estimate and set the non-rigid parameter estimates to 0. Fi-
nally, we run the Levenberg-Marquardt algorithm in stages,
first computing the best rigid match, then the best global non-
rigid match, and finally the best local displacement warp. To
stabilize the motion estimates, we use a small prior penalty
term of o, = 1 (compared to o; = 0.5). Table 1 shows the
RMS errors between the two surfaces after the rigid and global
non-rigid deformations [31].

To demonstrate the local non-rigid matching, we use two
different sets of range data acquired with a Cyberware laser
range scanner (Figures 5a and 5b). In their initial positions,
the data sets overlap by about 50% and differ in orientation by
about 10° (Figure 5¢). Here, the octree spline distance map
is computed on the larger of the two data sets (georgel in
Figure 5a), and the smaller of the two data sets is deformed
(heidi in Figure 5b). After 8 iterations of rigid matching
and 8 iterations of non-rigid affine matching, the registered
data sets appear as in Figure 5d. We then perform 8 iterations
at each level of the local displacement spline for 1 through
5 levels. The octree spline has a total of 5728 cubes for
a total of about 17000 degrees of freedom. A full resolution
displacement spline would have 3(2° +1)° ~ 108000 degrees
of freedom. Even with our large number of parameters, the
algorithm converges very quickly, because it is always in the
vicinity of a good solution (a typical iteration at the finest level
takes about 2 seconds). From Figure 5f, we see that the two
data sets are registered well, except for the eyebrows, which
would require a more detailed deformation. We also note
that the deformed face of heidi (Figure 5¢) resembles that
of georgel (Figure 5a) more than its former (undeformed)
self (Figure 5b).

Asa final example of our algorithm, we matched the surface
of a real patient vertebra to the surface of a plastic “phantom”
vertebra (both 3-D images sets were acquired with a CT scan-
ner). Figure 6 shows the result of our matching. After rigid
registration, a fair amount of discrepancy remains. After the
local spline registration, most of the patient vertebra (contour
lines) matches the phantom model (cloud of dots), except for
the tips of the vertebra which have not been pulled into regis-
tration (this may be an artifact of the asymmetrical nature of
the cost function). By examining a slice through the octree
deformation spline, we can see clearly both how the spline is
subdivided more finely near the surface, and how adding reg-
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Figure 5: Registration of two face data sets:
(a) model data set (georgel) (b) sensor data set (heidi) (c) both data sets overlayed (initial position) (d) after affine
registration (¢) final deformed sensor data (f) final registered data sets
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Figure 6: Registration of patient vertebra with plastic “phantom”:
(a) initial configuration (b) after rigid registration (c) after final local spline registration (d) slice through final displacement
spline (¢) slice through displacement spline without regularization (the local registration results are visually similar with/without
regularization).
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ularization dramatically smooths the displacement map. As
before, the RMS error of the match is significantly smaller for
the local deformation than for the global deformation (Table
1).

8 Discussion and Conclusions

In this paper, we have developed a technique for registering
3-D surfaces which are related by non-rigid deformations.
Our approach represents the deformation using a combination
of global polynomial deformations and local displacement
splines (free-form deformations). We use an algorithm which
directly minimizes the squared distances between the two
surfaces, rather than identifying sparse features (e.g., ridge
lines or feature points [14, 23]) and then trying to match
them.

We believe that the direct matching of surfaces has better
accuracy and removes the need for a feature detection stage,
which may not always operate reliably. Two arguments which
favored feature-based approaches in the past were computa-
tional complexity and global correspondence search. The
computational complexity argument assumed that if a small
set of features was found and matched (say dozens of discrete
features or hundreds of ridge points, as opposed to tens of
thousands of surface points), the overall complexity of the
algorithm would be drastically lower. However, by using the
octree spline distance map, the complexity of each iterative
adjustment step in our algorithm is linear in the number of
sensed surface points.

The second argument in favor of discrete features is related
to the first, and examines the combinatorial complexity of cer-
tain discrete matching (correspondence) algorithms. In our
approach, we use a modified gradient descent which avoids
combinatorial search but only finds locally optimal matches.
In practice, we have found that false local minima are usually
far away from the true solution. In medical applications, a pri-
ori knowledge about position and shape is usually available,
and manual intervention or guidance is often not a problem
(e.g., in interactive analysis or surgical planning), so that only
small displacements and local deformations have to be esti-
mated.

Our approach embeds one of the surfaces being matched
into a deformable space, rather than equipping it directly with
elastic properties (as in [32, 15, 22]). While the latter ap-
proach may be more physically realistic if an anatomically
and biomechanically correct model is constructed, our ap-
proach enables us to deal with arbitrary surfaces which may
noteven have a smooth conhected representation. Another ad-
vantage is that volumetric deformations prevent gross shape
deformations and surface interpenetration.

Volumetric deformations also yield auxillary information
about the motion of nearby structures which did not partici-
pate in the matching, e.g., registrations performed on certain
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easily identifiable brain structures can be used to estimate the
registration for the whole brain. This suggests an incremental,
model-driven segmentation process.

In theory, volumetric deformation models are of a higher
complexity than elastic surface models, i.e., they represent the
deformations over a dense region of 3-D, rather than over a
2-D manifold. However, the use of a multiresolution, coarse-
to-fine strategy results in a very efficient matching algorithm.
Furthermore, the use a adaptive spatial subdivision can make a
volumetric representation such as the octree competitive with
a surface representation for sufficiently smooth surfaces [27].

The estimation of elastic deformations in general is an ill-
posed problem for which it is crucial to define some notion
of minimal deformation that relates directly to the notion of
smoothness. In our method, we have introduced smoothness
in the deformation in three ways: first, using regularization
terms of order 0 and 1, second using a sweep up and down in
the hierarchical basis, and third using a coarse to fine strat-
egy in the minimization. The correct amount of smoothing
is application dependent: for change detection and morpho-
metrics, we wish to have conservative (smooth) deformations,
while for model-based segmentation, we wish to fit the data
exactly (less smoothness).

Our experiments to date have been performed on pre-
segmented 3-D surfaces. We are planning to extend our algo-
rithm to work directly with unsegmented 3-D medical images.
Since we are matching a known anatomical model with patient
data, one of the data sets will still be a segmented surface. Our
choice is then to use gradients in the medical image to attract
a deformable surface model, or to run an edge operator over
the medical image [24] and use this as the (noisy) surface to
be deformed. In the latter case, our algorithm must be suf-
ficiently robust to reject large number of outliers [5]. Other
areas of future investigation include an adaptive algorithm for
deciding how to refine the local octree deformation spline,
the choice of the order of the octree spline, and the choice of
various smoothness constraints (regularizers).

To summarize, the technique we have developed allows
us to rapidly register two segmented 3-D surfaces which are
related by an unknown non-rigid deformation. Our use of
octree splines makes this algorithm efficient, and our choice
of weighted non-linear least squares makes it statistically op-
timal. Our algorithm has immediate applications to the regis-
tration of 3-D medical surfaces with anatomical models and
to change detection in medical imagery. We are extending the
algorithm to support the automatic model-based segmentation
of 3-D medical images, and we expect this to further widen
the applicability and utility of our approach.
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