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A Multiple View 3D Registration Algorithm with

Statistical Error Modeling∗

John WILLIAMS† and Mohammed BENNAMOUN†, Nonmembers

SUMMARY The contribution of the paper is two-fold:
Firstly, a review of the point set registration literature is given,
and secondly, a novel covariance weighted least squares formula-
tion of the multiple view point set registration problem is pre-
sented. Point data for surface registration is commonly obtained
by non-contact, 3D surface sensors such as scanning laser range
finders or structured light systems. Our formulation allows the
specification of anisotropic and heteroscedastic (point dependent)
3D noise distributions for each measured point. In contrast, pre-
vious algorithms have generally assumed an isotropic sensor noise
model, which cannot accurately describe the sensor noise char-
acteristics. For cases where the point measurements are het-
eroscedastically and anisotropically distributed, registration re-
sults obtained with the proposed method show improved accu-
racy over those produced by an unweighted least squares formula-
tion. Results are presented for both synthetic and real data sets
to demonstrate the accuracy and effectiveness of the proposed
technique.
key words: 3D registration, multiple view, anisotropic, het-
eroscedastic, sensor noise

1. Introduction

The task of registering three dimensional data sets with
rigid motions is a fundamental problem in computer vi-
sion, arising whenever two or more 3D data sets must be
aligned in a common coordinate system. The registra-
tion problem is comprised of two related sub-problems:
correspondence selection and motion estimation. In the
former, candidate correspondences between data sets
are chosen, while in the latter, rigid motions minimis-
ing the distances between corresponding points are es-
timated. Space limitations prevent in-depth discussion
of both, and in this paper we focus upon the motion
estimation task.

An early application from the photogrammetry
community is the problem of determining absolute ori-
entation of stereo imagery. Fixed, surveyed ground con-
trol points visible in the images are used to establish
a coordinate system allowing the subsequent develop-
ment of topographic maps and ortho-imagery.

A more recent application is object reconstruc-
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tion and reverse engineering, where multiple 3D surface
scans of objects are combined to construct a complete
surface model. Individual scans cover only a portion
of the object surface, and registration is necessary to
find the optimal alignment prior to reconstructing the
surface model.

3D registration also has application in medical im-
age analysis. Accurate measurement of biomorpholog-
ical phenomena such as tumor growth is assisted by
registering 3D images taken in a time sequence. In a
similar fashion, multimodal images can be registered
to fuse complementary data sets, providing more com-
prehensive diagnostic information and aiding surgical
planning.

In this paper we trace the history of the 3D point
set registration problem, from the photogrammetry lit-
erature of the 1960s to the modern field of computer
vision. We distinguish between two specific classes of
registration algorithm, and discuss desirable properties
of a registration technique. In the second part of the pa-
per, we present a novel WLSQ (weighted least squares)
formulation of the registration problem, with advan-
tages not previously found in any single algorithm.

There are two major issues which must be consid-
ered when discussing registration algorithms. The first
is the distinction between pairwise and global registra-
tion methods, and the second is the treatment of errors
and uncertainty. Techniques reviewed in this paper will
be considered in the light of the following definitions
and capabilities.

As the name suggests, pairwise registration algo-
rithms register just two data sets at a time. Global
techniques, on the other hand, perform the registra-
tion across multiple (more than two) data sets simul-
taneously. A pairwise technique may still be used to
solve a global problem, by taking the multiple data
sets two at a time, however this is not an optimal so-
lution. In the pairwise case, an uneven distribution
of registration inaccuracy can result, whereby individ-
ual pairs have high registration accuracy, yet the whole
registered system may be significantly different from
the truth. Truly global methods distribute registra-
tion errors evenly through the data sets. When ap-
plied to a registration problem with just two data sets,
global algorithms generally reduce to an existing pair-
wise method.

The treatment of measurement errors is another
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key point to consider for registration problems. In
most practical applications, point positions are derived
through analysis of real measurement data, however
this data will be unavoidably corrupted by errors such
as random measurement noise. If the statistical prop-
erties of this noise can be estimated or modeled, then
it is desirable to utilise this information to improve ac-
curacy. Due to the nature of 3D sensors, point error
distributions are usually heteroscedastic (point depen-
dent), and anisotropic [18], [20].

A related issue is performance evaluation, such as
computing confidence intervals for the estimated rigid
motions. Realistic measures of registration accuracy
are of great value by quantifying the limits of precision
available based upon the data provided.

Another source of error for registration algorithms
is the correspondence selection process itself [14]. Erro-
neous correspondences cause significant problems, par-
ticularly for algorithms based on LSQ type optimisa-
tion. Robustness against these outliers is valuable for
practical applications using real data.

The structure of the paper is as follows. Section 2
presents a review of the point set registration problem,
which highlights the need for a multiple view registra-
tion scheme supporting individual point error models.
This is followed by a brief description of preliminary
concepts including motion representation and proba-
bilistic point features. Section 4 then describes the
problem mathematically, and introduces the notation,
before the problem is formulated as a weighted least
squares estimation task in Sect. 5. The solution to prob-
lem is then presented in Sect. 6, followed by a discussion
of estimating motion parameter uncertainty in Sect. 7.
In Sect. 8 we present results obtained from tests with
both synthetic and real data, and finally our conclu-
sions are presented in Sect. 9.

2. A Review of Point Set Registration Tech-
niques

We present a brief review of the history of point set reg-
istration algorithms. The early work comes mostly from
the photogrammetry literature, while recent efforts are
dominated by researchers in the computer vision field.

Thompson [28] presented a solution to the prob-
lem of computing a scale and rotation matrix fitting
exactly 3 pairs of corresponding points. A subsequent
refinement and extension was proposed by Schut [25]
using unit quaternions. Both of these methods were
based upon Cayley’s formulation for a rotation matrix
R = (I + S)(I − S−1) where I is the identity matrix
and S is skew-symmetric (e.g. [29]).

These methods had several drawbacks, such as
the rotation value depending upon the ordering of the
points, and the scale factor being dependent upon
which of the two data sets was considered the “image”
of the other. They were also unable to handle cases in

which the rotation was an angle of π radians about any
axis [29].

Tienstra [29] formulated a constrained LSQ so-
lution, permitting “best-fit” transformation estimates
computed from more than three correspondences. A
solution with similar properties was formulated using
unit quaternions by Sanso [23]. Blais gives yet another
approach to the problem, with the restriction that re-
flections, and rotations of π radians are avoided [7].

Interestingly, the pairwise registration problem is
equivalent to a problem arising in psychological statis-
tics known as the orthogonal Procrustes problem. See,
for example [10], [24].

In response to problems faced by researchers in the
fields of robotics and computer vision, the registration
problem was “rediscovered” in the 1980s. Several of
these effectively duplicated the earlier work of Tienstra
and Sanso.

Closed-form solutions to the pairwise problem were
proposed independently by Arun et al. [1], Horn [15],
Horn et al. [16] and Haralick et al. [14]. None of these
algorithms support the use of statistical point error
models, however individual point contributions can be
weighted based upon suspected noise levels within the
data. Zhang [33], and Dorai et al. [9] propose meth-
ods for computing the weight factors based upon noisy
range image data.

These closed-form, pairwise techniques are theo-
retically equivalent, and differ mostly through the way
the problem is formulated. A recent experimental
comparison found that for practical applications with
non-degenerate data the differences were negligible [12].
Pennec and Thirion [22] presented a systematic treat-
ment of data errors in the pairwise registration prob-
lem. Based upon the framework for uncertain geomet-
ric computations by Ayache [2], an iterated extended
Kalman filter (IEKF) was used to compute registration
parameters for point sets with heteroscedastic error dis-
tributions. Estimates of the motion parameter uncer-
tainty were computed in the form of error covariance
matrices.

Ohta and Kanatani [20] recently proposed an iter-
ative solution to pairwise registration using renormali-
sation. The method supports heteroscedastic point er-
rors, and estimates the reliability of the result through
theoretical and bootstrap analysis. Matei and Meer [18]
have also presented a technique with similar capa-
bilities, based upon a multivariate errors-in-variables
(EIV) regression framework. Bootstrap analysis was
also used to estimate registration confidence.

Stoddart and Hilton [27] proposed the first truly
global registration algorithm, which modeled views as
rigid bodies, and the point correspondences as zero-
length springs. Equations of classical rigid-body me-
chanics were then used to iteratively solve for the equi-
librium positions and orientations. A similar approach
was also proposed by Eggert et al. [11]. Neither ap-
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proach modeled nor accounted for statistical point er-
rors.

Benjemaa and Schmitt [4] generalised aspects of
Horn’s quaternion algorithm [15] to develop an iterative
solution to the global registration problem. Once again
point errors were not considered. Another quaternion
based multiview technique was proposed by Shum et
al. [26], however this work was cast within a system for
simultaneous registration and reconstruction of polyhe-
dral object models, and did not deal specifically with
the problem of point set registration.

Next we consider attempts at robustness against
outlier data. A number of authors have attempted
to make the registration process robust against outlier
data such as false correspondences. These efforts have
generally utilised variants of the robust estimators de-
scribed by, for example, Meer [19].

Zhang [33] and Pennec and Thirion [22] attempted
to reject outliers by thresholding against a Mahalonobis
distance criterion, which is based upon the assumption
of a contaminated Gaussian error distribution. This is
functionally equivalent to a robust M-estimator with a
binary weight function.

Boulanger [8] employed a Least Median of Squares
(LMedS) estimator, which is theoretically robust
against up to 50% outliers. A drawback to LMedS is
its low Gaussian efficiency [19], however this effect can
be minimised by following the LMedS with several iter-
ations of an appropriate robust M-estimator. Zhuang
and Huang have also tackled the robust registration
problem [34].

From this review, the absence of a technique sup-
porting both global registration problems and het-
eroscedastic, anisotropic errors is clear. This would rep-
resent the most general class of registration algorithms,
capable of solving any of the problems addressed by the
preceding methods. In the next part of this paper, we
present such an algorithm. The technique presented
does not address robustness issues explicitly, however
the reader is referred to [31] where a robust variant of
this algorithm is described.

3. Preliminaries

This paper utilises concepts from the framework for
probabilistic points and motions, described in [22]. The
following material describes the notation used to for-
mulate the point registration task as a constrained
weighted least squares problem.

3.1 Representation of Motions

A rigid transformation p′ = Rp+ t of a point p, where
R a rotation matrix and t is a translation vector, can be
represented a single vector f = (r, t). The rotationalR
represents a rotation of angle θ around the axis specified
by unit vector n. By defining r = θn, the coordinate

transformation may be represented by the 6-element
vector f = (r, t). The axis-angle and rotation matrix
representations are related by Rodrigues’ formula:

r = I3 + sin θ Sn + (1− cos θ)S2
n

where Sn is the skew matrix corresponding to the left
cross product (Snv = n × v, ∀v ∈ R

3) [22].
Rigid motions may be inverted, composed and ap-

plied to points. These operations are described as:

Apply f to point p : p′ = f � p = r � p+ t,

Invert f : f (−1) = (r(−1), r(−1) � t),
Compose f1 and f2 : f = f2 ◦ f1

= (r2 ◦ r1, r2 � t1 + t2).

3.2 Probabilistic Points

Measured point locations/ranges are corrupted by ran-
dom errors or noise. Here, an additive error model is
assumed for the measured point p,

p = p̃+ ep

where p̃ is the true point location (the actual physi-
cal location of the point on the object which is being
sensed) and ep is a random variable characterising the
measurement noise. The expected value E [ep] is as-
sumed to be zero.

The type of probability distribution, to which ep

belongs, depends largely on the sensor. However, for
computational reasons it is common to consider only its
second order central moment (covariance matrix) [22],
calculated according to

Σpp = E
[
ep ep

�]
where the � symbol denotes matrix transpose opera-
tor. Thus, a probabilistic point may be represented
by the pair (p,Σpp) which indicates an expected value
of the true point position p̃, and the likely deviation
around that position (for exact or deterministic points
we simply use Σpp = 0). A two dimensional exam-
ple of the sensor model is illustrated in Fig. 1, where
the action of a scanning range finder is simulated. The
range error variance is greater than that of the direc-
tional (azimuth) errors, indicating that the confidence

Fig. 1 Monte Carlo simulation of a range sensor with error
distribution aligned with the line of sight from the sensor origin
(X) to the surface (solid line).
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Fig. 2 Illustration of views and correspondence sets. See the
text for details.

curves are approximately elliptical, with the major axis
aligned with the line of sight from the sensor origin to
the surface. In 3D, the ellipses become ellipsoids.

4. Problem Description

Assume the existence of M overlapping views, with
their associated local coordinate systems represented
by fm, m = 1, . . . , M . Between the overlapping views,
there exist P sets of pairwise correspondences, with
µ = 1, . . . , P indexing these sets. The mappings α(µ)
and β(µ) define the two views which participate in the
µth correspondence, and let the Nµ denote the number
of corresponding point pairs in each set.

Figure 2 illustrates these definitions. It depicts the
partial covering of an object’s surface by three views,
numbered 1 to 3 (in the circles), with crosses repre-
senting the local sensor coordinate systems. The fields
of view for each sensor are shown. The correspondence
sets (numbered 1 and 2 in boxes) are represented by the
heavy lines in the overlapping fields of view. Thus, in
this case we have M = 3, and P = 2. Correspondence
set µ = 1 is common to views α(1) = 1 and β(1) = 2,
and set µ = 2 is shared by views α(2) = 2 and β(2) = 3.
Note that points appearing in only one view – such as
those in region (a) in the figure – play no part in the
registration process.

For correspondence set µ, let the points p
α(µ)
i,µ ,

measured from view α(µ) correspond to the points
p

β(µ)
i,µ measured from view β(µ), i = 1 . . .Nµ. The

points p
α(µ)
i,µ and p

β(µ)
i,µ are probabilistic in the sense of

Sect. 3.2, with covariance matrices denoted Σα(µ)
i,µ and

Σβ(µ)
i,µ , respectively.

5. Problem Formulation

The aim of the registration process is to compute a
transformation for each view which, when applied to
the points in that view, maximises the co-incidence of
each corresponding point pair. View number 1 is cho-
sen arbitrarily to be fixed to the canonical coordinate
system and hence is not included in the estimation pro-
cess. Otherwise, the system will exhibit a global de-
generacy, since the same transformation applied to all
views causes no improvement in the registration.

The required transformations are contained in vec-
tors f2, f3, . . . fM which are concatenated into a single
vector

θ� =
[
f2� . . . fM�]

As a notational convenience, the correspondence in-
dex µ shall be omitted from super/sub scripts, so that
p

α(µ)
i,µ ≡ pα

i , p
β(µ)
i,µ ≡ pβ

i , Σ
α(µ)
i,µ ≡ Σα

i and Σβ(µ)
i,µ ≡ Σβ

i .
The implicit value of the correspondence index µ should
be clear from the context.

Each pair of corresponding points is combined into
a single vector representation, and analogously for their
covariances:

wµ
i ≡

[
pα

i

pβ
i

]

V µ
i ≡

[
Σα

i 0
0 Σβ

i

]

Thus, wµ
i = w̃µ

i + eµ
i , where E [eµ

i ] = 0 and

E
[
eµ

i eµ
i
�]

= V µ
i . Denoting true, but unknown, val-

ues of parameters with a tilde (e.g. w̃µ
i ), the 3D reg-

istration problem is now formulated in the form of an
“exact structural model” problem [3]. This formulation
is analogous to constrained WLSQ parameter estima-
tion.

The registration problem constrains that the true
points p̃α

i and p̃β
i coincide when transformed into the

world coordinate system. This constraint is expressed
as

g(w̃µ
i , θ̃) ≡ f̃

α
� p̃α

i − f̃
β

� p̃β
i = 0 (1)

for µ = 1 . . . P , i = 1 . . .Nµ, or alternatively

G(W̃ , θ̃) = 0 (2)

where G and W̃ represent the concatenation, into col-
umn vectors, of the g(w̃µ

i , θ) and w̃µ
i respectively. Ob-

viously, the true point measurements are unknown, and
the aim is to seek estimates of the true point locations.
Let the hatted quantities Ŵ and θ̂ denote the estimates
of the true quantities W̃ and θ̃, respectively. The es-
timates are subject to the same coincidence constraint
(Eq. (2)) as the true values, G(Ŵ , θ̂) = 0.

The point measurements are considered the inde-
pendent data in the estimation problem, and the resid-
uals are defined to be the difference between the mea-
surements and their estimated true values [3]:

eµ
i = wµ

i − ŵµ
i (3)

This formulation is different to that conventionally ap-
plied to point set registration problems, and the reader
is encouraged to consult [3] for more details regarding
the use of exact structural models in parameter estima-
tion problems.

By assuming that the measurement errors eµ
i
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are independently, normally distributed, the maximum
likelihood estimation procedure for determining θ̂ is:

Find Ŵ and θ̂, which minimise
Φ(Ŵ )

=
P∑

µ=1

Nµ∑
i=1

(wµ
i − ŵµ

i )
� (V µ

i )
−1 (wµ

i − ŵµ
i ) (4)

subject to G(Ŵ , θ̂) = 0.

Standard numerical iterative techniques can be used to
obtain solutions to this constrained optimization prob-
lem. The experimental results, presented in Sect. 8,
were obtained by using the method of Lagrange mul-
tipliers to incorporate the constraint into a new objec-
tive function. Newton iteration is then used to mim-
imise this new objective function. A benefit arising,
from the use of the Newton iterative scheme, is that
the derivatives computed in this method can be used
to calculate an approximation of the covariance of the
estimates θ. This approximation indicates the confi-
dence which can be placed in the estimates of the rigid
motions. Section 6 describes the Lagrange/Newton ap-
proach for minimising Eq. (4), while Sect. 7 presents the
motion covariance calculation.

A significant difference between the motion esti-
mates obtained from Eq. (4) and previously proposed
techniques, is the estimation of not only the rigid mo-
tions, but also the estimation of the true positions of
the corresponding points. In Eq. (4), the residuals are
defined as the difference between each measured point
and its estimated position. This contrasts with previ-
ous formulations, which define the residuals as the dis-
tance between corresponding points once transformed
into the world coordinate system. In these approaches
the unconstrained, unweighted LSQ formulation for de-
termining the maximum likelihood estimate θ̂ is:

Find θ̂ which minimises

Θ(θ̂) =
P∑

µ=1

Nµ∑
i=1

∥∥∥f̂
α

� pα
i − f̂

β
� pβ

i

∥∥∥2

(5)

However, the estimates obtained by minimising
Eq. (5) are only optimal for isotropic, identically, in-
dependent, normally distributed measurement errors.
The experimental results in Sect. 8 illustrate the in-
creased accuracy of the estimates θ̂ obtained from
Eq. (4) over those obtained from Eq. (5).

6. Solving the Minimisation Problem

To solve the constrained minimisation problem Eq. (4),
the method of Lagrange multipliers is used. The ex-
tended objective function

Γ(Ŵ , θ̂, λ) = Φ(Ŵ ) + λ�G(Ŵ , θ̂) (6)

is minimised with respect to Ŵ , θ̂ and λ. This nonlin-
ear function must be minimised using an iterative nu-
merical technique. A Newton method, where the func-
tion Γ(Ŵ , θ̂, λ) is linearised with respect to Ŵ and θ̂,
is used to obtain incremental updates ∆ŵ and ∆θ̂, and
the parameters values at each step are assigned as

ŵµ
i(k+1) = ŵµ

i(k) +∆ŵµ
i(k) (7)

θ̂k+1 = θ̂k +∆θ̂k (8)

where k represents the iteration number.
The details of the derivation are omitted, and only

the expressions for ∆ŵ and ∆θ̂ are presented. The
interested reader is referred to [3] p.155 for a detailed
description of the derivation.

Some useful quantities, which come from the Tay-
lor series expansion of Γ(Ŵ , θ̂, λ), are first defined:

eµ
i = ŵµ

i − wµ
i (9)

Aµ
i ≡ ∂gµ

i /∂Ŵ
µ

i

=
[

Rα −Rβ
]

(10)
Bµ

i ≡ ∂gµ
i /∂θ

=
[
. . .

∂fα � pα
i

∂fα . . . −∂fβ � pβ
i

∂fβ . . .

]
(11)

Cµ
i = Aµ

i V µ
i Aµ

i
� (12)

D =
P∑

µ=1

Nµ∑
i=1

Bµ
i
�

Cµ
i
−1

Bµ
i (13)

where Rα and Rβ are the rotation matrices formed
from the rotational components of fα and fβ , respec-
tively.

The new parameter and point estimates are then
updated according to Eq. (7) and Eq. (8) using the fol-
lowing expressions for the increments:

∆θ̂ =D−1
P∑

µ=1

Nµ∑
i=1

Bµ
i
�

Cµ
i
−1(Aµ

i eµ
i − gµ

i ) (14)

λµ
i = Cµ

i
−1(Bµ

i ∆θ̂ − Aµ
i eµ

i + gµ
i ) (15)

∆ŵµ
i = −eµ

i − V µ
i Aµ

i
�

λµ
i (16)

For clarity the iteration index k has been omitted, but
should be considered implicit in Eqs. (9)–(16) since they
are recomputed for each iteration.

The system as described has a global degeneracy
– the application of the same rigid motion to all point
sets results in no change to the cost function. For this
reason, we must impose the condition that one of the
motions is fixed (generally to the identity transforma-
tion). In the computation of ∆θ̂ etc., this is achieved
by substituting B = B̆ in Eqs. (14)–(16), where B̆ is
the matrix B deprived of the 6 columns which corre-
spond to the chosen fixed view (refer to Eq. (11)). The
choice of fixed view is unimportant, and has no influ-
ence on the solution. In this work the first view, α = 1,
was chosen.
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7. Motion Estimate Uncertainty

Following the estimation of the rigid motions, we wish
to obtain a measure of the uncertainty in those esti-
mates. Using the method of the previous section, this
uncertainty can be expressed in the form of an error
covariance matrix.

Before proceeding with the derivation, we make
the following definitions:

A =




A1
1 . . . 0
...

. . .
...

0 . . . AP
NP




and similarly for C w.r.t. Cµ
i and V w.r.t. V µ

i . Also

B =
[
B1

1

� · · · BP
NP

�]�

and similarly for E. The matrices G and W are as
defined in Sect. 5. The double sums over µ and i from
Eq. (14) are now replaced by

∆θ̂ =D−1B�C−1(AE − G) (17)

Since, at the minimising solution, the constraint
G = 0 is satisfied, the change δθ̂ in θ̂ due to a small
change δW in W is approximated by

δθ̂ ≈ D−1B�C−1AδE (18)

where δE = (∂E/∂W )δW = −δW . Setting V W =
E[δW δW�] we have

V θ ≡ E[δθ̂ δθ̂
�
]

≈ D−1B�C−1AV W A�C−1BD−1 (19)

The covariance V W can be approximated by V (as
defined previously). Since C = AV A� and D =
B�C−1B, the error covariance V θ can be approxi-
mated by

V θ ≈ D−1B�C−1BD−1

= D−1 (20)

From this equation, it can be seen that the error co-
variance matrix V θ of the motion parameter estimate
is approximated byD−1. Error covariance matrices for
individual motions are obtained by extracting the ap-
propriate 6× 6 sub-matrices from around the diagonal
of V θ. The registration parameter estimates can now
be treated as probabilistic motions (see [21]).

8. Experimental Results

Before describing the experimental tests and results,
some practicalities, concerning the Newton iterative
technique for minimising the residual functions in
Eq. (4) and Eq. (5), are discussed.

Initial estimates: All of the experiments utilised an
unweighted, direct pairwise method to generate
initial estimates, which were then refined using the
proposed algorithm.

Stopping criterion: The estimation process is termi-
nated when the (normalised) change in transform
estimates from one Newton iteration to the next is
less than 10−6.

Experimental tests were conducted with both syn-
thetic and real data. We describe each separately be-
low.

8.1 Synthetic Data

In the first set of tests, object points were chosen
randomly within a 10 × 10 × 10 cube with “diago-
nally opposite” corners at world coordinates (5, 5, 5)
and (−5,−5, 15). A single three sensor configura-
tion, was used in each of the experiments. Results
were obtained for two values of error eccentricities and
a range of signal to noise ratios (SNR). Two differ-
ent numbers (10 and 20) of corresponding points per
correspondence set were tested. The point measure-
ment error covariance for each sensor were joint nor-
mally distributed, with diagonal covariance matrices
diag(Σα(µ)

i,µ ) = diag(Σβ(µ)
i,µ ) = (σ2

a , σ2
a , σ2

r )
�. The er-

ror eccentricity values were e = 0 (isotropic), e = 0.87,
and e = 0.97, where e =

√
σ2

r − σ2
a/σr.

The registration parameter estimates for θ̂ were
calculated using both the proposed WLSQ algorithm,
and also an unweighted LSQ in which the algorithm
has no prior knowledge of the point error distribution
(isotropic assumption). This allows assessment of im-
provements achievable through error modeling. Each
experiment was repeated 100 times in a Monte Carlo
fashion.

In a manner similar to [14], registration perfor-
mance is measured by the RMS (root mean square)
rotation angle error in the calculated registration pa-
rameters. As expected, the results obtained under
isotropic noise were identical for both methods, and
we omit those results in the interests of brevity. Fig-
ure 3 presents plots of RMS rotational error versus SNR
for the three view case using the two non–isotropic er-
ror models. Results from the proposed (error modeled)
technique are marked with ‘◦,’ and the “unmodeled”
results with ‘×.’

From these results we make the following observa-
tions: (1) the algorithm is capable of excellent registra-
tion accuracy (less than 0.15 radian rotation angle error
at 10 dB SNR), (2) registration accuracy improves with
increasing number of points per correspondence set, (3)
registration accuracy is improved by modeling sensor
error characteristics, (4) the use of error models main-
tains nearly constant error performance with increasing
error eccentricity, while the isotropic assumption causes
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performance degradation, and (5) the relative accuracy
improvement from error modeling increases with the er-
ror model eccentricity, and decreases with the number
of point pairs and views.

A separate experiment, involving a six sensor con-
figuration, was performed to compare the approximated
error covariance, V θ ≈ D−1, with the experimental co-
variance obtained from Monte Carlo trials. Table 1
shows the standard deviations of errors for two of
the six views in the experiment, comparing the ap-
proximated and experimental error standard deviations
(computed as the square root of the diagonal elements
of the error covariance matrices). It can be seen that
the approximated error standard deviations estimate
the experimental values to within approximately ±5%.
Similar results were obtained for the other views in the
experiment. We consider this to be an excellent result,
since according to Bard ([3], p.179), theoretical esti-
mates of Vθ are generally only expected to be within
one order of magnitude of the experimental values.

8.2 Real Data

The experiments just described assume the existence
of correspondence information. To demonstrate the
use of the proposed technique with real data, we have

Fig. 3 Comparison results for three view configuration. ◦ –
error models, × – no error models.

Table 1 Theoretical and experimental standard deviations of
errors in motion parameters for two different views f3 and f5

(multiplied by 1000 for display).

Source σr3
1

σr3
2

σr3
3

σt31
σt32

σt33

Th. 0.653 0.779 1.04 6.73 6.93 10.1
Exp. 0.632 0.787 1.06 6.77 6.68 10.5

Source σr5
1

σr5
2

σr5
3

σt51
σt52

σt53

Th. 0.550 0.686 0.600 7.19 5.99 9.96
Exp. 0.541 0.692 0.578 7.42 5.81 10.0

integrated the algorithm into a generalised multiview
surface registration system based upon the Iterative
Closest Point (ICP) algorithm, proposed by Besl and
McKay [6]. The principle of the ICP is to first assume
that the partial surface views are already in approxi-
mate alignment. Each point in one view is matched
with the closest point in the other view, thus form-
ing correspondences. Following the matching process,
the rigid transformation is computed which minimises
the distance between corresponding point pairs (point
set registration). The process is repeated until conver-
gence.

An implicit assumption in this approach is that
one surface is a subset of the other, for example when
matching measured data to a shape template. How-
ever, when registering partial surface views for object
modeling, the views generally share a region of mutual
overlap instead. In this case the subset assumption
of the ICP causes significant problems, because there
will be points in one view which have no corresponding
point in the other, yet will still be “forced” to match.
The false correspondences thus produced negatively in-
fluence the registration result.

A number of heuristic constraints were proposed
to overcome this problem, including:

• maximum match distance, where matched points
are rejected if they are greater than a threshold
distance from each other (e.g. [33]),

• normal vector compatibility, where matched points
are discarded if their normal vectors diverge by
greater than a threshold angle [13], and

• boundary match rejection, whereby matches are
prevented between points whose closest corre-
sponding point is on the boundary of the other
surface [30].

The ICP was originally devised to match just one
surface to another, i.e. pairwise surface matching, how-
ever it is easily generalised to the multiple view case,
simply by matching each point with the closest point in
all other overlapping views (e.g. [5]). In producing the
following results, initial ICP iterations were performed
with a fast, non error-modeling multiview point regis-
tration method [32]. Once convergence was obtained,
the last few iterations were completed using our pro-
posed error modeling technique.

The data chosen for this example was a set of 14
high resolution range images of a wooden model duck,
courtesy of the Visual Information Technology Group
at the Research Council of Canada. The data were re-
sampled to a resolution of approximately 0.6mm in the
XY scanning plane. Several of these views are shown
in Fig. 4.

No sensor error model information was available
for this data set, instead a generic model was employed
in which the X and Y variance was equal to the square
of the sampling resolution, and the Z variance set to
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Fig. 4 Sample of input range images.

Fig. 5 Registered views.

Table 2 Rotation and translation error standard deviations
for the duck data set.

View No. 2 6 10 14
σr (milliradians) 0.029 0.023 0.023 0.027

σt (µm) 2.070 1.905 1.914 2.378

10 times that. Thus σ2
x = σ2

y = 0.36 and σ2
z = 3.6mm

2

in each local coordinate system.
The modified ICP algorithm described above was

applied to the data, the results of which are shown in
Fig. 5. From visual inspection the quality of the regis-
tration is clear. The registration uncertainty informa-
tion arising from this registration problem is a 78× 78
covariance matrix, representing the error covariances of
6 parameters for 13 views. The first view, being locked
to the canonical coordinate system, has no uncertainty
information.

The method of Kanazawa and Kanatani [17] was
used to convert this detailed covariance data into a pri-
mary deviation pair, which represents a one-σ confi-
dence interval for each parameter. To more clearly in-
dicate the registration uncertainty, we used the primary
deviation pairs to compute standard deviations of ro-
tation error angles and translation distances. Table 2
shows these results for a selection of the views.

The results in Table 2 show that a very high degree
of registration accuracy has been achieved, with an av-
erage rotation error of approximately 0.025×10−3 radi-
ans, and translational errors of approximately 2×10−6

meters. This translational error is significantly smaller
than the error on individual points, which is expected
due to the very large number of matched points (ap-
prox. 90,000).

9. Conclusion

Our review of 3D registration literature identified the
absence of methods which are capable of optimally and
globally registering multiple correpondence sets, where
the points in these sets are subject to heteroscedastic,
anisotropic, measurement errors.

We have formulated the global point set registra-
tion task as a constrained, weighted, least squares esti-
mation problem. In particular, the formulation utilises
(2nd order) statistical sensor noise models. The perfor-
mance of the WLSQ registration method was compared
numerically with an unweighted LSQ method which as-
sumes an isotropic error model. The results illustrated
that registration accuracy is improved by error model-
ing. The degree of improvement is related to the error
model eccentricity, and the number of corresponding
point pairs, as described in the previous section.

The proposed technique was then incorporated
into a multiple view ICP-type surface registration sys-
tem, and used to compute the resulting registration ac-
curacy. The uncertainty in rotation and translation
estimates was found to be very small, mainly due to
the very large number of point correspondences.

We conclude that error modeling (and the pro-
posed WLSQ registration technique) are of greatest
value when registering sets containing small numbers
of points, obtained from sensors whose error distribu-
tions are significantly anisotropic. This should par-
ticularly suit sparse, feature-based correspondence se-
lection methods. Otherwise, registration accuracy im-
provements are still obtained however the effect is less
dramatic.
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