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Abstract 

 The requirements, features, and implementation of the port interface unit for the 
Lutonium asynchronous microcontroller are covered in detail.  The Lutonium is a new 
microcontroller that is pin- and software compatible with the Intel 8051 family of 
microcontrollers, and it is being designed by the Caltech Asynchronous VLSI Group.  
The port interface unit controls five 8-bit I/O ports, exposing them to the processor as 
directly accessible registers.  The port interface unit also sequences external memory bus 
access phases using the same I/O ports.  The final design allows both backward 
compatibility with the 8051 series and many advanced power-saving features. It is built 
around a primary state machine responsible for controlling and sequencing basic 
operations.   The transistor networks for the port unit are complete, and extensive 
simulations have been done to verify the logical correctness of the design.  The layout has 
not yet been completed, but preliminary performance numbers have been extracted from 
the transistor- level design.
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1. Introduction 
 
 The Intel 8051 microcontroller was originally designed in 1980 and has remained 
highly popular to this day.  Dozens of variants of the original 8051 have been released by 
various semiconductor manufacturers, with added features, speed, or both, tailored for 
specific tasks.  The 8051 and its many derivatives are the world’s most popular 
microcontroller family. 
 It is for this reason that the Caltech Asynchronous VLSI Group is currently 
designing the Lutonium microcontroller [1], an asynchronous version of the Intel 8051 
microcontroller.  The goals of the design are low power consumption and high speed; in 
short, very high efficiency, on the order of 1000 MIPS/Watt.  Funded by DARPA, the 
project is a showcase for the effectiveness of the asynchronous design approach, applied 
to a common, widely used microcontroller. 
 The 8051 is a Harvard architecture microcontroller, in its base form featuring 4 8-
bit I/O ports and the ability to access external instruction or data memory through the I/O 
ports, among many other features. [2] 
 This thesis details the development of the port interface unit of the Lutonium, 
which interfaces the Lutonium core to five 8-bit I/O ports.  The port interface allows 
direct access to the ports through memory-mapped registers, and orchestrates external 
memory bus accesses through the I/O ports.  Due to this dual role, the port interface is 
named the Port Register/Data Memory (PRDM) unit.  In order to satisfy both project 
goals and backwards-compatibility requirements, the PRDM is highly configurable, 
supporting several power- and time-saving features as well as a default 8051-compatible 
mode. 
 The PRDM is designed with a central state machine that contains all branching 
and sequencing logic, connected to several data path units that route port data bytes 
between the Lutonium core and the port pins.  The state machine is implemented as a 
large ROM automatically generated by the ROMantic asynchronous ROM generator 
[10].  All other subunits of the PRDM are designed using the quasi-delay- insensitive 
asynchronous design style pioneered by the research group.  The lowest- level logic units 
are based on the pre-charge half-buffer cell, a standard cell template, which makes each 
logic unit relatively straightforward to implement. 
 
2. 8051 Overview 
 
 The 8051 microprocessor and its numerous derivatives form the world’s most 
widely used microcontroller family.  Every major semiconductor manufacturer has its 
own versions of the 8051, with various additional peripherals, functions, and options 
added to the baseline processor.  There is a very large installed user base for this 
microcontroller, and thus compatibility with the baseline specification is of great 
importance.  
 The 8051 is an 8-bit microcontroller, with an instruction set optimized for 8-bit 
control applications.  The instructions are between 1 and 3 bytes long, depending on the 
instruction and its addressing modes.   The microcontroller is a Harvard architecture, with 
separate data and instruction memories.  Its internal data memory cons ists of 127 general 
purpose registers, and of a varying number of special- function registers (SFRs).  The 
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SFRs include the accumulator, the instruction pointer, the processor status word, as well 
the registers used to access and configure interrupts, timers, and other peripherals. 
 The basic 8051 has four 8-bit I/O ports, P0 through P3, with four corresponding 
SFRs.   The ports, except for P0, are quasi-bidirectional; to use a pin for input, a 1 must 
be written to it.  The processor uses weak pull-ups internally, so that an external source 
can then pull a pin low or high, making the pin function like an input.  However, the 
processor will source current through the pin when configured as an input.  Port 0 is open 
collector when used as an I/O port, requiring external pull-ups if used as an output.  
However, P0 is truly bidirectional since it will float when used as an input.  When used 
for external memory access, P0 uses strong internal pull-ups, and no external pull-ups are 
required. 
 An external memory bus access can either use a 16-bit address read from the 
microcontroller’s 16-bit data pointer register (DPTR, segmented into two 8-bit registers 
DPH and DPL), or an 8-bit address read from the Lutonium register file. 
 When used for external memory bus access, Port 0 has the data byte and the least 
significant byte of the address multiplexed on it.  A dedicated Address Latch Enable 
(ALE) pin is used to signal external circuitry to latch the address LSB before Port 0 
switches to either reading or writing the data byte.  If a 16-bit address is used, Port 2 is 
used to output the high byte of the address.  In this mode, Port 2 also uses strong internal 
pull-ups to output the address MSB.  Finally, pins 6 and 7 of Port 3 are used to signal a 
write or a read on the bus, respectively.  In the basic 8051, Port 1 is unchanged during an 
external memory bus access. 
 After an external memory bus access, the state of Port 2 and its SFR is restored to 
its pre-access state.  Port 0, however, is overwritten with the value FF during the memory 
access. 
 The 8051 also includes bit operations, which only affect single bits in a given 
register.  Only some of the registers of the 8051 are bit-accessible, including the port 
SFRs.  Internally, the bit operations are performed by reading the whole byte from a 
register, modifying the single bit as needed, and then writing the register’s value back, all 
in the same operation cycle.   
 Any instruction that is considered to be read-modify-write (this includes all bit 
operations) that is modifying a port register reads the output latch of the port, instead of 
the input latch.  This means, for example, that if Port 0 is set to 80, where pin 7 is pulled 
high to be used as an input, and that an external source is in fact writing 0 to pin 7, any 
read-modify-write instruction will still read Port 0’s value as 80, not as 00.   
 In the original 8051, the ports are also used to access external instruction memory.  
However, for the Lutonium, all of the instruction memory is internal to the unit, and thus 
external instruction memory access for the 8051 will not be discussed here. 
 For further details on the 8051 architecture, refer to Philips Semiconductor’s set 
of user manuals for the 8051. [1][2][3] 
 
3. Asynchronous Design Style Overview 
 
 Asynchronous circuitry, at the basic level, is digital circuitry that does not use a 
global clock signal.  Because this coordinating signal is absent, the circuitry itself must 
self-synchronize its internal sequencing and processes.  A key feature of this 
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synchronization is the timing assumptions made by the designer of a digital circuit.  The 
timing assumption of a synchronous circuit is simple:  The outputs of one stage of 
computation must be valid at the input of the next stage when the clock cycle completes.  
This means that during the clock cycle, the outputs of a stage can glitch (assume incorrect 
values) as the stage’s inputs transverse the circuit.  As long as the computation is 
completed before the end of the clock cycle, a synchronous circuit will work correctly.  
For asynchronous designs, different timing assumptions must be made.  While it may 
seem elegant to strive to make no timing assumptions about the behavior of a circuit, and 
use only so-called delay- insensitive circuits, it can be proved that one cannot construct 
circuits of any complexity with such circuits [5]. 
 The circuitry used by the Caltech Asynchronous Research Group is called quasi-
delay-insensitive (QDI), referring to the fact that only one minimal timing assumption is 
made.  The assumption is that a signal on a wire that forks to multiple paths reaches the 
end of each fork at the same time on a transistor-switching timescale.  That is, a signal 
travels down to the end of all the forks of a wire faster than any of the logic gates 
attached to these forks can respond to the changing signal.  This assumption is referred to 
as the isochronic fork assumption.  This single assumption allows a rich set of circuits to 
be implemented, from which any logic circuit can be built. [8] Of course, this timing 
assumption can be violated, if a signal wire branches and the two segments are of widely 
varying lengths.  However, since most wires are local to a process, it is easy to lay out 
circuitry that does not violate this assumption.  With minimal effort, long-distance wires 
can also be arranged to preserve isochronity.  Note that, in the synchronous world, this 
same timing assumption is applied to the global clock signal; the condition where the 
clock signal does not switch everywhere in the circuit at the same time is called clock 
skew, and is a major problem facing chip designers in synchronous circuits. 
 To design a QDI logic block, one starts with a top-level description of the block 
using a language called Communicating Hardware Processes (CHP).  In this language, 
each logic subunit is an individual process, which receives and transmits information 
over channels.  Each channel is a collection of wires, with the sender controlling all but 
one of the wires.  The last wire is an acknowledge wire, controlled by the receiver.  All 
channels are strictly one-way; there is no concept of a true bidirectional bus in CHP. [9] 

A message is transmitted on a channel using a four-phase handshake and delay-
insensitive codes.  A delay- insensitive code is a way of encoding a value on multiple 
wires where the order of reception of the signals on the wire does not matter; common to 
all of them is some way of signifying ‘no value’ or neutrality on the channel.  The main 
delay-insensitive code used in the Lutonium is the one-of-N (1ofn) code.  With this code, 
N wires are required to represent N values.  A neutral 1ofn channel maintains all of its 
outputs at logic low; this represents null or ‘no value’.  When value N needs to be sent on 
the channel, the Nth wire on the channel is pulled high; the other wires stay low.  This 
way, the channel does not pass through any intermediate states before stabilizing at its 
correct output value.  Similarly, the channel returns to neutrality simply by dropping that 
single wire back low.  However, the sender must have a way of knowing when the 
receiver has processed the value sent to it, since the sender cannot assume anything about 
the speed of propagation or processing of the receiver.  For this purpose, the receiver has 
an acknowledge wire.  Upon receiving and processing the inputs, the receiver raises the 
acknowledge wire high.  This signifies to the sender that the data it sent has been 
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received, and the sender will then return the channel to neutral.  The receiver, upon 
seeing the channel return to neutral, will drop the acknowledge wire back low as soon as 
it is ready to accept more inputs. 

This four-phase handshake (sender valid, receiver acknowledge, sender neutral, 
receiver neutral) combined with delay-insensitive codes allows two CHP processes to 
transmit data between each other and synchronize their execution.  However, a top- level 
CHP description is usually too large to directly convert to a transistor network, and must 
first be subdivided into manageable blocks. A CHP description of a logic block can be 
formally decomposed into smaller blocks connected by channels.  This decomposition is 
continued until each sub-block is small enough to easily convert to a transistor network. 
 In the Lutonium design, these lowest-level blocks are implemented as pre-charge 
half-buffers (PCHB).  Since each CHP process receives and sends on various channels, 
the process can be represented as a buffer whose output is some function of its inputs.  
Therefore, the PCHB model can implement any CHP process, with QDI circuitry.  Figure 
1 shows the standard parts of a PCHB circuit, which contains several sections.  First, 
there are several completion trees, which determine the state of the inputs and outputs of 
the circuit.  The input validity tree determines if all the inputs to the circuit have become 
valid, and the output validity tree determines if the outputs of the circuit have become 
valid.  The pre-charge pull-up network pulls the outputs to neutrality at the end of each 
cycle.  The actual computation of the output function is done in the fast pull-down logic, 
gated by the acknowledge wires from the receivers of the output channels and the 
acknowledge wires heading back to the senders of the input channels.  The acknowledge 
wire goes high when both the input and output validities are high, and drops back low 
when both input and output validities return low.  (This logic function is called the c-
element)   
 An example of a PCHB circuit is a straightforward 1-bit buffer, which simply 
sends the value it receives on its input channel forward on its output channel.  The input 
channel, conventionally referred to as L (left) consists of 2 incoming wires forming a 
1of2 channel, and an acknowledge wire from the buffer to the sender of the L channel.   
The output channel R (right) is a mirror image of the L channel, with two outgoing wires 
forming a 1of2 channel, and an incoming acknowledge wire.  The pull-down logic simply 
implements the identity function; an incoming ‘1’ causes an outgoing ‘1’. 
 

 
Figure 1: PCHB Cell Block Diagram 
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 The sequence of actions of the PCHB 1-bit buffer goes as follows:  At the end of 
the previous cycle of operations, the buffer’s inputs and outputs are both neutral (both 
wires of the 1of2 channel are low), and both acknowledge wires are low.  The input and 
output validities are both low, signifying the neutrality of the wires.  Now, the sender on 
the L channel sets wire 1 of the L channel high, signifying a ‘1’ being sent down the 
channel.  Both the input validity tree and the pull-down logic receive this value.   
 In the pull-down network, the input activates transistors that pull the value of wire 
1 on the output high.  The output of the input validity tree changes to 1, signifying a valid 
input value.  As soon as the pull-down network completes its activity, the output validity 
tree sees a valid output, and changes to output a 1 as well.  Because the buffer has no 
further need for the input at this point, it can acknowledge the L channel.   This happens 
as the c-element controlling the input acknowledge switches, setting the input 
acknowledge wire high.  This cuts off the drive to the output wires, but a simple state-
holding circuit maintains the values on the output wires for now.  At this point, the buffer 
waits for both the L sender and the R receiver to react to its actions.  At some point, the L 
sender will return its output 1of2 channel to neutrality, which returns the input validity to 
0.  Also, the R receiver will raise its acknowledge wire, signaling its reception of the sent 
values.  This triggers the pre-charge pull-up circuitry, which returns the buffer’s outputs 
to neutrality.  This in turn changes the output validity to 0.  With both the input and 
output validities low, the c-element switches to 0, lowering the L channel acknowledge.  
At some later point, the R receiver will lower its acknowledge wire, which allows the 
buffer to output values on R again as soon as they are sent on L.  
 PCHB circuits can easily be modified to contain conditional inputs and outputs 
(channels that are sent and received on only at certain times, not every cycle), as well as 
state variables.  With those basic templates, any logic circuit can be built from a 
composition of sets of PCHB half-buffers, which are derived from the decomposition of 
the CHP description of the circuit. 
 One of the major advantages of this design style is that the outward functioning of 
the formally decomposed set of sub-processes is identical to the functioning of the 
original top- level process.  This reduces the number of mistakes that can be made in the 
design and implementation of the circuit, since each sub-process can be converted to 
PCHB circuits and tested individually, apart from the rest of the circuit.   
  Further, adjustments can be made to the circuit in order to improve its 
performance characteristics.  For the Lutonium processor, the goal is to optimize the 
circuitry for Et2, where E is a measure of the energy expended by a process and t is a 
measure of the time taken by the process to complete its calculation.  To first order, the 
Et2 measure of a circuit is independent of the logic voltage level.  In an asynchronous 
circuit, the logic voltage can be varied a great deal without affecting the logical 
correctness of the circuit’s functioning.  However, a lower voltage results in slower-
switching transistors, slowing down the processor.  But a lower voltage also translates to 
less power consumption.  By modifying the voltage of the circuit, a designer can trade off 
speed and power requirements with each other; therefore, using a metric such as power 
consumption or speed when designing a circuit for power efficiency will not give optimal 
results.  Using the Et2 metric, however, has been shown to be a good method of 
optimization [7].  If two processors are running at the same rate, the one which is better 
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optimized for Et2 will consume less power, and if two processors are burning the same 
amount of power, the one optimized for Et2 will be running faster. 
 To optimize a QDI circuit, one can utilize two techniques.  The higher- level of 
these is called slack matching.  In short, buffers can often be added into the channels 
between sub-processes that improve the cyc le time of the entire process.  This typically is 
done by equalizing the amount of ‘slack’ in parallel chains of processes in a circuit.  
Slack, roughly, is the number of data units that can fit into a process chain at one time.  A 
single PCHB circuit has a slack of ½; two PCHB circuits form a full buffer, with the 
capability of holding one piece of data inside the chain.  To slack match a circuit, one 
adds buffers to chains of processes until their slack is roughly equal to the slack of other 
parallel chains of processes in the circuit.   
 
4. Port Interface Requirements, Features, and Top-Level Specification 

 
The techniques described above form the foundation of designing an 

asynchronous QDI circuit, of which the Lutonium is a complex example.  The design 
style for the Lutonium is top-down; a high- level description is broken down into smaller 
and smaller pieces, until each piece can be easily implemented as a PCHB circuit.  
Therefore, a top-level description of the functionality and behavior of the Port 
Register/Data Memory (PRDM) unit was required before its detailed design could begin. 

In writing this description, two main requirements needed to be fulfilled.  First, 
the PRDM must support backward-compatible modes, so that old 8051 code can run on 
the Lutonium with no or minimal modification.  Second, the PRDM, as per Lutonium’s 
design goals, should be low-power, high-efficiency, and clock- independent.  It is clear 
that these two goals are contradictory.  The quasi-bidirectional ports of the 8051 are 
wasteful in power; the memory bus access sequence of the 8051 is keyed off a 
synchronous external oscillator; the multiplexing of data and address on Port 0 adds to 
the external circuitry required and thus to overall power consumption.  To allow the 
PRDM to support two conflicting basic goals, it was decided to add a great deal of 
configurability to the PRDM.  This significantly complicates the overall design of the 
PRDM unit, but also greatly increases the unit’s functionality and usefulness. 

 
4.1. PRDM Configuration and SFRs  

 
To begin with, each I/O port was assigned 4 SFRs as opposed to the original 

single SFRs.  These SFRs are labeled Pn or Pnc, Pnd, Pno, and Pni, where n is the port 
number.  The Pn (or Pnc) register is the compatibility register, with default functionality 
identical to the 8051’s single port SFR.  It is also the only bit-accessible register for each 
port.  The Pnd register contains the output data byte for the port, while the Pno register 
contains the output latch enables for each port, with 0 being enabled.  For example, if the 
P0d SFR contains 3A, and P0o contains F0, then pins 4, 5, 6, and 7 of Port 0 are 
configured as inputs, and pins 0,1,2,3 are outputs, with value A output on them.  Finally, 
the Pni register contains the input latch data byte.   Having all four registers for each port 
is required in order to support both fully bidirectional ports as well as the backward-
compatible quasi-bidirectional ports.   
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In quasi-bidirectional mode (or compatibility mode) which is the default mode, 
writes to the compatibility register are redirected to the output enable register, and the 
data registers hold their default value of 00.  External resistors are required in this mode 
to act as weak pull-ups for the port pins.  For example, in compatibility mode, writing 3F 
to P0c results in 3F being written to P0o.  The bits written with a ‘0’ become outputs, 
outputting the value in the P0d register for that bit.  In this case, the value output will 
always be ‘0’.  For the bits in the P0o register that are written with ‘1’, the matching pins 
become floating inputs, and the external pull-ups pull the pins high.  Therefore, the value 
3F is correctly written to the port, duplicating the behavior of the original 8051, including 
the current sourcing of inputs. 

In fully bidirectional mode, writing Pnc results in a write to Pnd.  In this mode, 
the programmer must access the Pno register directly to specify the input/output status of 
each port pin.  In both modes, reading Pnc reads the Pni register, except in the case of the 
read-modify-write instruction, in which case the register that will be written is read.  So, 
for example, in fully bid irectional mode, a read-modify-write instruction on P0c reads the 
P0d register, and then rewrites the value of P0d, while a regular instruction reading the 
P0c register will redirect the read to the P0i register.   

The Pnc registers are also the only bit-addressable ones, due to the structure of the 
8051 bit-addressable memory space.  However, the redirection described above allows bit 
operations to be done either on the output data or the output enable byte. 

The PRDM also supports demultiplexing the data and address bytes sent on P0 
during an external memory bus access.  When demultiplexed, the address byte is written 
out on P1 instead, the data is still written to P0, and the ALE pin becomes unnecessary.  
This allows both for faster memory accesses, as well as reduced external hardware, since 
no external latch is needed to hold the address byte after P0 switches to reading/writing 
the data byte. 

Also added to the PRDM is a fast read mode, where the read cycle is compressed 
significantly, allowing faster sequential reads off the memory bus, assuming external 
hardware can keep up with the faster access cycle. 

The programmer can also select whether the values of P1 and P2 are restored to 
their pre-memory bus access state after the read or write concludes.  The default state 
corresponds to the 8051:  P1 and P2 are restored after the memory bus access completes.  
Choosing sustain mode, where P1 and P2 are permanently overwritten, reduces the 
number of times the port pins change during a memory bus access, saving power, and 
shortens the access cycle somewhat. 

Finally, the PRDM can base its sequencing on two different timing sources:  An 
oscillator signal, or an internal delay line.  The oscillator signal can come either from an 
internal or an external oscillator; the external oscillator is a typical quartz crystal chip 
used to drive standard synchronous designs, and allows the most backwards compatibility 
with existing 8051 systems.   When using the internal delay line, the programmer can 
further specify the period of the delay line. 

All of the above is controlled through a dedicated SFR, the DMC (Data Memory 
Control) register; its fields are shown in Figure 2 below. 
• Pins 0 through 2 (delay period) control the number of oscillator ticks or delay line 

cycles that the PRDM waits for during a standard delay in its sequencing.   
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• Pin 3 (DeLay control) controls whether the PRDM uses the internal delay line 
(DL=1) or an oscillator (DL=0) 

• Pin 4 (SUstain) controls whether the values of P1 and P2 are restored (SU=0) after a 
memory bus accesses, or whether they are left as they are at the end of the access 
(SU=1) 

• Pin 5 (Fast Read) controls whether the fast read mode is enabled.  In fast read mode 
(FR=1), some delays are eliminated in the external memory access sequence. 

• Pin 6 (DemultipleX) controls whether the data and address are multiplexed on Port 0 
(DX=0) during an external memory access, or whether the address is output on Port 1 
(DX=1) and the ALE signal is unused. 

• Pin 7 (High Enable) controls whether the PRDM operates in quasi-bidirectional 
backwards compatibility mode (HE=0), or in fully bidirectional high efficiency mode 
(HE=1) 

 
Figure 2: DMC register fields  

 
The PRDM also supports a fifth port, P4, which is mostly an internal port.  It is 

used to control some of the internal peripherals of the Lutonium, such as the selection of 
internal or external oscillator to drive both the PRDM’s sequencing and the timer 
peripherals.  However, this port also contains the ALE pin, the sole external port of P4 in 
the default Lutonium package.    
• Pins 0 through 4 (OSD3...0) on Port 4 control the internal oscillator period. 
• Pin 4 (OSE) switches between the external and internal oscillators 
• Pin 5 (X2D) enables or disables the inverter driving the XTAL2 pin of the processor. 
• Pin 6 (GP) is a general-purpose pin that could be made available as an IO pin on a 

larger chip package. 
• Pin 7 (ALE) is the pin used to signal external latching circuitry to latch the address 

off the multiplexed Port 0 during an external memory bus access cycle. 
See figure 3 for the fields of Port 4, and figure 4 for the entire SFR memory map 

of the Lutonium. 

 
Figure 3: Port 4 fields  

 
4.2. PRDM External Interface 
 

The external memory access sequence for the Lutonium is a typical sequence, 
possibly modified by the FR and DX flags, both of which speed up the overall access 
sequence.   Turning on demultiplexing removes the entire ALE sequence, and turning on 
fast read removes a few stages of delay from the sequence.  Figure 5 shows the various 
patterns of the Lutonium’s external memory access cycle. 
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Figure 4: Lutonium special function register memory map 

 
Figure 5: External memory bus access sequence 

 
The Lutonium is being built for a 40-pin package, with the pin out and 

functionality matching the standard 8051 pin out as much as possible.  Figure 6 shows 
both the Lutonium pin out, and a typical 8051 pin out.  The main differences are the 
replacement of the serial input/output on P3.1 and P3.2 with two programming pins, 
which can be used to program the Lutonium’s internal instruction memory on boot.  Also, 
the PSEN and EA pins, both used to access external instruction memory, are replaced 
with pins that can be used to finely control the logic supply and well voltages allowing 
for power versus speed optimization. 
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Figure 6: Lutonium and standard 8051 pin outs 

 
 The PRDM is not the last stage between the port pins and the core of the 
Lutonium; each port has its own simple port driver unit that converts the data sent to it by 
the PRDM into pin voltages.  Figure 7 shows the peripheral interface as it relates to the 
PRDM: 

.  
Figure 7: PRDM peripheral interface 
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 Each port driver unit contains a latch storing the output data, the output enable 
mask, and the synchronization circuitry to sample the state of the pins when needed.  The 
Delay unit is responsible for handling the delays required in the external memory access 
sequence.  It is controlled by PRDM, and can run off either an internal delay line, or an 
oscillator signal.  Using the internal delay line removes any need for an external oscillator 
chip, especially if the Lutonium timer peripherals aren’t in use. 
  
4.3. PRDM Internal Interface 
 
 Below in Figure 8 is the internal block diagram of the Lutonium, with parts 
relevant to the PRDM highlighted.  In this diagram, the PRDM is split into its two logical 
components:  the DMem unit, which handles external memory bus accesses, and the 
PortRegs unit, which handles direct port accesses. 

The PRDM receives its control from the decode unit, which is responsible for 
converting the instruction opcodes to internal control signals.   There are a total of 40 
unique control signal combinations that the decode unit could send to the PRDM, and the 
PRDM’s internal configuration determines the response of the unit to the decoded 
instruction.   

 

 
Figure 8: Lutonium block diagram 
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 There are seven instruction channels (abstracted as PortRegs.I and DMem.I in 
Figure 8) that the decode uses to send the PRDM a command.  The primary instruction 
channel contains the type of command the PRDM needs to execute, such as a port read, 
port read-modify-write, or a data memory access.  The six other channe ls are conditional; 
two carry information about the source of a port register read (port number and register, 
such as P0o), two carry information about the destination of a port register write, and the 
last two inform the PRDM whether a bus access is a read or a write, and whether to use a 
16-bit or an 8-bit address.   
 For a port register read or write, the PRDM receives and sends its data through the 
direct read bus (DRB) and the direct write bus (DWB) which route the data to and from 
other execution units and the Lutonium data registers.  For a data memory access, the 
PRDM has dedicated channels connecting it to the accumulator (A) register, as well as 
the DPtr register, which is used as the source of a 16-bit address.  The PRDM also 
connects to the Y bus, which is used as the indirect source of an 8-bit address coming 
from the register file.  For more details on the overall Lutonium decomposition see [1] 
and [11].   
 
5. Design Tradeoffs and Decisions  
 
 The PRDM unit's complexity approaches that of a small microprocessor.  It has 
two main tasks: First, mediate access to five I/O ports through 20 SFRs, four per port.  
Second, perform external memory bus reads and writes through the five I/O ports.  The 
configurability exposed through the DMC register requires the PRDM to have a great 
deal of control logic implementing the various configuration options. 
 In starting the design of the PRDM, two main paths of approach presented 
themselves:  First, each subunit of the PRDM could have a great deal of controlling logic 
built into itself, with only a small combined control unit to sequence the actions.  This 
would result in a faster design, and perhaps a smaller one as well. 
 Second, all control and decision-making could be placed into one central state 
machine, making all the other subunits significantly simpler to implement.  With this 
approach, much less complex sequencing circuitry needs to be designed and tested, so the 
overall design time is less.  However, this approach is likely less efficient than the first 
method, and slower, since all sequencing activity is controlled by a large state machine, 
with a large cycle time.    
 In the end, the second approach was chosen as the design approach, for several 
reasons.  First, while the first approach would likely be faster, the speed of the PRDM is 
not very critical, especially during an external memory bus access, where the access 
sequence already contains large delays.  Most types of accesses to the port registers can 
be done in one state machine cycle, so the cycle time of the state machine doesn’t slow 
the port register access down.  Second, new tools available to the research group made 
the implementation of a large state machine easy, allowing all the complex decision-
making involved in the PRDM to be placed in the state machine.  This greatly simplifies 
the design task for the rest of the circuitry, making it far easier to design and debug.  It 
also speeds up the layout, since more of the decision-making circuitry is placed in the 
state machine ROM, which can be automatically generated. 
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6. Final Design 
 
 The PRDM went through two design iterations before the final design was 
completed.  The final design has significant improvements over the original, especially in 
the main state machine.  
 As shown by the Lutonium block diagram in Figure 8, the PRDM was originally 
designed as two logically separate units, the Port Register unit representing the port SFRs 
and the Data Memory unit representing the external memory space.  As a consequence, 
the first PRDM design contained two state machines: One for controlling port register 
accesses, and one for controlling external memory bus accesses.  However, while this 
split simplified the individual state machine, this design resulted in the duplication of 
numerous channels, and the design of a large switchbox that routed control between the 
two state machines.  In this design, it took several state machine cycles to read or write a 
port register, which is expected to be the most common use of the PRDM.  The state 
machines were designed as Moore state machines, with the outputs being associated with 
the state. 
 The final design merges these two state machines together, and optimizes the 
instruction channels between the PRDM and the decode unit.  These two optimizations 
allow the removal of a large, complex switchbox process, and allow most port register 
accesses to be done in two or less state machine cycles.  Figure 9 shows the PRDM state 
machine diagram.  The state machine is a Mealy machine; the outputs of the state 
machine are associated with the transitions between states, not the states themselves.  
This approach is more flexible and better matches the message-passing abstraction of the 
QDI design style. 

The PRDM contains 5 unique sub-processes; the block diagram can be seen in 
Figure 10.  The Decode unit seen in the diagram is not actually present in the PRDM; it is 
a representation of the part of the Lutonium Decode unit which sends out control signals 
on seven different channels to the PRDM.  The Kind channel is the primary control 
channel, while the other 6 channels are conditional depending on the type of instruction.  
See Table 1 for the meanings of all the instruction channels. 
 Most of the control signals are received by the PortControl, the controlling state 
machine.  It sends out commands to the rest of the subunits, and sequences nearly all the 
PRDM activity.  The PortControl also receives the delay done message from the 
peripheral interface delay unit, allowing it to wait for long periods of time between state 
machine cycles.   

The DataMux unit is the PRDM’s connection to the processor’s data paths.  It 
receives and properly routes data to be written to registers, and the addresses and data to 
be used for external memory accesses.  It sends out values read from registers or from an 
external memory access.   
 The DMCRegs unit contains the DMC SFR byte.  It has several dedicated 
channels to the PortControl unit, to which it sends configuration information as needed.  
The DMCRegs also sends commands to the Delay peripheral unit, setting the delay type 
and length. 
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Figure 9: PRDM state machine state diagram 
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The PortUnitBus routes commands and data to and from the five individual 
PortUnits.  When the PRDM is used for accessing the port SFRs as registers, the 
PortUnitBus receives the source and destination port numbers directly from the decode 
unit.  During an external memory bus access, the PortControl tells the PortUnitBus which 
port to route commands and data to. 
 The five PortUnit processes are all identical.  Each interfaces with the matching 
semi-QDI PortModule process in the peripheral interface.  A PortUnit contains two 8-bit 
registers for storing the output data byte and the output enable byte.  The PortUnit is the 
most complex of the data path subunits, because of the variety of commands it must 
process. 

 
Figure 10: PRDM block diagram 

 
Channel Contents When sent Values 
Kind Primary instruction channel Always 10 different commands 
C Direction of external memory 

bus access 
For external memory 
accesses  

‘Read’ or ‘Write’ 

AddrC Source of external memory bus 
access address 

For external memory 
accesses  

‘DPtr’ (for 16-bit addresses) 
‘Y’ (for 8-bit addresses) 

MY Source register for a port register 
read 

For port register reads. ‘c’, ’d’, ’o’, ’i’ 

MZ Destination register for a port 
register write 

For port register writes. ‘c’, ’d’, ’o’, ’i’ 

JY Source port for a port register 
read. 

For port register reads. 0, 1, 2, 3, 4 

JZ Destination port for a port 
register write 

For port register writes. 0, 1, 2, 3, 4 

Table 1: PRDM instruction subchannels 
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 As an example, consider a basic write to Port 0’s output data register.  First, 
PortControl receives the command to write a port through the Kind channel.  The 
PortControl needs to then determine which port, and which register of that port, is to be 
accessed.  To determine the register, PortControl requests the value of the HE flag from 
the DMCRegs unit, and reads in the value of the MZ instruction channel.  The HE flag is 
needed in case the value is ‘c’, since that port redirects to either ‘o’ or ‘d’ depending on 
the state of the HE flag, as described in section 4.1.  In this case, the value of the MZ 
channel is ‘d’, so the HE flag is not needed.  However, only reading HE when MZ is ‘c’ 
would require an extra state, and the energy consumption of the additional state machine 
cycle far outstrips the savings obtained by sending HE only when needed. 
 PortControl then sends the appropriate commands to the DataMux and 
PortUnitBus.  In this case, DataMux receives a command to read a data byte from the 
Lutonium Direct Write Bus (DWB) and to forward it to the PortUnitBus.  The 
PortUnitBus receives the ‘write data register’ command on its control channel.  It also 
receives a command to read the destination port number from the JZ instruction channel.  
The PortUnitBus reads the JZ channel, and forwards the command to the appropriate port 
register unit.  It then waits for the data byte from the DataMux process, and forwards it to 
the PortUnit as well. 
 The PortUnit receives the instruction and the data byte.  It stores the data byte in a 
local register (where it will be read from in case of a port 0 data register read later), and 
then sends the data byte along with a ‘data write’ instruction to the Port 0’s driver 
module, which concludes PRDM’s handling of the instruction.  PortControl, meanwhile, 
has reset to its initial state, and is ready to receive a new instruction.  Note that due to the 
pipelining inherent in the design, PortControl can already start processing the next 
instruction while DataMux, PortUnitBus, and PortUnit0 are finishing the previous 
instruction. 
  
6.1. PortControl unit 
 
 Figure 11 shows the block diagram of the PortControl, the main PRDM state 
machine.  The inputs to the PortControl are all conditional, and most are not used on any 
given transition of the state machine.  The inputs are the various command channels 
coming from the Lutonium decode process, as well as several of the bits of the DMC 
register.  The outputs of the PortControl are the commands to the other PRDM subunits 
which compose the PRDM data path.  The outputs are conditional as well, since often 
several subunits are not required to do anything on a given cycle. 

The state machine is constructed around a large ROM, which is built using the 
ROMantic asynchronous ROM generator [10] which can generate transistor networks and 
layout from a ROM table, and the Rubeg state machine generator, which converts a high-
level description of a state machine to a ROM table understandable by Romantic.  Both 
of these tools were developed for the Lutonium by the research group.  Both the inputs 
and outputs of the generated ROM are unconditional; that is, all the inputs and outputs 
transmit data on each cycle. 

A full buffer, the StateBuffer, receives the new state from the ROM and sends it 
in to the ROM as input on the next state machine cycle.  The buffer can also block 
sending the state until it receives a message from the peripheral Delay unit signifying the 
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completion of a delay period.  Through this mechanism, the state machine halts as 
required for the external memory bus accesses.    
 While all the ROM’s inputs are unconditional, PortControl’s inputs are 
conditional.  Therefore, each state machine input has a filter that forwards an actual input 
for the state machine to the ROM when necessary, and at other times sends a fake value 
to the ROM.  
 The input filters are controlled by InputCopy, a small ROM that translates a single 
command from the main ROM to individual ‘Read Input’ or ‘Generate Fake Value’ 
commands.  An important constraint in the design of the main ROM is that it must tell 
InputCopy which inputs will need to be received on a given state machine cycle during 
the previous cycle.  The ROM must also inform the StateBuffer of an incoming delay on 
the cycle before as well.  This input prediction constraint is one reason why a Mealy state 
machine is superior to a Moore in terms of the number of transitions required to complete 
a task.  In a Moore machine, all transitions out of a state correspond to the same set of 
outputs, and therefore must all have the same set of inputs to be read next cycle.  If 
different destination states require different inputs, a Moore machine requires additional 
states to be added simply for the purpose of preparing the input filters.  In a Mealy 
machine, where each transition can have its own unique outputs, this problem is 
eliminated.  In the PRDM, switching to a Mealy machine structure reduced the final 
number of state machine states from 63 to 29, and the section dealing specifically with 
port register access (originally its own state machine) reduced in size from 14 states to 7 
states, and the number of state machine cycles required to read or write a single register 
went from 6 to 2 cycles.   The number of cycles required to sequence the most-backward 
compatible external memory bus read went from 23 cycles to 14 cycles, a significant 
improvement. See Table 2 for details on the cycle count of various PRDM operations. 
 The final subunits of the PortControl are the output filters.  Since the ROM’s 
outputs are unconditional, even command channels leading to PRDM units that do not 
need to do anything on a given cycle are sent a command.   The output filters remove 
these spurious commands, and only let the actual commands through to the PRDM data 
path units. 

 
Figure 11: PortControl block diagram 
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PRDM Operation State machine transitions 
DMC read or write 1 
DMC read-modify-write 2 
Port register read or write 2 
DMC read, port register write 2 
Port register read, DMC write 3 
Port register read-modify-write 3 
Default 16-bit external memory read 15 (subtract one for 8-bit address) 
Default 16-bit external memory write 14 (subtract one for 8-bit address) 
‘Best’ 16-bit read (HE, DX, SU, FR) 11 (subtract one for 8-bit address) 
‘Best’ 16-bit write (HE, DX, SU) 11 (subtract one for 8-bit address) 

Table 2: State machine transistions for various PRDM operations  
 
6.1. DataMux unit 

 
 The DataMux unit contains several split and merge processes that route 8-bit data 
to and from the rest of the PRDM and the rest of the Lutonium.   
 The DWBSplit process receives bytes from the Lutonium’s direct write bus, and 
routes them to the DMCRegs or PortUnitBus subunits.  The DRBMerge process, 
analogously, receives bytes from the DMCRegs or the PortUnitBus and sends them to the 
Lutonium’s direct read bus. 
 The PortUnitBusMerge process receives bytes from DWBSplit and Addr 
processes in the DataMux, as well as directly from the Lutonium’s accumulator, and 
routes them to the PortUnitBus subunit.  In reverse, the PortUnitBusSplit process receives 
bytes from the PortUnitBus, and sends them to the DRBMerge process, and the 
accumulator execution unit. 

The Addr unit receives addresses to be used for external memory bus accesses.  It 
can either receive a 16-bit address straight from the Lutonium’s Data Pointer (DPtr) 
register, or it can receive an 8-bit address from the main register file indirectly through 
the Lutonium’s Y operand bus.  In the case of receiving a 16-bit address, the Addr unit 
splits it into two separate bytes that are sequentially sent to the PortUnitBusMerge, and 
from there to the PortUnitBus. 

  
Figure 12: DataMux block diagram 
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Each process receives its commands through the CmdCopy process, which sends 
commands only to those subunits that require them, based on the command sent by the 
PortControl state machine.   Figure 12 contains the block diagram of the DataMux unit. 

 
6.2. DMCRegs  unit 
 
 The DMCRegs unit stores the 8-bit DMC SFR, which is used to configure the 
PRDM.  The PortControl unit accesses several bits of the DMC through dedicated 
channels, so it was decided to implement the DMCRegs unit as 5 one-bit registers and 
one 3-bit register (for the delay period).  The block diagram for DMCRegs can be seen in 
Figure 13 
 The DMCSplit process takes in a byte sent from the DataMux and splits it into 6 
values that are sent to the six storage registers.  Conversely, the DMCMerge process 
receives the value of all six registers and composes them together into the complete 1-
byte DMC value which is then sent to the DataMux. 
 HEReg, DXReg, FRReg, and SUReg are all 1-bit registers that can receive a new 
value from the DMCSplit process, and can send their current value to the DMCMerge 
process as well as directly to the PortControl state machine.   
 DLReg, in addition to what the other registers can do, can also sends its value to 
the peripheral delay unit, to which the value of DLReg acts as a control selecting between 
the internal delay line and an oscillator signal. 
 DelayReg contains the 3-bit value specifying the period (in either delay line 
counts or oscillator ticks) of a standard external access delay.  It also contains a small 
ROM used to decode the 3-bit value into a full byte delay count for both normal and fast 
read modes.  This delay count is then sent to the DelayMerge process. 
 The DelayMerge process sends a delay count to the peripheral Delay unit in 
conjunction with the DLReg’s control message.  Depending on its control message, the 
DelayMerge can either send the decoded delay count sent to it from the DelayReg, or it 
can send a 1-tick delay generated by the Delay1Source process.  This one tick delay is 
used to synchronize the beginning of the memory access to coincide with the tick of an 
oscillator signal. 
 The DMCCmdBus receives control messages from the PortControl state machine, 
and forwards them to the appropriate units.   
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Figure 13: DMCRegs block diagram 

 
6.3. PortUnitBus  unit 
 
 In the PRDM design, only one port register can be accessed per state machine 
cycle.  While this limitation reduces the speed of the PRDM somewhat, it only affects 
external memory accesses; for port register accesses, only one port can be read or written 
at a time in any case.  And external memory accesses already contain long wait periods, 
so a small amount of additional delay is likely not very significant.  The primary reason 
not to implement a full crossbar design, where each port could simultaneously receive 
data, is the added complexity in the PRDM data paths, and the additional control required 
to coordinate all the ports at once.  See Figure 14 for the unit’s block diagram. 
 The PortUnitBus is the connection between the rest of the PRDM and the five 
individual port units.  It sends and receives byte data from the DataMux, routing it to the 
proper port unit depending on control from either PortControl or the Lutonium decode 
unit.   
 The SelectN process is a merge process which selects one of three inputs to 
determine the port being accessed for the current cycle.  For reads or writes to the port 
registers, the machine code instruction contains the source or destination port, transmitted 
from the Lutonium Decode unit to the PortUnitBus on channels JY and JZ, respectively.  
For external memory bus accesses, the source or destination port is determined by the 
PortControl state machine.  The N channel from the PortControl unit either contains the 
number of the port to access, or an instruction to read JY or JZ for the port number. 
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Figure 14: PortUnitBus Block Diagram 

 
The CopyN process sends the number of the port being accessed to the Control process, 
and possibly the Read or Write processes, depending on the direction of access being 
performed.  Some commands to the port units do not cause data transfer to or from the 
port unit, in which case only the Control process receives the port number. 
 The CopyC process receives the instruction to be relayed to the port unit.  It sends 
the instruction to the Control process, and informs the CopyN process whether the 
instruction is a read or a write, or neither. 
 The Read process is a byte split process, taking a byte sent from the DataMux and 
relaying it to one of the five individual port units, based on the port number selected by 
SelectN.  The Write process is the reverse, receiving a data byte from the selected port 
and forwarding it to the DataMux unit. 
 The Control unit sends onwards the command the port unit needs to execute, as 
determined by the PortControl state machine. 
 
6.5. PortUnit 

 
 There are five individual port units in the PRDM, each attached through three 
channels to the actual port drivers of the matching IO port.  The port units are identical, 
except that the mask (output enable) register of Port 4 defaults to all output (00) and all 
other ports default to all input (FF).  Figure 15 has the block diagram of the PortUnit. 
 The WriteSplit register receives data from the PortUnitBus, and forwards it to the 
port driver unit.  It may also forward the data byte to either the DataReg or the MaskReg 
unit for storage.   When port registers are being accessed directly by the instructions, 
DataReg and MaskReg are always updated, corresponding to the Pnd and Pno SFRs, 
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respectively.  However, during an external memory bus access, several ports’ values are 
temporarily modified (for example, to raise the read or write flag in Port 3), in which case 
DataReg and MaskReg are left at their old values.  When the value of the register needs 
to be restored to the original value, DataReg and MaskReg can both feed the original data 
back to the WriteSplit unit, which then forwards it to the port driver.  The WriteSplit unit 
also receives data bytes from the BitFlipper process, which it forwards to the port driver. 
 The ReadMerge process reads the value of the DataReg, MaskReg, or the value 
on the port input pins (via the port driver unit) and sends the data onward to the 
PortUnitBus. 
 DataReg and MaskReg are both 8-bit registers that receive new values from 
WriteSplit.  Both have three outputs; either to WriteSplit in order to restore the port 
values to the ir original state at the end of an external memory access, to ReadMerge, or to 
the BitFlipper unit.   
 The BitFlipper unit receives a data byte from either DataReg or MaskReg, and 
modifies the data byte by raising or lowering a single bit.  The BitFlipper is used to 
activate the read and write flags on P3 of the Lutonium, as well as to raise the ALE pin 
on P4 of the Lutonium.  It reads the MaskReg when the PRDM is running in quasi-
bidirectional mode (as the output value is stored in MaskReg in that case), and it reads 
the DataReg when the PRDM is in full bidirectional mode. 
 The CCopy unit receives commands from the PortControl via the PortUnitBus 
unit, and distributes them to the rest of the PortUnit processes.  It also generates the 
proper commands to the port driver unit in the peripheral interface. 

SplitSequencer and COutSequencer allow the PortControl to fully restore the 
value of a port in a single state machine cycle.  Restoring a port to its original value 
requires the write of both the old mask and the old data bytes to the port driver, a simple 
sequencing action handled by these two units.   
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Figure 15: PortUnit block diagram 
 

SplitSequencer sends two commands to the WriteSplit process, one which reads 
the DataReg and sends it to the port driver, and one which reads the MaskReg and sends 
it to the port driver.  COutSequencer simply sends the port driver a data read and a mask 
read command in sequence.  For all other commands, the two sequencer processes act as 
simple buffers. 
 
7. Testing 
 
 The main test system for the Lutonium is an extensive software simulation suite 
developed for the project.  The system allows sections of the Lutonium to be simulated at 
various levels of abstraction, starting from top-level descriptions down to actual transistor 
networks.   The simulator runs machine code either compiled from C code or assembly; 
all of the PRDM test code was written in assembly.  Using basic test code and the 
simulator system, the PRDM was first broken down into its smallest subunits, and then 
each subunit was converted to a production rule set.  This gradual conversion allowed 
each unit to be tested against a known-working system, speeding up debugging 
significantly.  After the unit was fully converted to a transistor-level design, more 
rigorous test code was written to fully exercise the design.  Three main pieces of test code 
were utilized in the testing.  The first tested every transition in the PRDM state machine 
diagram, verifying that the outputs of the PRDM were correct.  The second tested all the 
data paths inside the PRDM, writing every possible value through each channel.  Finally, 
the third piece of test code tested every applicable instruction available in the Lutonium 
with the PRDM, to make sure the instruction decode functioned properly for PRDM 
instructions.  The PRDM design currently passes all the test programs. 
 Once layout has been completed, automated tools can be used to verify that the 
circuit as laid out matches the circuit as designed.  Therefore, as long as the original 
design is fully tested, the laid out circuit will be logically correct. 
 
8. Performance Characteristics 
 

While the layout of the PRDM is not yet complete, some estimates of its 
performance can be extrapolated from the completed transistor net lists and the state 
machine diagram for the PRDM. 

The PortControl state machine contains 29 states.  A read or a write of the DMC 
register takes exactly one state machine transition.  A read or a write of a port SFR takes 
2 transitions of the state machine.  An instruction that both reads and writes an SFR in the 
PRDM takes between 1 and 3 state transitions to process.   
 External memory bus accesses take between 9 and 16 transitions to complete, 
depending on the configuration of the PRDM and the direction of the access.  The most-
backward compatible read takes 15 transitions for a 16-bit address, and 14 state 
transitions for an 8-bit address.  Correspondingly, the most-backward compatible write 
takes 14 transitions for a 16-bit address, and 13 for an 8-bit address. 
 Turning on fully bidirectional ports, and demultiplexed address and data results in 
smaller transition counts, translating to a smaller energy expenditure.  Both reads and 
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writes then take 11 state transitions for a 16-bit address, and 10 for an 8-bit address.  
Most of the savings in transition counts comes from the removal of the ALE toggle 
sequence when data and address are separated onto different ports. 
 Based on transistor-level simulations, a single state machine state transition cycle 
takes 30 transistor firings (a firing is a transistor changing from on to off or vice versa).  
While this is slower than the Lutonium core, which has been designed with a cycle time 
of 22 transitions, this is an acceptable speed, since the PRDM is expected to be a 
infrequently used execution unit, and an 8051 external memory access is in any case a 
slow process involving deliberate wait stages. 
 The entire PRDM contains roughly 40,000 transistors, not including transistors 
required for stabilizing values on dynamic logic wires (staticizer units).  See Table 3 for 
sub-unit transistor counts. 

Simulated energy consumption estimates show that the PRDM consumes roughly 
160 pJ for a port register write, 140 pJ for a port register read, and 80 pJ for a DMC SFR 
read or write.    
 

Subunit NMOS PMOS Total 
PortControl 4769 2068 6837 
DataMux 1737 1392 3129 
DMCRegs 2166 1618 3874 
PortUnitBus 1342 1182 2524 
PortUnit 2657 2101 4758 
Overall 23299 16765 40064 

Table 3: PRDM transistor counts 
 

Type of access Energy usage Energy/state machine cycle 
Port register write 160 pJ 80 pJ / transition 
Port register read 140 pJ 70 pJ / transition 
DMC register write 80 pJ 80 pJ / transition 
DMC register read 80 pJ 80 pJ / transition 
Port register read-modify-write (bit op) 250 pJ 83 pJ / transition 
Port register read, then write 240 pJ 80 pJ / transition 
DMC register read, port register write 175 pJ 88 pJ / transition 
Port register read, DMC register write 220 pJ 73 pJ / transition 
DMC register read-modify-write 170 pJ 85 pJ / transition 
16-bit default memory bus write 1200 pJ 85 pJ / transition 
16-bit ‘best’ memory bus write 970 pJ 88 pJ / transition 
8-bit default memory bus write 1110 pJ 85 pJ / transition 
8-bit ‘best’ memory bus write 880 pJ 88 pJ / transition 
16-bit default  memory bus read 1295 pJ 86 pJ / transition 
16-bit ‘best’ memory bus read 940 pJ 85 pJ / transition 
8-bit default memory bus read 1200 pJ 86 pJ / transition 
8-bit ‘best’ memory bus read 840 pJ 84 pj / transition 

Table 4: PRDM energy consumption 
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For external memory bus accesses, the default backward-compatible access cycle 
takes 1200 pJ for a write to the external memory bus.  The most energy-efficient mode 
(8-bit memory, true bidirectional ports, demultiplexed address and data, fast read, sustain 
on) results in a write cycle consuming 880 pJ.   Therefore, a 26% energy savings can be 
obtained by switching the PRDM to energy-efficient mode, even ignoring the savings 
from the reduction in external circuitry, lack of an external oscillator, and the removal of 
the energy-hungry quasi-bidirectional ports.  Energy consumption per state machine 
cycle is roughly constant between all types of accesses, which suggests that the state 
machine itself is consuming most of the power in the PRDM.  See Table 4 for the 
complete list of energy consumption numbers for the PRDM.   
 The above numbers do not include any other sections of the Lutonium besides the 
PRDM (specifically, instruction decode and processor bus energy consumption is not 
included).  Also, the energy consumer by the actual port drivers is also neglected, 
because it depends on output loading conditions.   
 The Lutonium’s goal is for an average instruction to consume roughly 500 pJ of 
energy.  Clearly, external bus accesses consume significantly more than this, even when 
the instruction decode and processor buses aren’t factored in.  This was expected due to 
the complexity of a memory access cycle and the configurability of the PRDM.  The 
relative infrequency of such memory accesses, however, should minimize the impact of 
the high energy consumption. 
 
9. Conclusion 
 
 The PRDM design is fully functional and tested extensively through software 
simulators at various levels of abstraction.  The final transistor networks of the PRDM 
are complete, and successfully pass all test programs.  The speed and energy 
consumption of the PRDM are within expected values, and are acceptable given the goals 
of the Lutonium project.  The unit is ready for layout along with the rest of the Lutonium 
microcontroller, and by all indications it will function correctly when fabricated.   
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