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ABSTRACT

From a signal processing perspective, we examine the main factors defining the visual quality of autostereoscopic
3-D displays, which are beginning to reproduce the plenoptic function with increasing accuracy. We propose
using intuitive visual tools and ray-tracing simulations to gain insight into the signal processing aspects, and
we demonstrate the advantages of analyzing what we call mixed spatial-angular spaces. With this approach we
are able to intuitively demonstrate some basic limitations of displays using anisotropic diffusers or lens arrays.
Furthermore, we propose new schemes for improved performance.
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1. INTRODUCTION

As display technologies advance, we can foresee autostereo devices reproducing three-dimensional scenes, for
multiple observers and without special viewing apparatus, through increasingly more accurate reproductions of
light fields. While there are many different approaches to achieve this goal, which are described in several books
and surveys,1–6 a major challenge to newcomers to this research field is to sort out the different characteristics of
each method. It is easy to start focusing too much on issues related to current technologies and implementations,
and not consider the fundamental problems that are inherent to a method, nor being able to recognize techniques
that may be more or less promising in the long term.

Another common difficulty comes from the fact that a 3-D display is meant to be viewed from different
angles, and that the quality of the observed image keeps changing with viewer position, possibly in a non-smooth
manner. Thus, photos of display prototypes convey very limited information about how well the device reproduces
natural 3-D views, and how convincing and pleasing the viewing experience is. Video can convey significantly
more information, but its use is still not very common, and it is much harder to publish and maintain.

We also observe that there is very active research on capturing and rendering of light fields (in 2-D), with
possible applications to computational photography,7 but there has been less work on the application of that
research to full reproduction (3-D display) of light fields. There are many difficulties in translating well-known
image/video processing properties—like pixelation and aliasing—into intuition about 3-D display visual quality.

Considering these problems, in this work we present the following contributions to the study of displays
capable of reproducing light fields:

• We discuss how images created from a type of mathematical representation, which we call spatial-angular

images, provide rich and intuitive visual information for analysis of some fundamental factors that deter-
mine the quality of the reproduced 3-D views, and thus also the overall quality of a type of display.

• Using properties of spatial-angular images, we demonstrate that even a simple analysis of view distortion
can show why, for different types of displays, the quality of the reproduction must depend on the depth of
the reproduced objects in relation to the display plane.
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• We use ray-tracing simulations of displays to create realistic views of different systems. This makes it
easy to show how different parameters change the view quality and type of visual artifacts, enabling
more intuitive understanding of the different factors and trade-offs. Furthermore, simulation allows us to
temporarily disregard physical laws. For example, it is interesting to know how a display would look when
lens aberration is completely eliminated.

We also propose new approaches to designing better displays which exploit how new digital projectors,
display technologies, and powerful computers allow us to ignore design constraints that were essential in the
analog domain.

• Displays that use lens arrays and diffused light modulators at the focal plane commonly have a spatial view
resolution (pixels per unit length) roughly identical to the lens size, and thus very small lenses are needed
to avoid pixelation. We show that by changing amount of diffusion and employing multiple projectors the
spatial resolution can be several times larger than that defined by lens size.

• We extend the ideas of the modification above, showing that it can be considered only a particular solution,
in a much larger set of possible schemes for creating 3-D displays. New technology enables us to move
to a new paradigm, where instead of thinking about combining traditional imaging optics, we can instead
use multiple light modulators combined with elements for light diffusion, refraction or reflection (not
necessarily lenses), to re-create the four-dimensional light field of a scene. This requires hardware, now
becoming available, that is able to manage and compute the huge amounts of information required to map
the desired light field rays to the inputs of the light modulators.

All the analyses and techniques presented in this work are applicable to displays that present parallax in both
the horizontal and vertical direction. However, to simplify the notation and explanations, we show examples of
displays with parallax in the horizontal direction only.

2. SPATIAL-ANGULAR IMAGES

We follow the terminology for light ray distribution used by Adelson and Bergen,8 and call the function describing
the distribution of light radiance in space the plenoptic function. The original definition includes time and light
wavelength as parameters, which we consider implicitly to simplify the notation. Thus, we assume that radiance
in a point in space a = (x, y, z), propagating along direction d(φ, θ) = (sinφ cos θ, sin φ sin θ, cosφ), is defined by
the five-dimensional function

pg(x, y, z, φ, θ),

with φ ∈ [0, π] and θ ∈ [0, 2π) corresponding to variables of standard spherical coordinate systems.

In a transparent medium the plenoptic function has a certain amount of redundancy because radiance is
conserved, i.e.,

pg(x, y, z, φ, θ) = pg(x + α sin φ cos θ, y + α sin φ sin θ, z + α cosφ, φ, θ), (1)

for all values of α that correspond to unoccluded points in a transparent medium.

When studying an apparatus that is meant to recreate the plenoptic function in a surface, it is convenient to
assume that the display is in plane z = 0. In this case, we define the display’s plenoptic function as

ps(x, y, φ, θ) = p∗g(x, y, 0, φ, θ), (2)

where the asterisk is used to indicate that the radiance values are equal to the plenoptic function in unoccluded
parts of the display, and inside virtual objects and in the occluded parts by values extrapolated using eq. (1).

Note that this function has two spatial dimensions (x, y) and two angular dimensions (φ, θ), and that in this
case there is no redundancy due to radiance conservation, i.e., to replicate exactly the plenoptic function in a
two-dimensional flat display we need all the information contained in a four-dimensional space.



(a) (b) (c)

x

y

z

d(θ, φ)

φ
θ

x

y

z

d(u, v)

1
u

v

(x0, y0, z0)

x0 x

1

0

z0

z

u

x0 − x = z0u

Figure 1. The spherical (a) and Cartesian (b) parameterizations of the plenoptic function in a display located at plane
z = 0, and a diagram (c) showing why light from a point source at (x0, y0, z0) define a line in the (x, u) space.

One advantage of defining the plenoptic function as pa(x, y, φ, θ) is that we use the same angular variables
as in the well-known spherical system of coordinates. However, there are also advantages of using the Cartesian

angular dimensions (u, v), and defining the display’s plenoptic function as

pd(x, y, u, v) : pd(x, y, tan φ cos θ, tan φ sin θ) = ps(x, y, φ, θ), (3)

Fig. 1 (a) and (b) shows the two representations.

One advantage of this representation is that, from the basic geometry shown in Fig. 1(c), light emitted from
a point source located at (x0, y0, z0) maps to the following lines in the (x, u) and (y, v) spaces:

x + z0u = x0,
y + z0v = y0.

(4)

It is possible to get a more intuitive understanding of the typical structure of pd(x, y, u, v) by creating images
where pixel color and brightness are defined by the values of the plenoptic function as we change variables in two
chosen dimensions, while keeping the other dimensions at fixed values. For example, using α and β to represent
constants, we can create spatial images from pd(x, y, α, β), which correspond to views from an orthographic
camera if axes are properly scaled. Angular dimension images, defined as pd(α, β, u, v) correspond to images of
perspective cameras with a pinhole at (α, β, 0), and film plane z = 1.

Mixed spatial and angular images, defined in the forms pd(x, α, u, β) and pd(α, y, β, v), are unusual, but as
we show below, can be very useful for understanding the capabilities of 3-D displays. To start, let us consider
how a display at z = 0 would recreate the plenoptic function defined by the set of objects in 3-D space shown in
Fig. 2. Since we consider displays with only horizontal parallax, we constrain our analysis to images defined by
(x, u) dimensions.

Fig. 3 shows three examples of spatial-angular images (with constants listed in the caption). We can observe
that the most striking feature is that they are composed of nearly-constant-color areas, separated by what
may seem like straight lines. Actually these may not be perfectly straight, but we know that they have to be
composed of overlapping segments of straight lines, as defined by eq. (4), created by light emitted from surface
points, beginning and ending at points (in the spatial-angular image) defined by occlusion between scene objects.
Thus, the border points, defining color changes in the object’s surface, or occlusion between objects, create the
clearly visible transitions that are nearly straight.

We can also observe in Fig. 3 another fact predicted by eq. (4): the slope of the lines between regions is defined
by the light source depth (z0). Thus, red and black areas, defined by the cap that is located at positive z0, has



Figure 2. Frontal, 45◦ and 90◦ left-side views of the simulated set of three-dimensional objects used as example throughout
this document. The three sphere caps have centers at line x = y = 0, and the base of the blue cap is in the display plane
(z = 0).

Figure 3. Examples of spatial-angular images for a display at z = 0 reproducing views of the objects shown in Fig. 2.
The horizontal direction corresponds to the spatial x dimension, and the vertical direction corresponds to the angular u

dimension. (a) pd(x, 0.25, u, 0); (b) pd(x, 0.15, u, 0); (c) pd(x, 0.15, u, 0.1).

transitions with negative slope; blue and white areas, corresponding to the blue cap at z0 ≈ 0 are separated by
nearly vertical lines; the yellow and gray areas for the cap at negative z0 create lines with positive slope.

This type of image had been observed and their properties had been discussed by several authors.8–11 They
are also known as epipolar images (EPI) in computer vision.12

In the next section we show the types of spatial-angular images that real displays can produce. To simplify
the analysis, when we refer to a spatial-angular image, we mean the image created from the particular two-
dimensional function

ph(x, u) = pd(x, 0, u, 0). (5)

Furthermore, in all our spatial-angular images the horizontal direction corresponds to the spatial dimension (x),
and vertical direction corresponds to the angular (u) dimension, with point x = u = 0 at the center of the image.
Since nearly all our analysis is qualitative, the axes and their values, being the same for all images, are not
shown.

Since practical displays cannot show an infinite amount of information, they must have light intensity nearly
constant in discrete regions in the (x, y, u, v) space. We use the term spatial resolution to indicate (maybe
roughly, when it is hard to define an exact value) how fine the discretization in the spatial x dimension is, and
the term angular resolution, for the same in the angular u dimension.

Fig. 4 shows the two images that we use as reference, corresponding to objects shown in Fig. 2, as they would
be produced by an ideal display at plane z = 0. On the left side we have a view from an orthographic camera
oriented with a 15◦ angle from the z-axis. On the right we have ph(x, u).∗

∗All images are better viewed in color and magnified in the electronic version of this document.



Figure 4. An ideal 3-D display recreating the arrangement of objects shown in Fig. 2 would show the spatial view on the
left, and the spatial-angular view on the right. These images are used for comparisons with those from real displays.

Figure 5. Views of scene recreated by displays implemented using anisotropic diffuser screen and multiple back-projectors.
(a) 15 projectors; (b) 30 projectors; (c) 60 projectors.

3. APPLICATION TO 3-D DISPLAY ANALYSIS

Up to this point we have considered only the plenoptic function created by the objects in the 3-D scene we want to
reproduce. An ideal display would recreate the same values, but current displays recreate only approximations.
We analyze the quality of the approximation by simulating the display using ray-tracing,13 and creating one
spatial view and one spatial-angular image of the display.

3.1 Multiple projectors with anisotropic diffusers or with double lenticular arrays

The first type of display that we consider consists of multiple projectors arranged in an horizontal arc, projecting
from behind onto a screen made of an anisotropic light diffuser, with wide diffusion along the vertical direction
and very narrow diffusion along the horizontal direction (see Agócs et al.14 for more details). This arrangement
is very simple, and in a way very intuitive: light rays along different directions are generated by simply having
light projected by different devices. To simplify this first analysis, we assume that each projected image has very
high spatial resolution. Fig. 5 show views of simulations of this type of display, when using different number of
projectors.

As we compare those images with the ideal in Fig. 4, we observe artifacts like line discontinuity/ghosting,
and uneven brightness (increased in this example to be more visible). However, single images do not give any
hint of how these artifacts change with viewer position. On the other hand, if we look at the corresponding
spatial-angular images in Fig. 6, we can have an idea of what are the artifacts and how they change with viewer
position, because these images do contain visual information about all the viewing angles.



Figure 6. Spatial-angular images corresponding to displays implemented using an anisotropic diffuser screen and multiple
back projectors. (a) 15 projectors; (b) 30 projectors; (c) 60 projectors.

Figure 7. Spatial-angular images corresponding to displays implemented using a double-lenticular screen and multiple
back projectors. (a) 15 projectors; (b) 30 projectors; (c) 60 projectors.

In addition we see in Fig. 4 a very clear pattern: we have “view patches” defined by each projector, with the
diffusion at the screen (at depth z = 0) creating vertical lines of nearly-constant color. The width of the patch is
defined by the type of anisotropic diffuser, which in turn is chosen to cover a field of view with a given number
of projectors.

What is also clear, as we compare Fig. 6 with the reference in Fig. 4, is that in this method for 3-D display,
we are in a sense trying to approximate slanted lines with segments of constant-length horizontal lines. Thus,
objects near the display plane are very easy to approximate, while those that are further are increasingly more
difficult. This idea is analyzed formally in Section 4. In this section we continue showing some more examples.

Fig. 7 shows spatial-angular images corresponding to a similar type of display, but in this case the viewer
sees only the image from one projector at a time. This can be achieved using double-lenticular screens,5, 15 and
Fig. 7 shows special cases when lens aberrations are ignored, and there is just the right amount of diffusion.†

We observe that these images are similar to those of Fig. 6, with the main difference being how well they can
approximate lines of different slopes.

3.2 Displays based on lenticular arrays

Another common type of 3-D display is composed of lens arrays, based in the idea of integral imaging, which
has been studied since 1908.16 Modern implementations17, 18 use projectors to generate dynamic images in the
back of the lenses, enabling 3-D video.

†Views of a 3D screen from orthographic and perspective cameras differ in various aspects, but these are not important
for the discussions in this paper.



Figure 8. Views created by ideal lenticular arrays (without lens aberration), and a very large number of angular views,
(a) lens size = 24 units; (b) lens size = 12 units; (c) lens size = 6 units.

Figure 9. Views created by lenticular arrays with real lenses, very large number of angular views, (a) cross-sectional
circular shape, lens size = 12 units; (b) improved shape, lens size = 12 units; (c) improved shape, lens size = 6 units.

We consider lenticular arrays, where vertical columns of lenses yield parallax in the horizontal direction only.
Using simulations we analyze of visual quality by taking into consideration one design parameter at a time. First,
let us assume that there is no lens aberration, i.e., all light rays that diverge from a point in the lens base (at
focal depth) come out parallel. Furthermore, let us assume that the projected image in the base of the lens has
extremely high resolution, so that a very large number of views is created.

Fig. 8 shows how the quality of views from such display would vary when we change the lens size. Several
technical problems make it increasingly more difficult to create small lenticular lenses19 and to project properly
aligned high resolution images. However, the simulated views in Fig. 8 show that even in very favorable conditions
image quality quickly degrades when the lenses are too large. (Cf. quality analysis in Section 4.)

We can add more realism to the simulations by considering real lenses, and Fig. 9 show examples of such
views. Since lenses for displays need to cover wide viewing angles, lenses with top cross-sectional circular shape
can degrade image quality substantially, as shown in Fig. 9 (a). Image quality can be improved significantly
using other shapes, like elliptical,19 but as shown in Figs. 9 (b) and (c), even when we change lens size some
artifacts remain visible or blur the image.

Comparing images in Fig. 8 and Fig. 9, we can see that considering lens aberrations yields more realistic
representations of the display, but do not really provide more insight into the very basic characteristics of this
type of display. It is more to interesting analyze how we can pre-process the images under each lens to improve
quality. Fig. 10 shows spatial-angular diagram defined by different lens sizes and pre-processing methods. Before
discussing these resolution aspects, it is interesting to comment on another useful feature of spatial-angular



Figure 10. Spatial-angular images of lenticular array display, using different anti-aliasing methods. (a) lens size = 24 units,
unfiltered sampling; (b) lens size = 24 units, spatial average; (c) lens size = 6 units, spatial average;

Figure 11. Spatial-angular images of lenticular array display, when resolution along the spatial and angular dimensions
are of nearly same magnitude. (a) lens size = 24 units, 12 views; (b) lens size = 6 units, 12 views; (c) lens size = 24 units,
48 views

images: the repetition seen in the top and bottom of those images is the well-known “flipping” that occurs on
this type of display when it is observed from an angle that is too large.

As shown in Fig. 10 (a), if we create each view independently, we can have as much resolution as provided by
the lens size, but we observe discontinuities as we change the viewing direction u, which means that displayed
edges “jump” as the viewer moves. For the same lens size, these artifacts can can be reduced by smoothing the
transition between views, as shown in Fig. 10 (b). However, this also has the disadvantage of blurring the views.
The amount of blur depends on the lens size, and Fig. 10 (c) shows that only smaller lenses would allow both
smoother transitions and crisp images.

The next factor to be considered is the resolution of the image projected under each lens. We assume that
the diffuser is exactly at focal length, and thus, in the image under each lens, regions of constant color in the
direction perpendicular to the lens axis define regions of constant color along the u axis in the spatial-angular
images. Displays that have extremely small lens size, such that the spatial resolution is much higher than the
angular resolution, produce spatial-angular images that look like those in Fig. 7. Fig. 11 shows examples of what
happens when the spatial and angular resolutions are of nearly same magnitude: in the spatial-angular image
we observe regions of identical color as rectangles.

4. MEASURING THE VIEW QUALITY

Perception of three-dimensional depth is defined, by a significant amount, through cues on how occlusions change
with viewer position. This fact motivates us, as we look for ways to measure quality of 3-D displays, to consider
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Figure 12. Spatial-angular images with gray values representing different values of luminance. (a) Original, defined by a
single boundary discontinuity; (b) Discrete approximation with ideal diffuser; (c) Continuous approximation with ideal
diffuser.

as the basic model and reference the simplest type of occlusion: a half-plane with a vertical edge and constant
radiance, in front of a constant-radiance infinite background.

The plenoptic function in the display showing this single vertical depth discontinuity, at z = z0, is

pd(x, y, u, v) = ph(x, u) =

{

pa, x + z0u ≥ x0,
pb, otherwise,

(6)

where pa and pb are the radiance values of the plane and background. This spatial-angular image is shown in
Fig. 12(a), where different gray levels represent the two radiance values.

The first type of display we study is when the spatial resolution is much higher than angular resolution. This
can occur with the type of display used as example in Section 3.1, and is shown in the spatial angular images
of Fig. 7. To simplify notation we assume that angular resolution is defined by a step size δu, and that spatial
resolution is infinite. Under these conditions, the function that best approximates ph(x, u) in a discrete manner
is shown in Fig. 12(b), defined by

rh(x, u) =

{

pa, x + z0 Qδ,ǫ(u) ≥ x0,
pb, otherwise.

(7)

where we have a quantization function

Qδ,ǫ(u) = δ

⌊

u − ǫ

δ
+

1

2

⌋

+ ǫ, (8)

with step size δ and offset ǫ. Note that ǫ only changes the position of the transitions, but not the quality of the
approximation.

In displays with anisotropic diffusers 1/δu is directly proportional to the number of projectors, and in lenticular
array displays it is directly proportional to the number of pixels under each lens.

There is still no agreed method for measuring errors in the plenoptic function reproduction. Defining a
general distortion function D(a, b) to measure the error between radiance values a and b, one approach to define
overall distortion (or error) is to integrate along the spatial dimension, and take averages along the angular
dimension—equivalent in a sense to taking average among views. Applying this definition to the approximation
defined by eq. (7), we obtain‡

Ēd = lim
U→∞

1

2U

∫ U

−U

∫ ∞

−∞

D(p(x, u), rd(x, u)) dx du = |z0| δu

D(pa, pb) + D(pb, pa)

8
. (9)

It is interesting to see that, from this very simple model and analysis, we can conclude that the quality
measure depends on the relative depth (|z0|) of the displayed object. This fact can be empirically observed 3-D

‡Note that we do not assume that D(a, b) = D(b, a).



displays prototypes, but it is easy to be confused about what exactly is causing the distortion. For example, one
could have guessed that lens aberration were the main cause, but this shows that we reach the same conclusion
with ideal lenses.

Another option is to use the average luminance value for choosing the approximation, as shown in Fig. 12(c),
using the definition

rc(x, u) =















pa, x + z0 Qδ,ǫ(u) ≥ x0 + |z0|δ/2,
pb, x + z0 Qδ,ǫ(u) ≤ x0 − |z0|δ/2,
pa + pb

2
+

(pa − pb)(x − x0 + z0Qδ,ǫ(u))

|z0|δ
, otherwise.

(10)

In this case the total distortion is

Ēc = lim
U→∞

1

2U

∫ U

−U

∫ ∞

−∞

D(p(x, u), rc(x, u)) dx du (11)

= |z0| δu

∫ 1

0

[tD(pa, tpa + (1 − t)pb) + (1 − t)D(pb, tpa + (1 − t)pb)] dt,

When we use distortion measure D(x, y) = |x − y|k we obtain

Ēd =
1

4
|z0| δu |pa − pb|

k, Ēc =
2

(k + 1)(k + 2)
|z0| δu |pa − pb|

k. (12)

Another measure of distortion that can be of interest is the spatial displacement of the occlusion discontinuity.
It can be shown that the average of the distance between real and reproduced edge, raised to power k, is

d̄k =
1

k + 1

∣

∣

∣

∣

z0δu

2

∣

∣

∣

∣

k

, (13)

which again depends on object depth |z0|.

A second case to consider is when angular resolution is much higher than spatial resolution. The results are
very similar, since we in a way just have to rotate the graphs in Fig. 12 by 90◦, and replace δu by δx. However,
since averages are still taken over all views, the distortion and error results are similar, but correspond to actually
replacing δu|z0| with δx.

Distortion values for the case when the spatial and angular resolutions have similar magnitudes do not have
simple formulas, but some aspects can be inferred from conclusions from the two extreme cases presented above.

5. IMPROVING BOTH SPATIAL AND ANGULAR RESOLUTION WITH
MULTIPLE PROJECTORS

What we see in the case of multiple projectors with double-lenticular or anisotropic diffuser screens is that spatial
resolution is defined by the resolution of each projector, while angular resolution is directly proportional to the
number of projectors. Thus, the only way to increase, with the same quality, the usabnle depth range of virtual
objects or the usable range of viewing angles, is to use more projectors. Conventional displays with lenticular
lens arrays, on the other hand, have angular resolution controlled by the resolution of images under each lens, but
spatial resolution can only be increased by reducing lens size. What is missing is a way to have more flexibility
in the control of the spatial and angular resolutions without using very large number of projectors or extremely
small lenses.

We propose a method to achieve this goal by in a sense combining the two approaches. Let us consider the
diagram on the left of Fig. 13. Systems that basically implement Lippmann’s16 ideas, only adding projectors
to control the image under each lens, use wide-angle diffusers.17, 18 Thus, using more projectors, with different
incident angles, does not improve quality because the light of all projectors is mixed together. However, if



Figure 13. Diagrams showing how to use multiple projectors to increase the spatial resolution of 3-D displays based on
lenticular lens arrays. Conventional system on the left combines the light of all projectors, while proposed system on the
right uses different incident angles to have light coming out of different parts of the lens.

narrow-angle diffusers§ are used, light from each projector comes out of different spatial position in the surface
of the lens. Since the pixels come from different projectors, we can choose different colors, effectively increasing
the spatial resolution of the display.

Fig. 14 show examples of simulations, using real lenses with improved cross-section (not circular). Fig. 14(a)
shows the conventional system, with a single projector and wide-angle diffuser, and artifacts due to lens aberra-
tion. Fig. 14(b) is shown just to illustrate the variables involved: if we use several projectors, and very narrow
diffuser angles, each projector creates a thin vertical line, and their combination does not cover the whole display
surface. On the other hand, since each line uses only a part of the lens surface, lens aberration is much less of
a problem. Fig. 14(c) shows what happens when we have more projectors and wider diffuser angle: the whole
display surface is covered with overlapping lines, creating a continuous image.

At this point one may wonder if the technique works only for some views. We can find the answer observing
Fig. 15, which shows the corresponding spatial-angular images for each display. We can see in Fig. 15(c) that,
not only the images for different angles are also nearly full, this new configuration can avoid (to some extent)
the repetition of the views. Furthermore, comparing images Fig. 4 with those in Figs. 14 and 15 (a) and (c), we
conclude that spatial resolution has increased significantly.

The condition to obtain this improvement is that we must know the mapping of each projector pixel to the
4D light ray it generates on the display surface, to correctly compute the pixel color and brightness. Fortunately,
automatic multi-display calibration is an active area of research, and sub-pixel accuracy has been reported.20

The fact that, in the proposed configuration, light from each projector is deflected by only part of the lens
surface, raises the question of whether there are advantages of using more unconventional optical elements. For
instance, Fig. 16 shows view and spatial-angular images of a display where lenticular array was replaced by optics
with top cross-section of sinusoidal shape, i.e., an optical system that is definitely non-conventional.

It is important to note that these examples are meant to only show that there can be advantages in this new
type of display. Methods to define the optimal number and arrangement of projectors/diffusers is outside the
scope of this paper.

6. CONCLUSIONS

In this work we present some contributions for better understanding the most fundamental factors that define
the visual quality of displays meant to reproduce light fields. In addition, we show how a new type of display
arrangement, using multiple projectors, can give designers much greater flexibility in increasing both the spatial
and angular resolution of 3-D displays.

§Anisotropic diffusers are needed for systems with only horizontal parallax.



Figure 14. Example of how spatial resolution can be increased using multiple projectors. (a) lens size = 24 units, one
projector and 90◦ diffuser; (b) lens size = 24 units, 4◦ diffuser, 4 equally-spaced projectors; (c) lens size = 24 units, 8◦

diffuser, 15 equally-spaced projectors.

Figure 15. Spatial-angular images of the displays corresponding to the views shown in Fig. 14.

Figure 16. Images generated with display using non-conventional optics.



We show how images created by selecting one spatial and one angular dimension of the four-dimensional
plenoptic function, which we call spatial-angular images, can provide insight into the limitations of current
displays. We present a variety of images of simulated display views, in some common display types, and with
several configurations or display parameters. These examples provide motivation for mathematical analysis,
where we consider some measures of distortion for the case of one half-plane occlusion. With this simple model
we can demonstrate, for example, a basic property of all 3-D displays, which is how limited angular resolution
defines a loss of quality that depends on reproduced object’s depth, compared to display plane.

We also consider that, in standard configurations, displays using lens arrays can only improve spatial reso-
lution by using smaller lenses, while displays using multiple projectors can only improve angular resolution by
increasing the number of projectors. We show that, using controlled light diffusion, it is possible to create a
hybrid scheme, employing both multiple projectors and lens arrays, which can increase spatial resolution beyond
the previous limit defined by lens size, and also increase angular resolution with higher projected image reso-
lution, instead of more projectors. Simulations and spatial-angular images of the proposed scheme show that,
given correct projector calibration, the proposed method can effectively improve spatial and angular resolution,
increase field of view, and reduce lens aberration effects.
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