Broad Area Colloquium For AI-Geometry-Graphics-Robotics-Vision
(CS 528)


Learning, Logic, And Probability: A Unified View

Pedro Domingos
Feburary 14, 2005, 4:15PM
TCSeq 200
http://graphics.stanford.edu/ba-colloquium/

Abstract

AI systems must be able to learn, reason logically, and handle uncertainty. While much research has focused on each of these goals individually, only recently have we begun to attempt to achieve all three at once. In this talk I will describe Markov logic, a representation that combines the full power of first-order logic and probabilistic graphical models, and algorithms for learning and inference in it. Syntactically, Markov logic is first-order logic augmented with a weight for each formula. Semantically, a set of Markov logic formulas represents a probability distribution over possible worlds, in the form of a Markov network with one feature per grounding of a formula in the set, with the corresponding weight. Formulas and weights are learned from relational databases using inductive logic programming and iterative optimization of a pseudo-likelihood measure. Inference is performed by Markov chain Monte Carlo over the minimal subset of the ground network required for answering the query. Experiments in a real-world university domain illustrate the promise of this approach.

(Joint work with Stanley Kok, Parag and Matt Richardson.)

About the Speaker

Pedro Domingos is an associate professor in the Department of Computer Science and Engineering at the University of Washington. His research interests are in artificial intelligence, machine learning and data mining. He received a PhD in Information and Computer Science from the University of California at Irvine, and is the author or co-author of over 100 technical publications. He is associate editor of JAIR, a member of the editorial board of the Machine Learning journal, and a co-founder of the International Machine Learning Society. He was program co-chair of KDD-2003, and has served on numerous program committees. He has received several awards, including a Sloan Fellowship, an NSF CAREER Award, a Fulbright Scholarship, an IBM Faculty Award, and best paper awards at KDD-98 and KDD-99.


Contact: bac-coordinators@cs.stanford.edu

Back to the Colloquium Page