Modeling

A Volkswagan Beetle becomes the subject of a 1970 simulation project. Ivan Sutherland (left) and assistants plot coordinates for digitizing the car.

Modeling the Everyday World

Three broad areas:

- **Modeling (Geometric)** = Shape
- **Animation** = Motion/Behavior
- **Rendering** = Appearance
Geometric Modeling

1. How to represent 3d shapes
 - Polygonal meshes

Stanford Bunny
69451 triangles

David, Digital Michelangelo Project
28,184,526 vertices, 56,230,343 triangles

Geometric Modeling

1. How to represent 3d shapes
 - Smooth surfaces
 - Bicubic spline surfaces
 - Subdivision surfaces

Caltech Head

Utah Teapot
Geometric Modeling

1. How to represent 3D shapes
2. How to create 3D shapes
 1. CAD tools
 2. Scanners
 3. Procedurally
3. How to manipulate 3D shapes
 1. Deform/skin/morph/animate
 2. Smooth/compress
 3. Set operations, ...

OpenGL Primitives
Primitive API

```cpp
glBegin(GL_POLYGON);
    glVertex3f(-1.0,-1.0,0.0);
    glVertex3f(1.0,-1.0,0.0);
    glVertex3f(1.0,1.0,0.0);
    glVertex3f(-1.0,1.0,0.0);
glEnd();
```

Polygons

```cpp
float v1[3] = {-1.0,-1.0,0.0};
float v2[3] = { 1.0,-1.0,0.0};
float v3[3] = { 1.0, 1.0,0.0};
float v4[3] = {-1.0, 1.0,0.0};

glBegin(GL_POLYGON);
    glVertex3fv(v1);
    glVertex3fv(v2);
    glVertex3fv(v3);
    glVertex3fv(v4);
glEnd();
```
Topology

#f - #e + #v = 2

Points/Polygons

typedef float Point[3];

Point verts[6] = {
 (-1.,-1.,-1.),
 (1.,-1.,-1.),
 (1., 1.,-1.),
 (-1., 1.,-1.),
 (-1.,-1., 1.),
 (1.,-1., 1.),
 (1., 1., 1.),
 (-1., 1., 1.),
};

face(int a, int b, int c, int d) {
 glBegin(GL_POLYGON);
 glVertex3fv(verts[a]);
 glVertex3fv(verts[b]);
 glVertex3fv(verts[c]);
 glVertex3fv(verts[d]);
 glEnd();
}

// Note consistent ccw orientation!
cube() {
 face(0,3,2,1);
 face(2,3,7,6);
 face(0,4,7,3);
 face(1,2,6,5);
 face(4,5,6,7);
 face(0,1,5,4);
}
Points/Polygons

typedef float Point[3];

Point verts[6] = {
(-1.,-1.,-1.),
(1.,-1.,-1.),
(1., 1.,-1.),
(-1., 1.,-1.),
(-1.,-1., 1.),
(1.,-1., 1.),
(1., 1., 1.),
(-1., 1., 1.),
(-1.,-1., 1.),
};

int polys[6][4] = {
(0,3,2,1),
(2,3,7,6),
(0,4,7,3),
(1,2,6,5),
(4,5,6,7),
(0,1,5,4),
};

face(int a, int b, int c, int d) {
 glBegin(GL_POLYGON);
 glVertex3fv(verts[a]);
 glVertex3fv(verts[b]);
 glVertex3fv(verts[c]);
 glVertex3fv(verts[d]);
 glEnd();
}

cube() {
 for(int i = 0; i < n; i++)
 face(polys[i][0], polys[i][1], polys[i][2], polys[i][3]);
}

Representations

Polygons
+ Simple
- Redundant information

Points/Polygons
+ Share vertices (compress/consistency)

Additional topological information
+ Constant time access to neighbors
 More advanced algorithms such as
 surface normal calculation, subdivision ...
- Additional storage for topology
- More complicated data structures
Triangle Adjacency

struct Vert {
 Point pt;
 Face *f;
}

struct Face {
 Vert *v[3];
 Face *f[3];
}
Chaiken’s Algorithm

\[P^1_0 = (1-t)P_0 + tP_1 \]
Chaiken’s Algorithm

\[P_0^1 = (1-t)P_0 + tP_1 \]
\[P_1^1 = (1-t)P_1 + tP_2 \]

\[P_0^2 = (1-t)P_0^1 + tP_1^1 \]
Chaiken’s Algorithm

\[P_0^1 = (1-t)P_0 + tP_1 \]
\[P_1^1 = (1-t)P_1 + tP_2 \]
\[P_0^2 = (1-t)P_0^1 + tP_1^1 \]
\[P(t) = P_0^2 \]

Beziers Curves

Generalize last algorithm to 4 points
Bezier Curve = Bernstein Polynomials

\[
P(t) = \sum_{i=0}^{3} P_i B^3_i(t)
\]

\[
B^3_i(t) = \binom{3}{i} t^i (1-t)^{3-i}
\]

Bezier Curves – Midpoint Subdivision

Recursively divide into two curves

Left side

\[Q_0 = P_0\]
\[Q_1 = P_0^1\]
\[Q_2 = P_0^2\]
\[Q_3 = P_0^3\]
Beziers Curves – Midpoint Subdivision

Recursively divide into two curves

Left side

\[Q_0 = P_0 \]
\[Q_1 = P_0^1 = \frac{1}{2} P_0 + \frac{1}{2} P_1 \]
\[Q_2 = P_0^2 = \frac{1}{4} P_0 + \frac{1}{2} P_1 + \frac{1}{4} P_2 \]
\[Q_3 = P_0^3 = \frac{1}{8} P_0 + \frac{3}{8} P_1 + \frac{3}{8} P_2 + \frac{1}{8} P_3 \]

Right side

\[R_0 = P_0^3 \]
\[R_1 = P_1^2 \]
\[R_2 = P_2^1 \]
\[R_3 = P_3 \]
Beziers Curves – Midpoint Subdivision

Recursively divide into two curves

\[R_0 = P_0^3 = \frac{1}{8} P_0 + \frac{3}{8} P_1 + \frac{3}{8} P_2 + \frac{1}{8} P_3 \]

\[R_1 = P_1^2 = \frac{1}{4} P_1 + \frac{1}{2} P_2 + \frac{1}{4} P_3 \]

\[R_2 = P_2^1 = \frac{1}{2} P_2 + \frac{1}{2} P_3 \]

\[R_3 = P_3 \]

Subdivision Surfaces
Triangle Mesh

Triangle Mesh – Topological Subdivide
Loop Algorithm - Edge

Loop Algorithm - Vert
Semi-Regular Meshes

Extraordinary Points

Loop Subdivision – Extraordinary Vertex

\[\beta = \frac{1}{k} \left[\frac{5}{8} - \left(\frac{3}{8} + \cos \left(\frac{2\pi}{k} \right) \right)^2 \right] \]

\[k \text{ neighbors} \ldots \]
Fractal Subdivision

\[\Delta x \]
Fractal Subdivision

\[\Delta y = \text{random()} \cdot \Delta x \]

Fractal Subdivision: Height Field
Summary

Digital geometry processing ala signal processing

Three common representations
- Dense polygon meshes
- Bicubic surfaces
- Subdivision surfaces

Common operations
- Instancing
- Transformation: linear and non-linear (bend)
- Compressing and simplifying
- ...

CS148 Lecture 18 Pat Hanrahan, Winter 2007