

<text><equation-block><equation-block><section-header><section-header><section-header><section-header><section-header><text>

Sampling Theorem	
This result if known as the Sampling due to Claude Shannon who first 1949	g Theorem and is discovered it in
A signal can be reconstructed fr without loss of information, if th signal has no frequencies abov Sampling frequency	rom its samples le original le 1/2 the
For a given bandlimited function, the rate at which it must be sampled is called the <i>Nyquist Frequency</i>	
CS148 Lecture 15	Pat Hanrahan, Winter 2007

