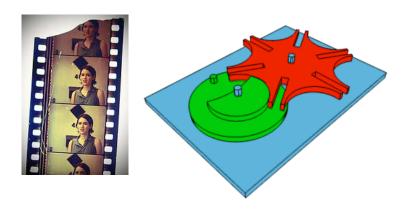
Video

Philco H3407C (circa 1958)

Never before have I witnessed compressed into a single device so much ingenuity, so much brain power, so much development, and such phenomenal results

David Sarnoff


Topics

Film and television
Frequency modulation
Color television (NTSC)
HDTV
MPEG-2

CS148 Lecture 17

Pat Hanrahan, Winter 2007

Motion Picture Camera

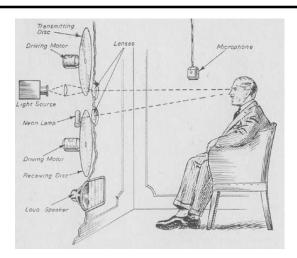
CS148 Lecture 17

Motion Picture Formats

Television 4:3 HDTV 16:9 35mm 3:2

Panavision 2.35:1 (2:1 anamorphic)
Vistavision 2:35:1 (1.5:1 anamorphic)

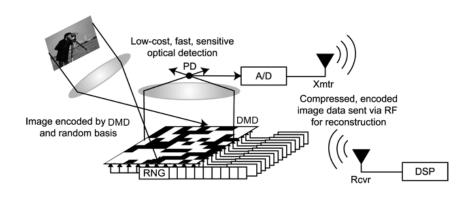
Film is 24 Hz


Television is 30 Hz

Difficult to convert frame rates (3:2 pulldown)

CS148 Lecture 17

Pat Hanrahan, Winter 2007


Mechanical Television (Nipkow Disk)

Mechanical Television, Concept by Paul Nipkow, 1884 Invented and deployed by John Baird in 1933

CS148 Lecture 17

Single Pixel Camera - Compressed Sensing

http://www.dsp.ece.rice.edu/cs/cscamera/

CS148 Lecture 17

Pat Hanrahan, Winter 2007

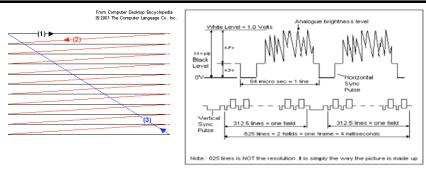
All-Electronic Television

Challenge was to develop the camera

Philo Farnsworth - solo inventor

Camera: Image Dissector

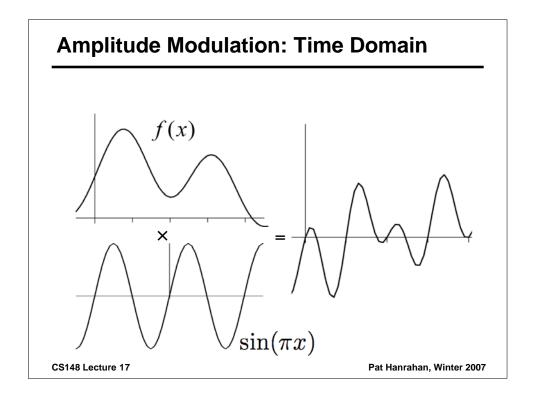
Vladimir Zworykin – RCA industrial research

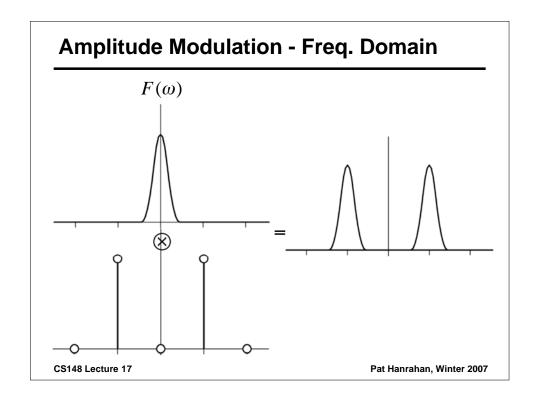

Receiver: Kinescope (1929)

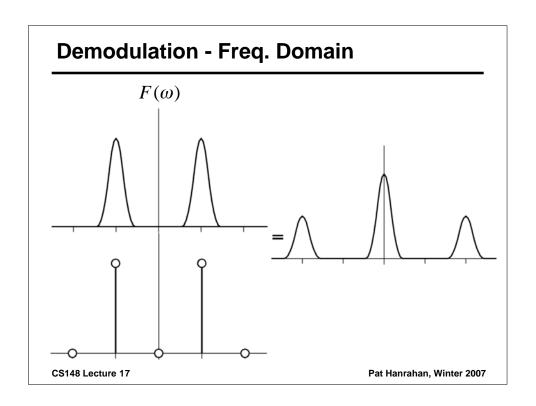
Camera: Iconoscope (1931), Orthicon (1933)

1933 World's Fair demonstration – 343 lines, 60 fields

CS148 Lecture 17


2D to 1D: Discrete in y, continuous in x


NTSC standard: 525 lines @ 30Hz, interlaced


For smooth animation, synchonize vertical refresh with swapbuffers

Animate on fields

CS148 Lecture 17

Spectrum Allocation

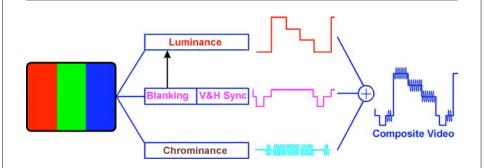
Channels are separated by 6 Mhz, 4.2Mz for signal

■ Limits spatial resolution

VHF

54-72 Mhz - Channels 2-4

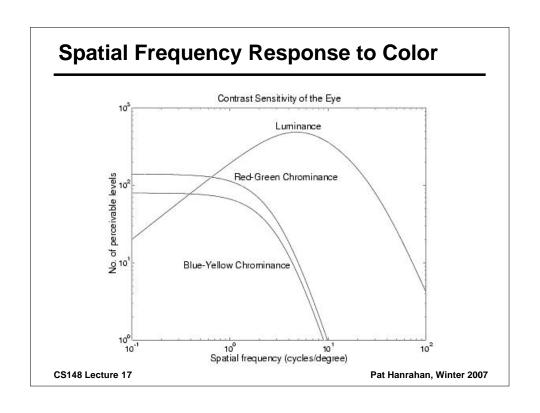
76-88 Mhz - Channels 5-6


88-108 Mhz - FM Radio

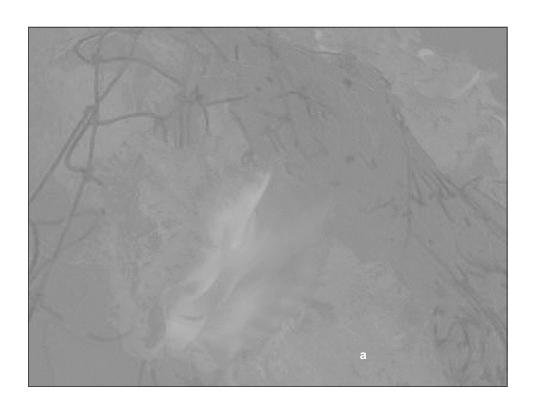
124-216 Mhz - Channels 7-13

CS148 Lecture 17

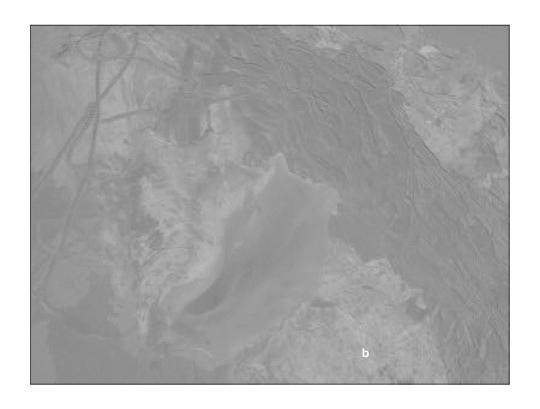
Pat Hanrahan, Winter 2007


Color Television

Separate signal into

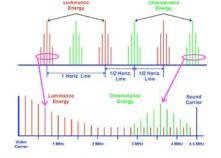

- Luminance (Y)
- **■** Chrominance (Y-R, Y-G)

CS148 Lecture 17



Page (#)

Page (#)



Composite Video

$$V(t) = Y(t) + (Y(t) - R(t))\cos(\omega_c t) + (Y(t) - G(t))\sin(\omega_c t)$$

Color subcarrier

$$f_c = 3.58 \mathrm{Mhz}$$

Features:

- Signal compatible with black and white
- (Y-R) and (Y-G) has less bandwidth than
- Note: May get color aliasing!

CS148 Lecture 17

Background to HDTV

Situation 1987

- Land-Mobile wanted unused broadcast spectrum; FCC decides in their favor
- Broadcasters invent HDTV scenario
- NHK demonstration of analog HDTV
 - Analog 1192:60
 - Satellite broadcast
 - Used 2 channels (8 Mhz)
- Reaction
 - Can't cede the technology to the Japanese
 - Can't go with an analog standard

CS148 Lecture 17

Pat Hanrahan, Winter 2007

ATSC

FCC Advanced Television Standards Committee Key competitors:

- Zenith and Bell Labs: 8-VSB and progressive
- General Instruments and MIT: digital (mpeg)
- Philips, Sarnoff (RCA), Thomson

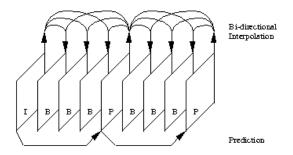
1993 Grand Alliance formed

1996 Telecommunications Act

- 2002: commercial stations must begin digital broadcasts
- 2006: must eliminate analog (Balanced budget Act of 1997 delays this until 85% of TVs are digital)

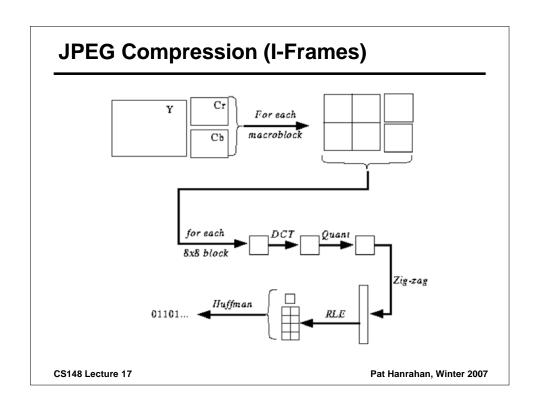
CS148 Lecture 17

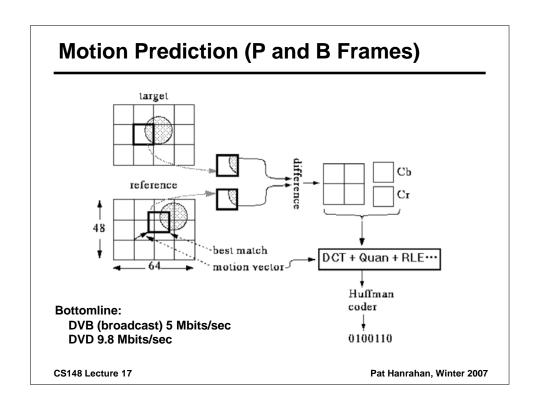
18(!)	ATSC	Formats
-------	-------------	----------------


Name	Resolution (Pixels)	•	Progressive Interlaced (Hertz)	
4:3 aspect				
	640 x 480	60/30/24	30	
	704 x 480	60/30/24	30	
16:9 aspect	:			
SDTV	704 x 480	60/30/24	30	
HDTV A	1280 x 720	60/30/24		
HDTV B	1920 x 1080	30/24	30	

Notes: Fox, ABC, ESPN use 720p, others 1080i

CS148 Lecture 17


Pat Hanrahan, Winter 2007


MPEG-2

Intra-pictures (I) - compressed as a single frame
Predicted-pictures (P) - compressed from previous P
Bidirectional-pictures (B) - compressed from pairs of I/P

CS148 Lecture 17

Summary

HDTV just emerging

- **■** HDTV broadcasts
- **■** HD DVD formats (blu-ray)

Video on the internet is a hot topic

■ youtube and the video ipod

Television uses many clever techniques

- Elaborate compression system based on motion prediction
- Spatial frequency response of human vision

CS148 Lecture 17