Interpolation and Basis Fns

Topics

Today

- Interpolation
 - Linear and bilinear interpolation
 - Barycentric interpolation
- Basis functions
 - Square, triangle, ..., Hermite cubic interpolation
 - Interpolating random numbers to make noise

Next week (after an interlude on typography)

- Splines and curves
 - Catmull-Rom splines
 - Bezier curves
Interpolation

Fill in between values; convert discrete to continuous

Examples:
- Interpolating across a triangle
- Interpolating between vertices
- Filtering and reconstructing images
- Interpolating between pixels/texels
- Creating random functions
 - Noise
- Generating motion
 - Interpolating frames inbetween keyframes
- Curves and surfaces
 - Interpolating between control points
Linear Interpolation

\[y(t) = (1 - t) y_1 + t y_2 \]

Linear Interpolation - \texttt{lerp}

One of the most useful functions in computer graphics

\begin{verbatim}
lerp(t, v0, v1) {
 return (1-t)*v0 + t*v1;
}
\end{verbatim}
Bilinear Interpolation

\[
\text{bilerp}(s, t, v0, v1, v2, v3) \{ \\
\text{\hspace{1cm}} v01 = \text{lerp}(s, v0, v1); \\
\text{\hspace{1cm}} v23 = \text{lerp}(s, v2, v3); \\
\text{\hspace{1cm}} v = \text{lerp}(t, v01, v23); \\
\text{\hspace{1cm}} \text{return } v; \\
\}
\]

Ruled Surface
Barycentric Coordinates

Given distances: d1, d2
Balance condition: m1 d2 = m2 d1
Masses: m1 = d1, m2 = d2

Barycentric Interpolation

Edge

\[p = \alpha_0 p_0 + \alpha_1 p_1 \]
\[\alpha_0 + \alpha_1 = 1 \]
Barycentric Interpolation

Edge

\[p = \alpha_0 p_0 + \alpha_1 p_1 \]
\[\alpha_0 + \alpha_1 = 1 \]

Triangle

\[p = \alpha_0 p_0 + \alpha_1 p_1 + \alpha_2 p_2 \]
\[\alpha_0 + \alpha_1 + \alpha_2 = 1 \]

Center of mass: \[p \]
Triangle

Barycentric interpolation
- Precisely defined
- Parameters define points inside the triangle
- If all parameters positive, then inside
- Generalizes to 3D
- Can be used to interpolate colors
- Can be used to interpolate textures
- Example of homogenous coordinates

Basis Functions
Linear Interpolation \equiv Triangle Basis

$$y(t) = (1 - t)y_1 + ty_2$$

$$y(t) = y_1 T_1(t) + y_2 T_2(t)$$

$$T(t) = \begin{cases}
0 & t < -1 \\
1 - t & -1 < t < 0 \\
1 + t & 0 < t < 1 \\
0 & t > 1
\end{cases}$$
Constant Interpolation = Square Basis

\[\Pi(t) = \begin{cases}
0 & t < -0.5 \\
1 & -0.5 < t < 0.5 \\
0 & t > 0.5
\end{cases} \]

Basis Functions

Basic formula

\[y(t) = \sum_{i=0}^{n} y_i B_i(t) \]

Basis functions

\[B_i(t) \]

Often i’th functions are shifted versions of 0’th
Interpolating Function

Necessary conditions:

\[B_i(0) = 1 \]
\[B_i(k) = 0 \]

True for triangle and square basis functions

Cubic Hermite Interpolation
Cubic Hermite Interpolation

Given: values and derivatives at 2 points

Hermite Basis Function Formulation

\[h_0 = P(0) \]
\[h_1 = P(1) \]
\[h_2 = P'(0) \]
\[h_3 = P'(1) \]

\[P(t) = \sum_{i=0}^{3} h_i H_i(t) \]
Cubic Hermite Interpolation

Assume cubic polynomial

\[P(t) = a t^3 + b t^2 + c t + d \]

Why? 4 coefficients need 4 degrees of freedom

Cubic Hermite Interpolation

Assume cubic polynomial

\[P(t) = a t^3 + b t^2 + c t + d \]
\[P'(t) = 3a t^2 + 2b t + c \]

Solve for coefficients:

\[P(0) = h_0 = d \]
\[P(1) = h_1 = a + b + c + d \]
\[P'(0) = h_2 = c \]
\[P'(1) = h_3 = 3a + 2b + c \]
Determine Polynomial Coefficients

\[P(0) = h_0 = d \]
\[P(1) = h_1 = a + c + c + d \]
\[P'(0) = h_2 = c \]
\[P'(1) = h_3 = 3a + 2b + c \]

Solve

\[a = 2h_0 - 2h_1 + h_2 + h_3 \]
\[b = -3h_0 + 3h_1 - 2h_2 - h_3 \]
\[c = h_2 \]
\[d = h_0 \]

Hermite Basis Functions

\[H_0(t) = 2t^3 - 3t^2 + 1 \]
\[H_1(t) = -2t^3 + 3t^2 \]
\[H_2(t) = t^3 - 2t^2 + t \]
\[H_3(t) = t^3 - t^2 \]
Ease

A very useful function
In animation, start and stop slowly (zero velocity)

\[H_1(t) = -2t^3 + 3t^2 = t^2(3 - 2t) \]

Fractal Interpolation
Ken Perlin Noise

Idea: Interpolate random slopes

Code

```c
double noise1(double x)
{
    double t = x + N; // compute integer locations
    int i0 = (int)t % BITSN;
    int i1 = (i0+1) % BITSN; // compute fractional parts
    double f = t - (int)t;
    double f0 = f;
    double f1 = f - 1.;

    double g0 = rand[ perm[ i0 ] ];
    double g1 = rand[ perm[ i1 ] ];
    double u = f0 * g0;
    double v = f1 * g1;

    double s = f0 * f0 * (3. - 2. * f0); // hermite spline
    return(lerp(s, u, v));
}
```

http://mrl.nyu.edu/~perlin/doc/oscar.html
Noise and Turbulence Functions

Ken Perlin, An Image Synthesizer

Things to Remember

Interpolation
- Widely used in graphics: image, texture, noise, animation, curves and surfaces
- Nearest neighbor, bilinear, cubic interpolation

Basis functions
- Square
- Triangle
- Hermite
- Noise
- Many others: sines, cosines, sinc, wavelets, ...