Today’s Outline

- Purpose of transformations
- Types of transformations: rotations, translates, ...
- Composing multiple transformations
- Representing transformations as matrices
- Hierarchical transformations
Transformations

What? Functions acting on points
\[(x',y',z') = T(x,y,z) \text{ or } P' = T(P)\]

Why?
Viewing
- Window coordinates to framebuffer coordinates
- Virtual camera: parallel/perspective projections

Modeling
- Create objects in convenient coordinates
- Multiple instances of a prototype shape
- Kinematics of linkages/skeletons - robots

Gallery of Transformations
Scale

Uniform

Nonuniform

```glScalef(sx,sy,sz)```

Rotate

```glRotatef(angle,ax,ay,az)```
Translate

\[
\text{glTranslatef}(tx, ty, tz)
\]

Reflect
Shear

Composing Transformations
Rotate, Then Translate

R(45) T(1,1) R(45)

Translate, Then Rotate

T(1,1) R(45) T(1,1)
Order Matters

\[T(1,1) \ R(45) \neq R(45) \ T(1,1) \]

OpenGL Order of Transformations

Math

\[P' = (R(45) \ (T(1,1)(P))) \]

OpenGL (last one specified is the first one applied)

\[
\begin{align*}
\text{glRotatef}(45.0, 0., 0., 1.); \\
\text{glTranslatef}(1.0, 1.0, 0.0);
\end{align*}
\]

That is, the translate is applied before the rotate
Rotate 45 @ (1,1) ?

\[T(-1,-1) \overset{\text{R}(45)}{\Rightarrow} T(1,1) \]

Rotate 45 @ (1,1)

\[T(-1,-1) \overset{\text{R}(45)}{\Rightarrow} T(1,1) \]

\[T(1,1) R(45) T(-1,-1) \]
Math of Linear Transformations (Matrices)

Scale

\[x' = s_x x \]
\[y' = s_y y \]
Scale

\[
\begin{bmatrix}
 x' \\
 y'
\end{bmatrix} =
\begin{bmatrix}
 s_x & 0 \\
 0 & s_y
\end{bmatrix}
\begin{bmatrix}
 x \\
 y
\end{bmatrix}
\]

Reflection Matrix?

\[
x' = ? \\
y' = ?
\]
Shear Matrix?

\[x' = ? \]
\[y' = ? \]

Linear Transformations = Matrices

\[
x' = m_{xx} x + m_{xy} y \\
y' = m_{yx} x + m_{yy} y
\]

\[
\begin{bmatrix}
x' \\
y'
\end{bmatrix} =
\begin{bmatrix}
m_{xx} & m_{xy} \\
m_{yx} & m_{yy}
\end{bmatrix}
\begin{bmatrix}
x \\
y
\end{bmatrix}
\]

\[x' = Mx \]
Advantages of the Matrix Formulation

1. Combine a sequence of transforms into a single transform
 \[p' = A \ (B \ (C \ (D \ (p \))) \) \]
 \[= (A \ B \ C \ D) \ P \]
 \[= M \ P \]

2. Compute the matrix M once; apply to many points
 Very inefficient to keep recomputing the matrices

Parametric Forms of a Line

\[x = p + tv \]
\[x = (1 - \alpha)p + \alpha q \]
Why Called Linear Transformations?

Because lines are transformed into lines

Start with a line

\[x = (1 - \alpha)p + \alpha q \]

Transform it

\[x' = Mx = (1 - \alpha)Mp + \alpha Mq \]

\[= (1 - \alpha)p' + \alpha q' \]

Thus, a line transforms into a linear combination of transformed points, which is a line

\[p' = Mp \]
\[q' = Mq \]

Lines go to Lines -> Linear Transform

![Diagram showing transformation of lines](image)
Non-Linear Transforms!

Coordinate Frames

\[
\begin{bmatrix}
 m_{xx} \\
 m_{yx}
\end{bmatrix} = \begin{bmatrix}
 m_{xx} & m_{xy} \\
 m_{yx} & m_{yy}
\end{bmatrix} \begin{bmatrix}
 1 \\
 0
\end{bmatrix}
\]

\[
\begin{bmatrix}
 m_{xy} \\
 m_{yy}
\end{bmatrix} = \begin{bmatrix}
 m_{xx} & m_{xy} \\
 m_{yx} & m_{yy}
\end{bmatrix} \begin{bmatrix}
 0 \\
 1
\end{bmatrix}
\]

Thus, can interpret columns of the matrix as the positions of the new x and y axis
Coordinate Frame

Transforms create new frames of reference

These “frames” define “coordinate systems”

Rotate
Rotation Matrix

\[
\begin{pmatrix}
-\sin \theta & \cos \theta \\
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{pmatrix}
\]
Translate

\[x' = x + t_x \]
\[y' = y + t_y \]
Points and Vectors Translate Differently

Points \((x,y,1)\) are shifted by translates

\[
\begin{bmatrix}
1 & 0 & t_x \\
0 & 1 & t_y \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
1
\end{bmatrix}
=
\begin{bmatrix}
x + t_x \\
y + t_y \\
1
\end{bmatrix}
\]

Vectors \((x,y,0)\) are NOT shifted by translates

\[
\begin{bmatrix}
1 & 0 & t_x \\
0 & 1 & t_y \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
0
\end{bmatrix}
=
\begin{bmatrix}
x \\
y \\
0
\end{bmatrix}
\]

This is the homogenous coordinate representation \(p/v\)

OpenGL
Global vs. Object Frames / Coordinates

Transforms create new frames of reference
These “frames” define “coordinate systems”

Graphics Coordinate Frames

Object
- Raw values as provided by glVertex (ex. teacup centered at origin)

World
- Object at final location in environment (ex. teacup recentered to be on top of a table)

Screen
- Object at final screen position
OpenGL Matrix Functions

`glMatrixMode(mode)`
- Sets which transformation matrix to modify
- `GL_MODELVIEW`: object to world transform
- `GL_PROJECTION`: world to screen transform
- `CTM = GL_PROJECTION * GL_MODELVIEW`

OpenGL Matrix Functions

`glLoadIdentity()`
- Reset the selected transform matrix to the identity matrix

`glLoadMatrix(matrix M)`
- Replace the selected transform matrix with M

`glMultMatrix(matrix M)`
- Multiplies selected transform matrix by M
- `glRotate, glTranslate, glScale` etc. are just wrappers for `glMultMatrix`
OpenGL Matrix Functions

There is a matrix stack for each matrix mode
The stack makes it possible to save/restore the matrix

\begin{itemize}
 \item \texttt{glPushMatrix} ()
 \begin{itemize}
 \item Adds the current matrix to the top of the matrix stack
 \end{itemize}
 \item \texttt{glPopMatrix} ()
 \begin{itemize}
 \item Pops the matrix off the top of the matrix stack and loads it as the current matrix
 \end{itemize}
\end{itemize}

This makes it possible to model complex hierarchical assemblies of parts (robots, avatars, etc.)

Current Transformation Matrix

\begin{itemize}
 \item OpenGL maintains a \textit{current transformation matrix} (CTM). All geometry is transformed by the CTM.
 \item The CTM defines the current or \textit{object} or \textit{local} coordinate system. All geometry is defined in the current coordinate system.
 \item Transformation commands are concatenated onto the ctm. Note: The last transformation specified is the first to be performed.
 \begin{equation*}
 \text{CTM'} = \text{CTM} \times T
 \end{equation*}
 \item The CTM may be pushed and popped from a stack, onto a transformation stack.
\end{itemize}
Hierarchical Models

Skeleton

body
torso
head
shoulder
larm
upperarm
lowerarm
hand
rarm
upperarm
lowerarm
hand
hips
lleg
upperleg
lowerleg
foot
rleg
upperleg
lowerleg
foot
Skeletons and Linkages

1. Hierarchy represents the connected nature of the assembly of parts
 “The ankle joint is connected to the knee joint”

2. Different connections move differently
 e.g. a ball and socket joint, linear actuator

Implications

1. Lower levels of the hierarchy move when the upper levels moves
 e.g. moving the left shoulder moves the left hand

2. Motion in one sub-tree does not effect the position of a part in another sub-tree
 e.g. moving the left hand does not effect the right hand

3. Leads to a hierarchical set of transformations.
 • Some transformations are fixed
 • Some change when the object moves

4. May “instance” the shape in different positions
 • Saves space and code
Things to Remember

How to use transforms?

- Different types: translate, rotates, scales
- Order matters
- Current transformation matrix
- Coordinate frames
- Hierarchical modeling using push/pop

How transforms work?

- Matrix representation of transforms
- Matrix concatenation
Coordinate Systems

Transforms create new coordinate systems

World/Global Coordinates

Object/Local Coordinates

T(1,1)
Transforms Create New Coord. Systems

Transforms create new coordinate systems

Specify in World/Global Coordinates

Transform the object => Apply from right to left
Transform in Object/Local Coordinates

Transform the coordinate system => Apply from left to right

Two Interpretations are Equivalent

Global/World

Local/Object
Two Interpretations are Equivalent

Global/World

Local/Object

R(45)

T(1,1) R(45)

T(1,1)