CS148: Introduction to Computer Graphics and Imaging

Displays

Topics

Perception
- Spatial resolution
- Temporal resolution
Color calibration
Display technologies
Resolution

World is continuous, digital media is discrete ...

Three aspects:

■ Color and intensity resolution
 ■ Physical limits: color “pigments”, 1-bit vs n-bit tones
 ■ Human limits: just-noticeable differences

■ Spatial resolution (x, y)
 ■ Physical limits: pixel size and display size
 ■ Human limits: photoreceptor density

■ Temporal resolution (t)
 ■ Physical limits: film speed, channel bandwidth
 ■ Human limits: neuronal response time

Spatial Resolution
Contrast Sensitivity Function

Maximum sensitivity @ 4 cycles/degree

Human Contrast Sensitivity

Visible Stimuli

Maximum resolving @ 60 cycles/deg
Visual Acuity / Snellen Chart

20/20 vision = 1 arcmin
~1/16” at 20’

Monitor viewing range:
~1/100” at 3’

Spatial Resolution

Photoreceptor mosaic

Foveal (1 deg.) vs. peripheral

Photoreceptor density
- Rods: 100 million total
- Cones (3 subtypes L, M, S): 5 million total
 - 1 um (foveal), 10 um (periphery)
 - Foveal resolution: 10 arcmins (S), 0.5 arcmins (L, M)
Display Resolution History

<table>
<thead>
<tr>
<th>Date</th>
<th>Format and Technology</th>
<th>Bandwidth</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980</td>
<td>1024 x 768 x 60Hz, CRT</td>
<td>0.14 GB</td>
<td></td>
</tr>
<tr>
<td>1988</td>
<td>1280 x 1024 x 72Hz, CRT</td>
<td>0.29 GB</td>
<td>1.1</td>
</tr>
<tr>
<td>1996</td>
<td>1920 x 1080 x 72Hz, HD CRT</td>
<td>0.60 GB</td>
<td>1.1</td>
</tr>
<tr>
<td>2001</td>
<td>3840 x 2400 x 56Hz, active LCD</td>
<td>1.55 GB</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Compound annual growth rate = 1.1
Rate of increase slow compared to CPU, disk, ...

Slide from K. Akeley

IBM T221

Resolution: 3840 x 2400 (QXGA)
Size: 21.5” x 17.3” (204 dpi)
PowerWall

Resolution: 3 * 1280 x 2 * 1024 = 3040 x 2048
Size: 18' x 9' (18dpi)
iPhone 4 Retinal Display

OsiriX Radiological Viewer

Resolution: 960 x 640
Size: 3.5” diagonal (326 dpi)

Temporal Resolution
Temporal Resolution

Critical flicker fusion rate
- High ambient light, large field of view: 80 Hz
- Low ambient light, 20-30 Hz

Frames per second (FPS)
- Film (double framed): 24 FPS
- TV (interlaced): 30 FPS
- Computer (progressive): 60-75 FPS

Color Calibration

www.drycreekphoto.com/Learn/color_management.htm
Monitor Colors

Monitor Phosphors

\[
\begin{align*}
0.2 & \quad 0.635 & \quad 0.340 \\
0.0 & \quad 0.305 & \quad 0.595 \\
0.8 & \quad 0.155 & \quad 0.070
\end{align*}
\]

Red Phosphor

Green Phosphor

Blue Phosphor

Resulting Spectra

Display Information

Dell 24” Flat Panel

- Monitor: Plug and Play Monitor
- Chromaticity coordinates:
 - Red: \(x = 0.64\), \(y = 0.33\)
 - Green: \(x = 0.3\), \(y = 0.607\)
 - Blue: \(x = 0.149\), \(y = 0.06\)
- Media white point: \(0.65\)
- Target gamma: \(2.20\)
- Profile name: Plug and Play Monitor
- Options:
 - Install profile
 - Make default profile

CS148 Lecture 11
Pat Hanrahan, Fall 2010
Monitor Calibration

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>.640</td>
<td>.330</td>
</tr>
<tr>
<td>G</td>
<td>.300</td>
<td>.600</td>
</tr>
<tr>
<td>B</td>
<td>.150</td>
<td>.060</td>
</tr>
<tr>
<td>W</td>
<td>.313</td>
<td>.329</td>
</tr>
</tbody>
</table>

Four Color Display

sRGB – Standard Color Primaries

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>.640</td>
<td>.330</td>
</tr>
<tr>
<td>G</td>
<td>.300</td>
<td>.600</td>
</tr>
<tr>
<td>B</td>
<td>.150</td>
<td>.060</td>
</tr>
<tr>
<td>W</td>
<td>.313</td>
<td>.329</td>
</tr>
</tbody>
</table>

Gamut mapping: map colors from one color space to another. Some colors may be outside the gamut; need to map to nearest color inside the target gamut.
Display Technologies

Cathode Ray Tube
Phosphors

Delta Gun

Inline

Screen Mask

1 pixel

CS148 Lecture 11
Pat Hanrahan, Fall 2010
Plasma

Dielectric layer
Display electrode
Visible light
Front glass plate
Pixel barrier
Surface discharge
UV
Phosphor
Rear glass plate

Cs148 Lecture 11
Pat Hanrahan, Fall 2010

Liquid Crystal Displays

Polarizer
Twisted Nematic Cell
Polarizer
Incident Light
Blocked Light
Electric Field

Polarizer
Twisted Nematic Cell
Polarizer
Incident Light
Transmitted Light

Cs148 Lecture 11
Pat Hanrahan, Fall 2010
Liquid Crystal Displays

Back Light

Polarizer

Molecular Orientation Layers

Glass

Liquid Crystal

Transparent Electrodes

Glass

Polarizer

LCD Displays

iPad iPhone 1G iPhone 3G iPhone 4G

CS148 Lecture 11 Pat Hanrahan, Fall 2010
RGBW PenTile

[Image: PenTile RGBW and Traditional RGB Stripe diagrams.]

2 subpixels per pixel

3 subpixels per pixel

Dynamic Micro-Mirror Device (DMD)

[Image: Diagram of a micro-mirror device with labeled parts: Mirror -10 deg, Mirror +10 deg, Hinge, Yoke, Landing Tip, CMOS Substrate.]

CS148 Lecture 11

Pat Hanrahan, Fall 2010
Digital Light Processing (TI) - DLP

3D TV - Field Sequential

Glasses for Viewing DLP 3-D HDTV

Double Frame Rate to 120 Hz
Alternate Left and Right Eyes
Electronic Ink (Reflective Display)

Cross-Section of Electronic-Ink Microcapsules

- Top Transparent Electrode
- Positively charged white pigment chips
- Clear Fluid
- Negatively charged black pigment chips
- Subcapsule addressing enables hi-resolution display capability
- Bottom Electrode

Light State: + +
Dark State: - -

NOTE: Copyright E Ink Corporation, 2002. Image not drawn to scale - for illustration purposes only.
Things to Remember

Spatial and temporal resolutions
 ■ Physical limits
 ■ Psychophysical limits
Color profiles and gamuts
Emerging display technologies