Today’s Outline

Purpose of transformations
How to use transformations?
- Types: scales, rotations, translates, ...
- Composing multiple transformations
- Coordinate frames
- Hierarchical transformations
How to implement transformations using matrices?
- Representing transformations as matrices
- OpenGL implementation
Transformations

What? Functions acting on points
\((x',y',z') = T(x,y,z)\) or \(P' = T(P)\)

Why?

Viewing
- Window coordinates to framebuffer coordinates
- Virtual camera: parallel/perspective projections

Modeling
- Create objects in convenient coordinates
- Multiple instances of a prototype shape
- Kinematics of linkages/skeletons - characters/robots

How to Use Transformations?
Rotate

\[\text{glRotatef(\text{angle,ax,ay,az})} \]

Translate

\[\text{glTranslatef(tx,ty,tz)} \]
Scale

Uniform

Nonuniform

\texttt{glScalef(sx, sy, sz)}

Composing Transformations
Rotate, Then Translate

R(45)

T(1,1) R(45)

Order of Transformations

The rightmost transform applied to the point first
That is, the rotate is applied before the translate

\[P' = T(1,1) \cdot (R(45)(P)) \]

OpenGL

```c
glTranslatef( 1.0, 1.0, 0.0 );
glRotatef( 45.0, 0., 0., 1. );
```

The last one is applied first; we’ll see why latter
Translate, Then Rotate

\[T(1,1) \]

\[R(45) \ T(1,1) \]

Order Matters

\[T(1,1) \ R(45) \neq\ R(45) \ T(1,1) \]
Rotate 45 about the Center (1,1)?
Coordinate Systems

Reference Frame

An origin o and two unit vectors x, y define a frame of reference
Points Defined wrt to the Frame

\[p = o + x \mathbf{x} + y \mathbf{y} \]

Transform the Frame

- Frame of reference defined by \(o, x, y \) (and \(z \))
- Apply transformation to change the frame
- Points defined wrt to the frame also move
Transform in World Coordinates

Transform defined in world/global coordinates
Concatenate transforms on the left

\[T(1,1) \quad R(45) \]
\[R(45) \; T(1,1) \quad T(1,1) \; R(45) \]

CS148 Lecture 4
Pat Hanrahan, Fall 2010

Transform in Object Coordinates

Transform defined in object/local coordinates
Concatenate transforms on the right

\[R(45) \quad T(1,1) \]
\[R(45) \; T(1,1) \quad T(1,1) \; R(45) \]

CS148 Lecture 4
Pat Hanrahan, Fall 2010
Two Interpretations are Equivalent

Global/World

\[T(1,1) \]

\[R(45) \]

\[T(1,1) \]

\[R(45) \]

Local/Object

\[R(45) \]

\[T(1,1) \]

\[R(45) \]

\[T(1,1) \]
Mathematics of Linear Transformations and Matrices

Scale

\[x' = s_x x \]
\[y' = s_y y \]
Scale

\[
\begin{bmatrix}
 x' \\
 y'
\end{bmatrix} = \begin{bmatrix}
 s_x & 0 \\
 0 & s_y
\end{bmatrix}
\begin{bmatrix}
 x \\
 y
\end{bmatrix}
\]

Reflection Matrix?

\[x' = ?\]
\[y' = ?\]
Shear Matrix?

![Shear Matrix Diagram]

\[x' = ? \]
\[y' = ? \]

Linear Transformations = Matrices

\[x' = m_{xx} x + m_{xy} y \]
\[y' = m_{yx} x + m_{yy} y \]

\[
\begin{bmatrix}
 x' \\
 y'
\end{bmatrix} =
\begin{bmatrix}
 m_{xx} & m_{xy} \\
 m_{yx} & m_{yy}
\end{bmatrix}
\begin{bmatrix}
 x \\
 y
\end{bmatrix}
\]

\[x' = M x \]
Lines go to Lines -> Linear Transform

Non-Linear Transforms!
Parametric Forms of a Line

\[x = p + tv \]

\[x = (1 - \alpha)p + \alpha q \]

Proof that Lines map to Lines

Start with the parametric form of a line

\[x = (1 - \alpha)p + \alpha q \]

Transform all the points on the line

\[x' = Mx = (1 - \alpha)Mp + \alpha Mq \]

\[= (1 - \alpha)p' + \alpha q' \]

Thus, a line transforms into a linear combination of transformed points, which is a line

\[p' = Mp \]

\[q' = Mq \]
Advantages of the Matrices

Combine a sequence of transforms into a single transform

\[p' = A \left(B (C (D (p))) \right) \]
\[= (A B C D) P \]
\[= MP \]

Why? Matrix multiplication is associative

Advantages

- Very inefficient to recompute the matrix entries
- Very inefficient to multiply matrix times point multiple times
- Compute the matrix \(M \) once and then apply that matrix to many points

Coordinate Frames

\[
\begin{bmatrix}
 m_{xx} \\
 m_{yx}
\end{bmatrix} = \begin{bmatrix}
 m_{xx} & m_{xy} \\
 m_{yx} & m_{yy}
\end{bmatrix} \begin{bmatrix}
 1 \\
 0
\end{bmatrix}
\]
\[
\begin{bmatrix}
 m_{xy} \\
 m_{yy}
\end{bmatrix} = \begin{bmatrix}
 m_{xx} & m_{xy} \\
 m_{yx} & m_{yy}
\end{bmatrix} \begin{bmatrix}
 0 \\
 1
\end{bmatrix}
\]

Thus, can interpret columns of the matrix as the positions of the x and y axis that define the frame
Rotation Matrix?

\[
\begin{bmatrix}
\cos 90^\circ & \sin 90^\circ \\
-sin 90^\circ & \cos 90^\circ \\
\end{bmatrix}
\begin{bmatrix}
\alpha_1 \\
\alpha_2 \\
\end{bmatrix}
= \begin{bmatrix}
0 \\
0 \\
\end{bmatrix}
\]

CS148 Lecture 4
Pat Hanrahan, Fall 2010
Rotation Matrix

\[(-\sin \theta, \cos \theta) \]

\[(\cos \theta, \sin \theta) \]

\[
\begin{bmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{bmatrix}
\]

Translate??

\[
x' = x + t_x
\]

\[
y' = y + t_y
\]
Clever Solution: Add Extra Coordinate

\[
\begin{bmatrix}
 x' \\
 y' \\
 1
\end{bmatrix} =
\begin{bmatrix}
 1 & 0 & t_x \\
 0 & 1 & t_y \\
 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 1
\end{bmatrix}
\]

Points & Vectors Translate Differently

Points \((x,y,1)\) are changed by translates

\[
\begin{bmatrix}
 1 & 0 & t_x \\
 0 & 1 & t_y \\
 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 1
\end{bmatrix} =
\begin{bmatrix}
 x + t_x \\
 y + t_y \\
 1
\end{bmatrix}
\]

Vectors \((x,y,0)\) are NOT changed by translates

\[
\begin{bmatrix}
 1 & 0 & t_x \\
 0 & 1 & t_y \\
 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 0
\end{bmatrix} =
\begin{bmatrix}
 x \\
 y \\
 0
\end{bmatrix}
\]

This is the homogenous coordinate representation.
Current Transformation Matrix

OpenGL maintains a current transformation matrix (CTM).

All geometry is transformed by the CTM.

Transformation commands are concatenated onto the CTM on the right.

\[\text{CTM} = \text{CTM} \ast T \]

This causes T to be applied before the old CTM.
OpenGL Matrix Functions

- `glLoadIdentity()`
 - Set the transform matrix to the identity matrix

- `glLoadMatrix(matrix M)`
 - Replace the transform matrix with M

- `glMultMatrix(matrix M)`
 - Multiplies transform matrix by M
 - `glRotate`, `glTranslate`, `glScale` etc. are just wrappers for `glMultMatrix`

Graphics Coordinate Frames

Object
- Raw values as provided by `glVertex` (ex. teacup centered at origin)

World
- Object at final location in environment (ex. teacup recentered to be on top of a table)

Screen
- Object at final screen position
OpenGL Matrix Functions

glMatrixMode(mode)

- Sets which transformation matrix to modify
- GL_MODELVIEW: object to world transform
- GL_PROJECTION: world to screen transform
- CTM = GL_PROJECTION * GL_MODELVIEW

Why? May need to transform by one of these matrices for certain calculations like lighting. More on this later.

Hierarchical Transformations
Skeleton

1. Skeleton represents the hierarchy of an assembly of parts
 ■ The arm is made of an upper arm and a lower arm
 ■ The shapes are different parts are “geometric instances”

2. Parts connected by joints
 ■ “The ankle joint is connected to the knee joint”

3. Different types of joints move differently
How Linkages Work

Lower levels of the hierarchy move when the upper levels moves
- e.g. moving the left shoulder moves the left arm and the left hand

Motion in one sub-tree does not effect the position of a part in another sub-tree
- e.g. moving the left hand does not effect the right hand

OpenGL Matrix Stack

Save and restore transformations

```gl
glPushMatrix();

- Pushes the current matrix onto the top of the matrix stack

```gl
```gl
glPopMatrix();

- Pops the matrix off the top of the matrix stack and loads it as the current matrix

This makes it possible to model hierarchical assemblies of parts (robots, avatars, etc.)
Skeleton

```
translate(0, 4, 0);
torso();
pushmatrix();
 translate(0, 3, 0);
 shoulder();
pushmatrix();
 rotatey(necky);
 rotatex(neckx);
 head();
popmatrix();
pushmatrix();
 translate(1.5, 0, 0);
 rotatex(lshoulderx);
 upperarm();
pushmatrix();
 translate(0, -2, 0);
 rotatex(lelbowx);
 lowerarm();
 ...
popmatrix();
popmatrix();
```

Points/Polygons (also .obj files)

```c
typedef float Point[3];

Point verts[8] = {
 {-1., -1., -1.},
 {1., -1., -1.},
 {1., 1., -1.},
 {-1., 1., -1.},
 {-1., -1., 1.},
 {1., -1., 1.},
 {1., 1., 1.},
 {-1., 1., 1.},
};
```

```c
int polys[6][4] = {
 {0, 3, 2, 1},
 {2, 3, 7, 6},
 {0, 4, 7, 3},
 {1, 2, 6, 5},
 {4, 5, 6, 7},
 {0, 1, 5, 4}
};
```
Points/Polygons (also .obj files)

```c
face(int poly[4]) {
 glBegin(GL_POLYGON);
 glVertex3fv(poly[0]);
 glVertex3fv(poly[1]);
 glVertex3fv(poly[2]);
 glVertex3fv(poly[3]);
 glEnd();
}

cube() {
 for(int i = 0; i < n; i++)
 face(polys[i]);
}

More efficient to use glDrawElements()
```

Demo of Shape.c
Things to Remember

How to use transforms?
- Different types: translate, rotate, scale, ...
- Order of transforms matters
- Coordinate frames
- Hierarchical modeling using push/pop

How transforms work?
- Matrix representation of transforms
- Matrix concatenation