Three functions of visualizations

Record: store information
- Photographs, blueprints, ...

Analyze: support reasoning about information
- Process and calculate
- Reason about data
- Feedback and interaction

Communicate: convey information to others
- Share and persuade
- Collaborate and revise
- Emphasize important aspects of data
Make a decision: Challenger

Visualization drawn by Tufte show how low temperatures damage O-rings [Tufte 97]

Info-Vis vs. Sci-Vis?

Visualization Reference Model

“to affect thro’ the Eyes what we fail to convey to the public through their word-proof ears”

1856 “Coxcomb” of Crimean War Deaths, Florence Nightingale
Data and Image Models

The Big Picture

- task
- data
 - physical type: int, float, etc.
 - abstract type: nominal, ordinal, etc.
- domain
 - metadata
 - semantics
 - conceptual model
- processing algorithms
- mapping
 - visual encoding
 - visual metaphor
- image
 - visual channel
 - retinal variables

Topics

- Properties of data or information
- Properties of the image
- Mapping data to images
Data models vs. Conceptual models

Data models are low level descriptions of the data
- Math: Sets with operations on them
- Example: integers with + and \(\times \) operators

Conceptual models are mental constructions
- Include semantics and support reasoning

Examples (data vs. conceptual)
- (1D floats) vs. Temperature
- (3D vector of floats) vs. Space

Taxonomy (?)

- 1D (sets and sequences)
- Temporal
- 2D (maps)
- 3D (shapes)
- nD (relational)
- Trees (hierarchies)
- Networks (graphs)
- Are there others?

The eyes have it: A task by data type taxonomy for information visualization [Shneiderman 96]

Types of variables

Physical types
- Characterized by storage format
- Characterized by machine operations
 - Example: bool, short, int32, float, double, string, ...

Abstract types
- Provide descriptions of the data
- May be characterized by methods/attributes
- May be organized into a hierarchy
 - Example: plants, animals, metazoans, ...

Nominal, Ordinal and Quantitative

N - Nominal (labels)
- Fruits: Apples, oranges, ...

O - Ordered
- Quality of meat: Grade A, AA, AAA

Q - Interval (Location of zero arbitrary)
- Dates: Jan, 19, 2006, Location: (LAT 33.98, LONG -118.45)
 - Like a geometric point. Cannot compare directly
 - Only differences (i.e. intervals) may be compared

Q - Ratio (zero fixed)
- Physical measurement: Length, Mass, Temp, ...
- Counts and amounts
- Like a geometric vector, origin is meaningful

S. S. Stevens, On the theory of scales of measurements, 1946
Nominal, Ordinal and Quantitative

N - Nominal (labels)
 - Operations: ≠, ≠

O - Ordered
 - Operations: ≠, ≠, <, >

Q - Interval (Location of zero arbitrary)
 - Operations: =, ≠, <, >, -
 - Can measure distances or spans

Q - Ratio (zero fixed)
 - Operations: =, ≠, <, >, -, ÷
 - Can measure ratios or proportions

From data model to N,O,Q data type

Data model
 - 32.5, 54.0, -17.3, ...
 - floats

Conceptual model
 - Temperature (°C)

Data type
 - Burned vs. Not burned (N)
 - Hot, warm, cold (O)
 - Continuous range of values (Q)

S. S. Stevens, On the theory of scales of measurements, 1946

Sepal and petal lengths and widths for three species of iris [Fisher 1936].
Relational data model

- Records are fixed-length tuples
- Each column (attribute) of tuple has a domain (type)
- Relation is schema and a table of tuples
- Database is a collection of relations

Relational Algebra [Codd]

- Data transformations (SQL)
- Selection (SELECT)
- Projection (WHERE)
- Sorting (ORDER BY)
- Aggregation (GROUP BY, SUM, MIN, ...)
- Set operations (UNION, ...)
- Join (INNER JOIN)

Statistical data model

- Variables or measurements
- Categories or factors or dimensions
- Observations or cases

Statistical data model

- Variables or measurements
- Categories or factors or dimensions
- Observations or cases

Blood Pressure Study (4 treatments, 6 months)

<table>
<thead>
<tr>
<th>Month</th>
<th>Control</th>
<th>Placebo</th>
<th>300 mg</th>
<th>450 mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>March</td>
<td>165</td>
<td>163</td>
<td>166</td>
<td>168</td>
</tr>
<tr>
<td>April</td>
<td>162</td>
<td>159</td>
<td>161</td>
<td>163</td>
</tr>
<tr>
<td>May</td>
<td>164</td>
<td>158</td>
<td>161</td>
<td>153</td>
</tr>
<tr>
<td>June</td>
<td>162</td>
<td>161</td>
<td>158</td>
<td>160</td>
</tr>
<tr>
<td>July</td>
<td>166</td>
<td>158</td>
<td>160</td>
<td>148</td>
</tr>
<tr>
<td>August</td>
<td>163</td>
<td>158</td>
<td>157</td>
<td>150</td>
</tr>
</tbody>
</table>
Dimensions and Measures

Independent vs. dependent variables

- Example: \(y = f(x,a) \)
- Dimensions: \(\text{Domain}(x) \times \text{Domain}(a) \)
- Measures: \(\text{Range}(y) \)

Example: U.S. Census Data

People: # of people in group
Year: 1850 – 2000 (every decade)
Age: 0 – 90+
Sex: Male, Female
Marital Status: Single, Married, Divorced, ...

Example: U.S. Census

People
Year
Age
Sex
Marital Status

2348 data points
Census: Dimension or Measure?

<table>
<thead>
<tr>
<th>People Count</th>
<th>Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year</td>
<td>Dimension</td>
</tr>
<tr>
<td>Age</td>
<td>Depends!</td>
</tr>
<tr>
<td>Sex (M/F)</td>
<td>Dimension</td>
</tr>
<tr>
<td>Marital Status</td>
<td>Dimension</td>
</tr>
</tbody>
</table>

Roll-Up and Drill-Down

Want to examine marital status in each decade? **Roll-up** the data along the desired dimensions

```
SELECT year, marst, sum(people)
FROM census
GROUP BY year, marst;
```

Need more detailed information? **Drill-down** into additional dimensions

```
SELECT year, age, marst, sum(people)
FROM census
GROUP BY year, age, marst;
```
Row vs. Column-Oriented Databases

Relational Data Organizations

<table>
<thead>
<tr>
<th>Transactions</th>
<th>Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row-oriented</td>
<td>Column-oriented</td>
</tr>
</tbody>
</table>

Row-oriented

Column-oriented
Relational Data Organizations

Speed-up Analysis
- Reduce data transfer
- Improved locality
- Better data compression

Column-oriented

Administrivia

Announcements

Auditors
- Requirements: Come to class and participate (online as well)

Class participation requirements
- Complete readings before class
- In-class discussion
- Post at least 1 discussion substantive comment/question on wiki within a week of each lecture

Class wiki: http://cs448b.stanford.edu

Assignment 1: Visualization Design

Design a static visualization for a given data set.

Deliverables (post to the course wiki)
- Image of your visualization
- Short description and design rationale (≤ 4 para.)

Due by 7:00am on Monday 9/28.
Visual language is a sign system

Images perceived as a set of signs
Sender encodes information in signs
Receiver decodes information from signs

Jacques Bertin

Sémiologie Graphique, 1967

Bertin’s Semiology of Graphics

1. A, B, C are distinguishable
2. B is between A and C.
3. BC is twice as long as AB.

∴ Encode quantitative variables

“Resemblance, order and proportion are the three signifieds in graphics.” - Bertin
Visual encoding variables

Position (x 2)
Size
Value
Texture
Color
Orientation
Shape

Information in color and value

Value is perceived as ordered

.: Encode ordinal variables (O)

.: Encode continuous variables (Q) [not as well]

Hue is normally perceived as unordered

.: Encode nominal variables (N) using color
Bertin’s “Levels of Organization”

<table>
<thead>
<tr>
<th>Position</th>
<th>Nominal</th>
<th>Orderd</th>
<th>Quantitative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>Nominal</td>
<td>Orderd</td>
<td>Quantitative</td>
</tr>
<tr>
<td>Value</td>
<td>Nominal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Texture</td>
<td>Nominal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Color</td>
<td>Nominal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orientation</td>
<td>Nominal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shape</td>
<td>Nominal</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Bertin actually breaks visual variables down into differentiating (≠) and associating (≡)

Design Space of Visual Encodings

Univariate data

Tukey box plot

Mean

Low

Middle 50%

High

0

20

Pos D C B A
Bivariate data

Scatter plot is common

Trivariate data

3D scatter plot is possible

Three variables

Two variables \([x, y]\) can map to points
 - Scatterplots, maps, ...
Third variable \([z]\) must use
 - Color, size, shape, ...

Large design space (visual metaphors)

Multidimensional data

How many variables can be depicted in an image?

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

“With up to three rows, a data table can be constructed directly as a single image ... However, an image has only three dimensions. And this barrier is impassible.”

Bertin

Deconstructions

[Graph of exports and imports to and from Denmark and Norway from 1700 to 1780]
Playfair 1786

- x-axis: year (Q)
- y-axis: currency (Q)
- color: imports/exports (N, O)

Wattenberg 1998

- rectangle size: market cap (Q)
- rectangle position: market sector (N), market cap (Q)
- color hue: loss vs. gain (N, O)
- color value: magnitude of loss or gain (Q)

Minard 1869: Napoleon’s march
Single axis composition

Mark composition

Mark composition
Minard 1869: Napoleon’s march

Depicts at least 5 quantitative variables. Any others?

Automated design
Jock Mackinlay’s APT 86

Combinatorics of Encodings

Challenge:
Pick the best encoding from the exponential number of possibilities \((n+1)^8\)

Principle of Consistency:
The properties of the image (visual variables) should match the properties of the data.

Principle of Importance Ordering:
Encode the most important information in the most effective way.

Design Criteria (Mackinlay)

Expressiveness
A set of facts is expressible in a visual language if the sentences (i.e. the visualizations) in the language express all the facts in the set of data, and only the facts in the data.
Cannot express the facts

A one-to-many (1 → N) relation cannot be expressed in a single horizontal dot plot because multiple tuples are mapped to the same position.

Expresses facts not in the data

A length is interpreted as a quantitative value; ∴ Length of bar says something untrue about N data.

Design Criteria (Mackinlay)

Expressiveness

A set of facts is expressible in a visual language if the sentences (i.e. the visualizations) in the language express all the facts in the set of data, and only the facts in the data.

Effectiveness

A visualization is more effective than another visualization if the information conveyed by one visualization is more readily perceived than the information in the other visualization.

(Effectiveness subject of the Graphical Perception lecture)

Mackinlay’s Ranking

Conjectured effectiveness of the encoding
Mackinlay’s Design Algorithm

User formally specifies data model and type
 - Additional input: ordered list of data variables to show

APT searches over design space
 - Tests expressiveness of each visual encoding
 - Generates image for encodings that pass test
 - Tests perceptual effectiveness of resulting image

Outputs the “most effective” visualization

Limitations

Does not cover many visualization techniques
 - Bertin and others discuss networks, maps, diagrams
 - Does not consider 3D, animation, illustration, photography, ...

Does not model interaction

Summary

Formal specification
 - Data model
 - Image model
 - Encodings mapping data to image

Choose expressive and effective encodings
 - Formal test of expressiveness
 - Experimental tests of perceptual effectiveness

Assignment 1: Visualization Design

Design a static visualization for a given data set.

Deliverables (post to the course wiki)
 - Image of your visualization
 - Short description and design rationale (≤ 4 para.)

Due by 7:00am on Monday 9/28.