
CS161: Data Structures and Algorithms Handout #15
Stanford University Tuesday, 17 February 2004

Lecture #13: Thursday, 17 February 2004
Topics: Programming Project

Administrative details: The project is due by 11:59 pm on Tuesday, March 9. A
milestone where you describe the details of the algorithm you plan to implement, should
be handed in on Tuesday March 2, in class. We encourage you to work in groups, with
a maximum of 3 students per group. Please turn in only one copy per group (code and
writeup). The main communication medium for this project will be the newsgroup; this
is where we’ll post clarifications, explanations, and other project-related details.

Motivation & Background: Last year marks both the 50th anniversary of the dis-
covery of the structure of Dioxy Ribonucleic acid, or DNA, and the completion of the
sequencing of the human genome. To give you something both algorithmic and interesting
to implement we propose a programming project that is motivated by these discoveries.
Sequence alignment, that is the comparison of biological sequences, is one of the most suc-
cessful applications of computer science to biology. DNA is a double stranded molecule,
where each strand is a chain of nucleotides. There are four types of nucleotides (Adenine,
Cytosine, Guanine, Thymine), which are commonly represented by the four letters A, C,
G, and T. Because of the large size of biological data (the human genome has about 3
billion nucleotides, the mouse and rat genomes are about the same size) efficient algo-
rithms are necessary when one is analyzing genomic sequences. In this project you will
implement such an algorithm.

Needleman-Wunsch algorithm: In 1970 Needelman and Wunsch1 published the first
algorithm for sequence alignment. Their algorithm calculates the edit distance between
the two strings, and is closely related to the algorithm for finding the Longest Common
Subsequence described in the textbook. Given a match score c, a mismatch score d,
and a gap penalty g per each gapped (skipped) letter, the edit distance between two
strings is the maximum weighted sum of the number of match, mismatch, & gap scores.
The Needleman-Wunsch algorithm calculates the edit distance between two substring
x1, . . . , xp and y1, . . . , yn by creating an p × n matrix M , where the element Mi,j will
store the edit distance between strings x1, . . . , xi and y1, . . . , yj. The matrix is updated
by setting

Mi,j = max(Mi−1,j − g, Mi,j−1 − g, Mi−1,j−1 + S(xi, yj))

Where S(xi, yj) returns the score c if the two letters are the same, and d otherwise.
Unfortunately, this approach requires O(pn) time and space. There are known variants
that are more memory efficient, but take O(pn) time nonetheless.

1S.B. Needleman and C.D. Wunsch, J. Mol. Biol. Vol. 48 (1970), pp. 443-453.



2 CS161: : Handout #15

Your task: Implement a fast global aligner, which will be called fastmatch, that
matches a DNA sequence against a library of other sequences and finds the most closely
related ones. As was described earlier, standard alignment of two genomic sequences, each
of length n, takes O(n2) time. This is not sufficient when dealing with long sequences.
Hence, we use ”shortcuts” to create a working algorithm.

In this project, we consider the restricted problem of finding the longest common
subsequence whose letters satisfy an additional condition of being part of a k-mer match
(exact matching of a string of length k). Clearly, the score must be modified such that
only letters that are part of a k-mer match between the two strings, can be matched
to one another. For example, let k = 2 and consider the two sequences ACGTA and
ACGA. When looking at the unrestricted version of LCS, the longest common substring
is of length 4 (ACGA). The matching 2-mers are AC and CG. Therefore, the longest
common substring where all letters are in a 2-mers is of length 3 (ACG). The additional
A cannot be added because it is not in a 2-mer match. The above score is a loose
approximation of the true distance between two biological sequences; we use it because
of its simplicity.

Input Format: The input data will be in the form of FASTA files, the most common
format for biological sequences. A FASTA format file contains one or more sequences,
each of which starts with a header line with “>” as the first symbol. Every line between
two header lines may have zero or more letters from the alphabet A,T,C,G. The number
of letters per line is not limited. Your program should take as input the names of two
fasta files and two command-line options: k-mer size and cutoff score, in that order. The
first FASTA file is the query and will always contain one sequence. The second is the
database, and can have an arbitrary number of sequences.

Output Format: A list of sequences that score above a particular threshold, identified
by their header line, and their corresponding score.

An example of input and output format will be posted on the class website.

Grading criteria: Your program will be graded on correctness and speed. In particular,
to get full credit, your program must be able to handle query files of length up to one
hundred thousand letters long, and databases up to several million letters long, where
individual sequences can be up to one hundred thousand letters in a reasonable amount
of time (reasonable depends on the k-mer size, but it should be minutes rather than hours
given large enough k). The k-mer size can vary from 1 (in which case you are just asked
for the longest common subsequence between the two strings) to 20. You may assume
that the computer on which we will be testing your submission has at least one gigabyte
memory. We will grade a large portion of your project automatically, so it is important
that you follow the format directions.

Items to turn in:

• The milestone write-up with the description of the algorithms you plan to use, and
their time/space complexity.



CS161: : Handout #15 3

• A README file describing the actual implementation (could be an extended ver-
sion of the milestone write-up).

• Your code, in C or C++. You are welcome to use any standard libraries available
in C or C++ (except STL). You may not download any code from the web; all
code you submit besides standard libraries must be your own work.

• Makefile to create the executable fastmatch from your source code.

Submission information for the project, sample data, and a small framework with
routines to read parameters and files (in C) will be available in the near future.


