
CS161: Algorithm Design and Analysis Handout # 5
Stanford University Wednesday, 3 February 2016

Homework #4: Sorting models, hashing
Due Date: Wednesday, 10 February 2016

Problem 1. “Real” Cost of Sorting. [40 points, 8 points per part]

As part of a homework assignment for your architecture class you have to select the “best” sort-
ing algorithm to use on your classes’ example computer. The relevant parts of the computer’s
architecture are the cache and the main memory. In particular, the machine’s memory can be
viewed as a large array partitioned into a number of cache lines, each containing s consecutive
locations of the memory array. In other words the first cache line consists of the first s memory
locations, the second cache line consists of the next s memory locations etc. The cache mem-
ory is a small fast memory that at any point in time contains a constant (Θ(1)) number of these
cache lines. The cache lines that are not in the cache are maintained in main memory. When-
ever a user program accesses a memory location in a cache line that is in the cache, the access
occurs with no main memory activity. Such a memory access is considered to be fast. If the
memory location is not in the cache, however, the cache line on which it resides replaces some
other cache line currently in the cache. In other words, the cache line that is being replaced
is copied out to main memory and the desired cache line is copied into the cache. This event
is called a cache miss. Since a cache miss involves a reference to main memory, this type of
memory access is considered to be slow.

You decide to select your sorting algorithm based on the running time analysis given of the
various sorting algorithms discussed in CS161. However, after a while you realize that the
analysis given in CS161 does not account for the fact that the main memory operations required
by a cache miss can take orders of magnitude longer than memory operations that only involve
the cache. In order to account for the cost of the different memory operations you decide to
analyze the sorting algorithms based on the number of cache misses they may require.

First you extend O-notation to two-variable functions (so as to free yourself from having to
give exact answers when counting main memory operations).

Specifically:

O(f (x,y)) = {g(x,y) : there exist positive constants x0, y0, and c such that
|g(x,y)| ≤ c f (x,y) for all x≥ x0 and y≥ y0}.

In answering the following questions, assume that the cache holds Θ(1) cache lines and that the
n numbers to be sorted are stored in an array of contiguous memory locations. Your answers
should generally be worst-case analyses expressed in terms of n, the number of values to be
sorted, and s, the number of values that fit in a cache line. Justify your answers by showing
your analyses.

2 CS161: : Handout # 5

(a) Show that INSERTIONSORT has O(n2/s) cache misses. Assuming that your code
knows s, suggest a modification to INSERTIONSORT that achieves O(n2/s2) cache
misses.

(b) Show that the number of cache misses generated in merging two sorted arrays of m
numbers apiece is O(m/s). How many cache misses are required by MERGESORT

when accessing the input array?

(c) How many cache misses are generated when HEAPIFY is called on a node of
height h? What is the total cost (in terms of cache misses) of BUILDHEAP? How
many cache misses does HEAPSORT generate? (Use the array implementation for
heaps given in the book.)

(d) How many cache misses does the PARTITION procedure in the book require for
access to the input array? Make an intelligent guess as to the average number
of cache misses that QUICKSORT requires. You need only provide an intuitive
justification for your guess.

(e) Which sorting algorithm would you recommend to your boss and why?

Problem 2. Hashing to Disk Pages [48 points, 8 points per part]

In an application that requires a very large hash table, it may be impractical to store the hash
table in primary memory. In particular, one might choose to store the hash table on disk, with
one disk page playing the role of one slot in the hash table. (For a review of disk storage, read
pages 484-488 in CLRS.)

We presume that a disk page is large enough to hold many records. For example, a typical disk
page holds 212 bytes of data, and a record may contain only 25 bytes. We shall store the records
that hash to a single page in a linear order on the page. If a page overflows because it contains
too many records, the excess records are stored in an overflow area somewhere else on disk.

A SEARCH consists of hashing to the correct disk page and then linearly searching through
the records on that page for one with the query key. If the page is full, then the overflow
area must be searched in addition. Since the time to access a disk page is typically at least 10
milliseconds, the cost of the linear search on the page is neglible. Thus, we shall focus the
number of disk accesses as our cost measure. For the SEARCH operation, the cost is 1 if we
find the record in its “proper” page, but it may be considerably greater if we must in addition
search the overflow area. Consequently, the focus of this problem is to ensure that the proper
pages seldom overflow, while using as little extra space as possible.

We shall assume for the rest of this problem that we are hashing n keys to disk pages, where
each disk page holds r records. We would like to know the number m of disk pages so that with
high confidence, we can search for any of the n keys with a single disk access. Moreover, we
would like m = O(n/r) so that at most a constant fraction of the storage is wasted.

We shall make the assumption of simple uniform hashing (see page 259 in CLRS). Also, in-
equalities (C.5), (C.19) and Theorem (C.2) in CLRS will be useful for solving this problem.

CS161: : Handout # 5 3

(a) For some disk page k chosen arbitrarily, argue that the probability that page k
overflows is at most

(n
r

)
(1/m)r. Please be explicit about why this bound is an

overestimate.

(b) Argue that the probability is at most m
(n

r

)
(1/m)r that any of the m pages overflow.

(c) Argue that the probability is at most m(en/mr)r that any of the m pages overflow.

(d) Given any constant ε ≥ ne/r2r−1, show that by choosing m = 2en/r, the probabil-
ity is at most ε that any of the m pages overflow.

(e) Calculate a bound on the probability ε when hashing n = 220 records to m = 2en/r
pages, where each page contains r = 27 records. Is the constraint ε ≥ ne/r2r−1

liable to be critical in practice?

(f) What is the largest load factor α = n/m that you can obtain with n= 220 and r = 27

so that the probability of a page overflowing is at most 1 in a billion? (Hint: Use
the results of part (b) directly.)

