
CS161: Algorithm Design and Analysis Handout #13
Stanford University Wednesday, 17 February 2016

Homework #7: Programming Project
Due Date: Wednesday, 9 March 2016

1 Instructions
This project has both a theory component and a programming component. Both parts are due
on Wednesday, March 9, no later than 5:00 pm. While you can complete the programming
component independently of the theory component, it is useful to complete (or at least read)
the theory component first to get a better understanding of the algorithms you are asked to
implement.

As with the homework assignments, you may collaborate in groups of up to three people.
Unlike the homework assignments, a single writeup of the theory component and a single copy
of the code for the programming component is sufficient per group. You may refer to the
textbook, course lectures, and supplemental material, in obtaining a solution — but you may
not reference outside resources in general.

2 Motivation
Recall the Longest Common Subsequence problem (LCS), discussed in lecture and described
in detail in Section 15.4 of the textbook. As the textbook mentions, one application for this
problem is to determine the similarity of DNA strands. In this project, we will explore a
variation of this problem that applies to the case where we want to match plasmids instead
of regular DNA strands. Plasmids (http://en.wikipedia.org/wiki/Plasmid) are circular strands
of DNA, and any means of comparing these circular strands requires that we consider all the
possible alignments of the two circles. Your goal is to use ideas we have studied throughout
the quarter to design an algorithm that solves this problem efficiently, which you will then
implement.

It may interest some of you to learn that while the vast majority of the algorithms covered
in this course thus far were developed in the 60s and 70s, the algorithm you will design was
first published (in a slightly more general form) in 1990, and has seen improvements and adap-
tations well into this century. The building blocks you have learned in this course are still very
much applicable to algorithms research today.

3 Theory (30 points)
Note that we can model a cyclic string by taking a regular string, cutting it into two pieces,
and pasting the pieces back together in the other order. This models all the possible ways we
could flatten a cyclic string into a regular one. Given a string A of length n and an integer



2 CS161: : Handout #13

k, 0 ≤ k < n, we can define cut(A,k) = substring(A,k,n)+ substring(A,0,k). For example,
cut(“abcd”,2) = “cd”+ “ab” = “cdab”, while cut(“abcd”,0) = “abcd”+ “” = “abcd”.
We can extend this definition to any integer k by defining cut(A,k) = cut(A,k mod n) when
k < 0 or k ≥ n.

Let us define the following problem:
Let A and B be strings of length m and n respectively, where m ≤ n. A cyclic longest

common subsequence of A and B CLCS(A,B) is defined to be a longest LCS(cut(A, i),cut(B, j))
over all possible choices of i and j.

The statement of CLCS invokes LCS, so let’s see how those two problems compare. The
first thing we can establish is that CLCS is no easier than LCS.

(a) (5 points) Show that if CLCS could be solved in T (m,n) = o(mn) time, then LCS could also
be solved in O(T (m,n)) time.
Hint: Given two input strings to LCS, can we modify those strings (possibly augmenting the
alphabet) and feed them to CLCS such that we can extract an LCS solution from the output of
CLCS?

On the other hand, we can also show that CLCS is not much harder than LCS. We could
solve CLCS by solving mn instances of LCS, corresponding to each possible pair of cuts of the
strings A and B. This implies that we have a solution to CLCS that runs in O(m2n2) time. In
fact, with a little thought, we can do better by showing that we don’t need to test every possible
pair of starting points. In fact, it suffices to find the longest LCS(cut(A,k),cut(B,0)) over all
possible choises of k, which we can do in O(m2n) time.

(b) (5 points) Show that the proposed algorithm still returns a correct answer.
Hint: Show a relationship between LCS(cut(A, i),cut(B, j)) and LCS(cut(A,k),cut(B,0)) for
an appropriate choice of k.
Hint: As tempting at it is, k = i− j does NOT work. Can you think of a counterexample? In
fact, NO equation of the form k = f (i, j,m,n) will work, because k can be affected by the actual
characters in A and B. But that’s not a problem; you just need to show that such a k always has
to exist, not necessarily identify what it is.
Note: You may find it easier to solve this problem after you have completed later parts of this
project, part (c) in particular. You ARE allowed to use the result of part (c) in your solution to
this problem.

With these two observations we can see that our target runtime for CLCS lies somewhere
between Ω(mn) and O(m2n). Now let’s see if we can tighten those bounds. To do so, let’s
take a short detour to look at regular LCS. Recall that we solved LCS in O(mn) time with the
use of a two-dimensional DP table. Normally we look at this table as a two-dimensional array;
however, we can also look at this table as a directed grid graph G′ as follows (Figure 1):

• For each entry in the table we have a single node.



CS161: : Handout #13 3

Figure 1: Visualizing the DP table as a grid graph.

• For each recurrence relation in the table we have a directed edge that points in the direc-
tion that new values are produced in the table. Note that all edges point down and/or to
the right, so the graph is acyclic. We see that all of the horizontal and vertical edges are
present in the graph, and in addition we have diagonal edges wherever the corresponding
characters in the two strings match.

(c) (5 points) Show a correspondence between paths from (0,0) to (m,n) in G′ and common
subsequence between strings A and B. Use this to show how to, given a shortest path from
(0,0) to (m,n) in G′, recover a longest common subsequence between A and B (where every
edge has length 1).

This means that we can solve LCS by solving a shortest path problem on a directed acyclic
graph with unit edge lengths. (Note that the solution to this graph problem (BFS) is neither
faster nor slower, at least asymptotically, than the DP solution.) According to the solution
to part (b), we can solve CLCS by solving m shortest-path problems, one for each cut of A.
However, we notice that the graphs associated with each cut have a lot in common; in fact, we
can build one big graph G (and a corresponding DP table) by concatenating cut(A,0) with itself
and following the construction above (Figure 2). Then the shortest paths we want to find are
the ones from (0,0) to (m,n), from (1,0) to (m+1,n), . . . , and from (m−1,0) to (2m−1,n).
Now, we haven’t done anything that will save us computation time; it will still cost us O(m2n)
time to find these m shortest paths. However, the hope is that since these paths all live on the
same graph, we can reuse some work between shortest path computations.

(d) (5 points) Fix i, j such that i < j. Let pi be a shortest path from (i,0) to (m+ i,n). We can
use this path to define two subgraphs GUi and GLi whose nodes consist of the nodes above and
below pi respectively (Figure 3). Let x be any node in GUi . Show that there cannot be a path
from ( j,0) to (m+ j,n) through x that is shorter than the shortest path from ( j,0) to (m+ j,n)
in GLi ∪ pi.

By similar logic, if we know p j, we can show that for any x in GL j , there cannot be a path
from (i,0) to (m+ i,n) through x that is shorter than the shortest path from (i,0) to (m+ i,n)



4 CS161: : Handout #13

Figure 2: Constructing the graph G. Figure 3: The setup described in part (d).

in GU j ∪ p j. What this means is that once we find a shortest path starting at some point i,
we can use that path to limit our search for the shortest path starting at subsequent points j.
More specifically, we observe that for any i, j,k such that i < j < k, if we know pi and pk, we
can use them as upper and lower bounds respectively on the section of the graph we need to
explore when looking for p j (Figure 4. This suggests a divide-and-conquer strategy where we
recursively split the graph to give us progressively tighter bounds on the sections of the table
we need to compute for the remaining paths.

We propose the following algorithm: Allocate storage for the paths pi. Compute p0 using
the whole table. This gives us pm by shifting the path down by m units. Now we define the
following procedure FINDSHORTESTPATHS(A,B, p, l,u) for computing pi for all i, l < i < u:

FINDSHORTESTPATHS(A,B, p, l,u)
1 if u− l ≤ 1 return
2 mid← (l +u)/2
3 p [mid]← SINGLESHORTESTPATH(A,B,mid, p [l] , p [u])
4 FINDSHORTESTPATHS(A,B, p, l,mid)
5 FINDSHORTESTPATHS(A,B, p,mid,u)

Here, SINGLESHORTESTPATH(A,B,m, pl, pu) computes pm by running the DP on the table
bounded by pl and pu. Finally, to solve the full problem, we call FINDSHORTESTPATHS(A,B, p,0,m),
then return the common subsequence associated with the shortest pi.



CS161: : Handout #13 5

Figure 4: Bounding paths in the graph.

(e) (10 points) Show that this algorithm solves CLCS in O(mn lgm) time. You may assume m
is a power of 2 in your analysis.
Hint: It isn’t actually possible to write a useful recurrence for the runtime here (why?). In-
stead, ask yourself, how much total work is done at each depth of recursion? Be careful when
computing the amount of work done at the boundaries.

4 Implementation (70 points)
Now that you have designed an algorithm for CLCS, it is time to implement it. As a warmup,
you will first implement the slower version you designed in part (b). We have provided starter
code for you in the /usr/class/cs161/project directory on AFS, which you should
make a copy of for yourself. In there are the following files:

• LCS.py: This is an implementation of LCS. Feel free to make copies of this file to use
as a starting point for the two files for the project.

• sample.in: This is a sample input file. Each line contains two strings A and B, sepa-
rated by a space.

• sample.out: This is the expected output of CLCS being run on the sample input file.
The output format is as follows: Each line contains a single integer equal to the length
of the cyclic longest common subsequence (same number of lines as sample.in).



6 CS161: : Handout #13

• sample-lcs.out: This is the expected output of LCS being run on the sample input
file.

• runsample.sh: This is a convenience script provided to run your program on the
sample input, and to check its runtime and correctness. Pass in the name of the source
file as the sole argument.

• sample2.in, sample2.out, runsample2.sh: These are another set of sample
inputs for testing your code, and should be used in the same way as the original set of
sample data. This set includes a target time: Your fast solution should run within 10
seconds. (Don’t run your slow solution on this one; it will take several minutes.) The
script reports three time values: real, user, and sys; the relevant value is the sum of the
user and sys times.

• judge.py: The provided convenience scripts rely on this file. Do not modify, remove,
or relocate it.

For convenience of coding, we will place some additional constraints on the input:
All strings will consist solely of uppercase letters from the English alphabet.
All strings will be of length at most 2000 (you may use this fact to preallocate your arrays).

We also will only require that you output the length of CLCS, not the subsequence itself.
Your program should read input from standard input, and produce output to standard out-

put. Note that you should NOT read directly from or write directly to files. The included
implementation of LCS follows all of these details; as a result, by starting from that file you
can focus on the logic and circumvent most of the technical details.

When you are ready to submit your solutions, add comments at the top of your files con-
taining the names, SUID numbers, and SUNetIDs of the people in your group. Then copy your
code onto a cluster machine such as the myths, and run the following script in the directory that
contains your code: /usr/class/cs161/scripts/submit.sh. You may submit as
many times as you like; we will only grade the latest version submitted. Please verify that your
submission passes the sample input as determined by runsample.sh; that is a good way to
make sure you haven’t left any extraneous debugging output in your code. Also please verify
that your two source files are copied to the /usr/class/cs161/submissions/SUNETID
directory after you run the submission script. The best way to do so is to run
./runsample.sh /usr/class/cs161/submissions/SUNETID/CLCSSlow.py,
./runsample.sh /usr/class/cs161/submissions/SUNETID/CLCSFast.py
and
./runsample2.sh /usr/class/cs161/submissions/SUNETID/CLCSFast.py
after the submission completes.

(f) (10 points) Implement your solution to CLCS using the method you proved correct in part
(b). Name your source file CLCSSlow.py



CS161: : Handout #13 7

(g) (60 points) Implement your solution to CLCS using the method you proved correct in part
(e). The output to your solution to part (f) will be useful in verifying the correctness of your
implementation. Name your source file CLCSFast.py
Hint: Spend some time thinking about how you want to represent a “path" to use as a bound.
What parts of the path are actually relevant to the problem at hand? You should NOT construct
an actual graph; we only introduced the graph to allow us to justify the use of these bounds on
the DP table.
Hint: It can be useful to reuse the same large preallocated array for your DP subproblems
within a given test case. Be careful with how you do so, however; on the one hand, acci-
dentally using entries “left over" from a previous subproblem can be a source of mysterious
errors; on the other hand, clearing/initializing the entire preallocated array just before each sub-
problem within a test case constitutes Θ(m2n) work and is therefore NOT allowed. (Note that
clearing/initializing all the arrays BETWEEN test cases is not only allowed but also strongly
encouraged.)
Hint: As covered in Homework 4, when iterating over a two-dimensional array, it is better to
iterate through the data one row at a time than one column at a time, as the former generates
fewer cache misses than the latter. Keep this in mind when designing your algorithm. If you
find yourself really wanting to iterate one column at a time instead, then you might want to
rotate the entire table, swapping the roles of rows and columns.
Hint: A corollary of the observation above is that running BFS instead of computing the DP
table is a really bad idea, because the “wavefront" generated by BFS will be roughly diagonal.
This means both orientations of the table will result in a large number of cache misses in BFS.
DO NOT DO THIS! The graph analogy is only present in the theory portion to make the proof
of correctness easier, and should NOT be used anywhere in your actual code.

You will be graded based on the performance of your code on undisclosed test files. You
will receive full credit if your code produces correct output within an appropriate time bound.
We have given a target time for running your code on the sample input; if your code correctly
solves the sample data within this target time, you should be confident that you will meet the
time requirements on the grading input. Another benchmark to keep in mind is that your fast
solution should solve a maximum-size case in no more than 2 seconds. Also, note that the
sample data, while a useful starting point, is by no means comprehensive. Consider creating
your own test cases, obtaining the answer by running your slow solution (which is much easier
to verify the correctness of), and then comparing this against what you get from your fast
solution.


