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The Class

CS161 Lectures:
Monday/Wednesday, 3:00 –
4:20 pm, in Hewlett 200

Recitation A:
Tuesday, 4:30 – 5:20 pm in 
200-034

Recitation B:
Thursday, 5:30 – 6:20 pm in 
200-305

Recitation C:
Friday, 11:30 am – 12:20 pm 
in 200-303 

Recitation D:
Friday, 4:30 – 5:20 pm in 
200-205 

3No recitations until the week of Jan 11
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The Topics:
Algorithm Design and Analysis
Algorithm analysis; worst and average case
Recurrences and asymptotics
Algorithms for sorting and selection
Randomized techniques
Search structures: heaps, balanced trees, skip 
lists, hash tables
Dynamic programming and greedy algorithms
Amortized analysis
Graph algorithms: breadth- and depth-first 
search, minimum spanning trees, shortest paths
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Algorithms and Data Structures
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The Textbook
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The CS161 Course Work

Six paper-and-pencil homeworks
A programming project
A midterm
No final
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More Tidbits
We’ll use Piazza as the class discussion 
board, Gradescope for grading
You can email the staff at

staff-cs-161-16-winter@lists.stanford.edu

The class web site is
http://graphics.stanford.edu/courses/cs161-16-
winter, or
http://cs161.stanford.edu (redirects to the above)

Please read the CS161 homework 
policies, especially regarding the Honor 
Code 9

mailto:staff-cs-161-16-winter@lists.stanford.edu
http://graphics.stanford.edu/courses/cs161-16-winter
http://cs161.stanford.edu/


CS 161 Homework Policies
Homework policies

For both theoretical homeworks, as well as for the programming project, you may work in groups of up to three students per group.
For the paper-and-pencil homeworks, each student must write up solutions individually. The names of the team collaborators must be 
listed in the homework write-up. Again, collaboration in a team of up to three is OK when developing the solutions -- but the solution 
write-ups themselves must be done separately and independently.
For the programming project, a single write up per group will suffice .
It is important that the homeworks be turned in on time. Each student is allowed two 24-hour grace periods during the quarter. That 
means a single homework can be handed in late by two days, or two homeworks may be handed in late by one day each. Other than 
these grace periods, late homeworks will not be accepted.
Paper-and-pencil homeworks must be submitted by the day they are due, in electronic form, by 5:00 pm PDT. The programming 
project and write up must submitted by running the provided submission script, again by 5:00 pm PDT the day they are due.

The Honor Code

Each student is expected to do his/her own work on the problem sets in CS161. A good point to keep in mind is that you must b e able 
to explain and/or re-derive anything that you submit. Students may discuss problem sets with each other as well as the course staff --
in fact close collaboration in groups of up to three students is permitted, as explained above. Any discussion of problem set questions 
with others must be noted on a student’s final write-up of the problem set answers. Each student must turn in his/her own write-up of 
the problem set solutions, except for the final project, as noted above. Questions regarding acceptable collaboration should be directed 
to the class instructor of CAs  prior to the collaboration.
It is a violation of the honor code to copy or derive problem set or exam question solutions from other students or anyone at all, 
textbooks, previous instances of this course, other courses covering the same topics either at Stanford or at other schools. or any web 
sources. Copying of solutions from other students, or from students who previously took a similar course is also clearly a violation of 
the honor code.

Again, the basic rules to follow are:
You must not look at solutions or program code that are not your own.
You must not share your solutions or code with other students, except within the group (as above) that you are part of .
You must indicate on your submission any assistance you have received.
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Etymology: Algorithm
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Muḥammad ibn Mūsā al-
Khwārizmī
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( د بِن مُوسَى  الَْخْوَارِزْمِيعَبْداللهَ مُحَمَّ )



Khwarezm, Khiva

Khiva

City in Uzbekistan

Khiva is a city of approximately 50,000 
people located in Xorazm Province, 
Uzbekistan. It is the former capital of 
Khwarezmia and the Khanate of Khiva.
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What is an Algorithm?

Algorithms are the high-level ideas 
behind computer programs.
An algorithm is the thing that stays the 
same, whether the program is in C++ 
running on a Windows or is in JAVA 
running on a Macintosh.

Following slides modified from
• http://www.cs.virginia.edu/~luebke/cs332/

http://www.cs.virginia.edu/%7Eluebke/cs332/
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What is an Algorithm? (cont’d)

An algorithm is a precise and unambiguous 
specification of a sequence of steps that can be 
carried out to solve a given problem or to 
achieve a given condition.
An algorithm accepts some value or set of 
values as input and produces a value or set of 
values as output.
Algorithms [actions] are closely intertwined with 
the data structures [objects] used to go from 
input to output values
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How to Express Algorithms?

English  

Pseudo-code

Real programming languages

Increasing precision

Ease of expression

Describe the ideas of an algorithm in English.
Use pseudocode to clarify sufficiently more complex details of the 
algorithm.
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Example: Sorting

Input: A sequence of n numbers a1…an

Output: the permutation (reordering) of 
the input sequence so that a1 ≤ a2 … ≤ an.
Possible algorithms you may have seen

Insertionsort, Selectionsort, Bubblesort, 
Quicksort, Mergesort, …
These and more in this course

We seek algorithms that are both correct 
and efficient
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Insertion Sort:
An Incremental Algorithm

InsertionSort(A, n) {
for j = 2 to n {

}
}

1 j

sorted

1. Find position i in A[1..j-1] such that A[i] ≤ A[j] < A[i+1]
2. Insert A[j] between A[i] and A[i+1]

▷ Pre condition: A[1..j-1] is sorted

▷ Post condition: A[1..j] is sorted
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InsertionSort(A, n) {
for j = 2 to n {

key = A[j];
i = j - 1;
while (i > 0) and (A[i] > key) {

A[i+1] = A[i];
i = i – 1;

}
A[i+1] = key

}
}

Insertion Sort

1 i j

Keysorted In-place sorting!



20

Correctness
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Correctness

What makes a sorting algorithm correct?
In the output sequence, the elements are 
ordered in  non-decreasing order
Each element in the input sequence has a 
unique appearance in the output sequence

[2 3 1] => [1 2 2]    X
[2 2 3 1] => [1 1 2 3]    X
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Correctness
For any algorithm to be correct, we must 
prove that it always returns the desired 
output for all legal instances of the 
problem.
For sorting, this means even if (1) the 
input is already sorted, or (2) it contains 
repeated elements.
Algorithm correctness is NOT obvious in 
many cases (e.g., optimization)
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How to Prove Correctness?

Given a particular input, e.g. <4,2,6,1,7>
trace it and prove that it works. 
Given an abstract/general input, e.g.
<a1, … an> trace it and prove that it works.
Sometimes it is easier to find a counterexample 
to show that an algorithm does NOT work.

Think about all small examples
Think about examples with “extreme” data values
Think about examples with ties
Failure to find a counterexample does NOT mean 
that the algorithm is correct
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An Example: Insertion Sort
InsertionSort(A, n) {
for j = 2 to n {

key = A[j];
i = j - 1;
▷Insert A[j] into the sorted sequence A[1..j-1]
while (i > 0) and (A[i] > key) {

A[i+1] = A[i];
i = i – 1;

}
A[i+1] = key

}
} 1 i j

Keysorted
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Example of Insertion Sort

5 2 4 6 1 3

2 5 4 6 1 3

2 4 5 6 1 3

2 4 5 6 1 3

1 2 4 5 6 3

1 2 3 4 5 6 Done!
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Loop Invariants and Correctness of 
Insertion Sort

Claim: at the start of each iteration of the 
for loop, the subarray A[1..j-1] consists of 
the elements originally in A[1..j-1], but in 
sorted order.
Proof: by induction
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Review: Proof By Induction

Claim: S(n) [Insertion Sort correctly sorts 
any array of length n] is true for all n >= 1

Basis:
Show formula is true when n = 1

Inductive hypothesis:
Assume formula is true for an arbitrary n = k

Step:
Show that formula is then true for n = k+1
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Prove Correctness Using Loop 
Invariants

Initialization (basis): the loop invariant is true 
prior to the first iteration of the loop
Maintenance:

Assume that it is true before an iteration of the loop 
(Inductive hypothesis) 
Show that it remains true before the next iteration 
(Step)

Termination: show that when the loop 
terminates, the loop invariant gives us a useful 
property to show that the algorithm is correct
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Prove Correctness Using Loop 
Invariants

InsertionSort(A, n) {
for j = 2 to n {

key = A[j];
i = j - 1;
▷Insert A[j] into the sorted sequence A[1..j-1]
while (i > 0) and (A[i] > key) {

A[i+1] = A[i];
i = i – 1;

}
A[i+1] = key

}
} Loop invariant: at the start of each iteration of the for 

loop, the subarray A[1..j-1] consists of the elements 
originally in A[1..j-1] but in sorted order.
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Initialization

InsertionSort(A, n) {
for j = 2 to n {

key = A[j];
i = j - 1;
▷Insert A[j] into the sorted sequence A[1..j-1]
while (i > 0) and (A[i] > key) {

A[i+1] = A[i];
i = i – 1;

}
A[i+1] = key

}
}

Subarray A[1] is sorted. So 
loop invariant is true before the 
loop starts.
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Maintenance
InsertionSort(A, n) {
for j = 2 to n {

key = A[j];
i = j - 1;
▷Insert A[j] into the sorted sequence A[1..j-1]
while (i > 0) and (A[i] > key) {

A[i+1] = A[i];
i = i – 1;

}
A[i+1] = key

}
}

Assume loop variant is true 
prior to iteration j

1 i j

Keysorted

Loop variant will be true 
before iteration j+1
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Termination
InsertionSort(A, n) {
for j = 2 to n {

key = A[j];
i = j - 1;
▷Insert A[j] into the sorted sequence A[1..j-1]
while (i > 0) and (A[i] > key) {

A[i+1] = A[i];
i = i – 1;

}
A[i+1] = key

}
} 1 j=n+1

Sorted

Upon termination, A[1..n] 
contains all the original 
elements of A in sorted order.

n

The algorithm is correct!
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Efficiency
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Efficiency

Correctness alone is not sufficient
Simple, brute-force algorithms exist for 
most problems
To sort n numbers, we can enumerate all 
permutations of these numbers and test 
which permutation has the correct order

Why cannot we do this?
Too slow! 
By what standard?
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How to Measure Algorithm 
Complexity?

Absolute running time is not always a 
good measure
It depends on input
It depends on the machine you used and 
on who implemented the algorithm
Makes it hard to compare algorithms

We would like to have a higher-level 
analysis that does not depend on those 
factors
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Machine-Independent 
Complexity

A generic uniprocessor random-access 
machine (RAM) model

No concurrent operations
Each simple operation (e.g. +, -, =, *, if, for) 
takes 1 step.

Loops and subroutine calls are not simple 
operations.

All memory equally expensive to access
Constant word size
Unless we are explicitly manipulating bits
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Running Time = Operation Count
Number of primitive steps that are 
executed

Except for time of executing a function call 
most statements roughly require the same 
amount of time

y = m * x + b
c = 5 / 9 * (t - 32 )
z = f(x) + g(x)

We can be more exact if need be
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Asymptotic Analysis

Running time (i.e., operation count) 
depends on the size of the input

Larger array takes more time to sort
T(n): the time taken on input with size n
Look at growth of T(n) as n→∞.
“Asymptotic Analysis”

Size of input is generally defined as the 
number of input elements

Some cases may be tricky
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Running Time of Insertion Sort

The running time depends on the input: 
an already sorted sequence is easier to 
sort.
Parameterize the running time by the size 
of the input, since short sequences are 
easier to sort than long ones.
Generally, we seek upper bounds on the 
running time, because everybody likes a 
guarantee.
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Kinds of Analyses

Worst case
Provides an upper bound on running time
An absolute guarantee

Best case – not very useful
Average case

Provides the expected running time
Very useful, but treat with care: what is “average”?

Random (equally likely) inputs
Real-life inputs
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Analysis of Insertion Sort

InsertionSort(A, n) {
for j = 2 to n {

key = A[j]
i = j - 1;
while (i > 0) and (A[i] > key) {

A[i+1] = A[i]
i = i - 1

}
A[i+1] = key

}
}

How many times will 
this line execute?
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Analysis of Insertion Sort

InsertionSort(A, n) {
for j = 2 to n {

key = A[j]
i = j - 1;
while (i > 0) and (A[i] > key) {

A[i+1] = A[i]
i = i - 1

}
A[i+1] = key

}
}

How many times will 
this line execute?
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Analysis of Insertion Sort
Statement cost   time__

InsertionSort(A, n) {
for j = 2 to n { c1 n

key = A[j] c2 (n-1)
i = j - 1; c3 (n-1)
while (i > 0) and (A[i] > key) { c4 S

A[i+1] = A[i] c5 (S-(n-1))
i = i - 1 c6 (S-(n-1))

} 0
A[i+1] = key c7 (n-1)

} 0
}

S = t2 + t3 + … + tn where tj is number of while 
expression evaluations for the  jth for loop iteration
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Analyzing Insertion Sort
T(n) = c1n + c2(n-1) + c3(n-1) + c4S + c5(S - (n-1)) + c6(S - (n-1)) + c7(n-1) 

= c8S + c9n + c10

What can S be?
Best case -- inner loop body never executed

tj = 1  S = n - 1 
T(n) = an + b is a linear function

Worst case -- inner loop body executed for all previous 
elements

tj = j  S = 2 + 3 + … + n = n(n+1)/2 - 1
T(n) = an2 + bn + c is a quadratic function

Average case
Can assume that on average, we have to insert A[j] into the 
middle of A[1..j-1], so tj = j/2
S ≈ n(n+1)/4
T(n) is still a quadratic function
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Asymptotic Analysis
Abstract statement costs (don’t care about c1, 
c2, etc) 
Order of growth (as a function of n, the input 
size) is the interesting measure:

Highest-order term is what counts
As the input size grows larger it is the high order term that 
dominates

0 50 100 150 200
0

1

2

3

4 x 104

T(
n)

 

 

100 * n
n2
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Comparison of functions
log2n n nlog2n n2 n3 2n n!

10 3.3 10 33 102 103 103 106

102 6.6 102 660 104 106 1030 10158

103 10 103 104 106 109

104 13 104 105 108 1012

105 17 105 106 1010 1015

106 20 106 107 1012 1018

For a super computer that does 1 trillion operations 
per second, it will be longer than 1 billion years
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Order of Growth

1 << log2n << n << nlog2n << n2 << n3 << 2n << n!

(We are slightly abusing of the “<<“ sign. It means 
a smaller order of growth).
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Asymptotic Notations

We say InsertionSort’s worst-case 
running time is Θ(n2)

Properly we should say running time is in
Θ(n2)
It is also in O(n2 )
What’s the relationships between Θ and O?

Formal definition next time
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Another Example: Merge Sort

MERGE-SORT A[1 . . n]
1. If n = 1, done.
2. Recursively sort A[ 1 . . n/2 ]

and A[ n/2+1 . . n ] .
3. “Merge” the 2 sorted lists.

Key subroutine: MERGE
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Merging Two Sorted Arrays
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Time = Θ(n) to merge a 
total of n elements (linear 
time).

Merging Two Sorted Arrays
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Analyzing Merge Sort

MERGE-SORT A[1 . . n]
1. If n = 1, done.
2. Recursively sort A[ 1 . . 

n/2 ] and A[ n/2+1 . . n ] .
3. “Merge” the 2 sorted lists

T(n)
Θ(1)
2T(n/2)

Θ(n)

Sloppiness: Should be T( n/2 ) + T( n/2 ),
but it turns out not to matter asymptotically.
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Recurrence for Merge Sort

T(n) =
Θ(1) if n = 1;
2T(n/2) + Θ(n) if n > 1.

• We shall usually omit stating the base 
case when T(n) = Θ(1) for sufficiently 
small n, but only when it has no effect 
on the asymptotic solution to the 
recurrence.

• We’ll soon see how to find a good 
upper bound on T(n).
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Recursion Tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.
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Recursion Tree

T(n)

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.
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T(n/2) T(n/2)

cn

Recursion Tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.
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cn

T(n/4) T(n/4) T(n/4) T(n/4)

cn/2 cn/2

Recursion Tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.
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cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

Θ(1)

Recursion Tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.
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cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

Θ(1)

h = lg n

Recursion Tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.



71

cn

cn/4 cn/4 cn/4 cn/4
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h = lg n

cn

Recursion Tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.
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cn
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Recursion Tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.
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cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

Θ(1)

h = lg n

cn

cn

cn

…

Recursion Tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.
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cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

Θ(1)

h = lg n

cn

cn

cn

#leaves = n Θ(n)

…

Recursion Tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.
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cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

Θ(1)

h = lg n

cn

cn

cn

#leaves = n Θ(n)
Total = Θ(n lg n)

…

Recursion Tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.
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Conclusion

• Θ(n lg n) grows more slowly than 
Θ(n2).

• Therefore, Merge Sort asymptotically 
beats Insertion Sort in the worst 
case.

• In practice, merge sort beats 
insertion sort for n > 30 or so.
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