
CS161:
Design and Analysis of

Algorithms

Lecture 1
Leonidas Guibas

1

The CS161 Team

2

Leonidas (Leo) Guibas

Bryan Anenberg Ari Ekmekji Seth Hildick-Smith

James Hong Anthony Kim Robbie Ostrow

Abraham Starosta

Jonathan NecampYang Li

Benjamin Au Kyle Griswold

The Class

CS161 Lectures:
Monday/Wednesday, 3:00 –
4:20 pm, in Hewlett 200

Recitation A:
Tuesday, 4:30 – 5:20 pm in
200-034

Recitation B:
Thursday, 5:30 – 6:20 pm in
200-305

Recitation C:
Friday, 11:30 am – 12:20 pm
in 200-303

Recitation D:
Friday, 4:30 – 5:20 pm in
200-205

3No recitations until the week of Jan 11

Algorithms

4

The Topics:
Algorithm Design and Analysis
Algorithm analysis; worst and average case
Recurrences and asymptotics
Algorithms for sorting and selection
Randomized techniques
Search structures: heaps, balanced trees, skip
lists, hash tables
Dynamic programming and greedy algorithms
Amortized analysis
Graph algorithms: breadth- and depth-first
search, minimum spanning trees, shortest paths

5

Algorithms and Data Structures

6

The Textbook

7

The CS161 Course Work

Six paper-and-pencil homeworks
A programming project
A midterm
No final

8

More Tidbits
We’ll use Piazza as the class discussion
board, Gradescope for grading
You can email the staff at

staff-cs-161-16-winter@lists.stanford.edu

The class web site is
http://graphics.stanford.edu/courses/cs161-16-
winter, or
http://cs161.stanford.edu (redirects to the above)

Please read the CS161 homework
policies, especially regarding the Honor
Code 9

mailto:staff-cs-161-16-winter@lists.stanford.edu
http://graphics.stanford.edu/courses/cs161-16-winter
http://cs161.stanford.edu/

CS 161 Homework Policies
Homework policies

For both theoretical homeworks, as well as for the programming project, you may work in groups of up to three students per group.
For the paper-and-pencil homeworks, each student must write up solutions individually. The names of the team collaborators must be
listed in the homework write-up. Again, collaboration in a team of up to three is OK when developing the solutions -- but the solution
write-ups themselves must be done separately and independently.
For the programming project, a single write up per group will suffice .
It is important that the homeworks be turned in on time. Each student is allowed two 24-hour grace periods during the quarter. That
means a single homework can be handed in late by two days, or two homeworks may be handed in late by one day each. Other than
these grace periods, late homeworks will not be accepted.
Paper-and-pencil homeworks must be submitted by the day they are due, in electronic form, by 5:00 pm PDT. The programming
project and write up must submitted by running the provided submission script, again by 5:00 pm PDT the day they are due.

The Honor Code

Each student is expected to do his/her own work on the problem sets in CS161. A good point to keep in mind is that you must b e able
to explain and/or re-derive anything that you submit. Students may discuss problem sets with each other as well as the course staff --
in fact close collaboration in groups of up to three students is permitted, as explained above. Any discussion of problem set questions
with others must be noted on a student’s final write-up of the problem set answers. Each student must turn in his/her own write-up of
the problem set solutions, except for the final project, as noted above. Questions regarding acceptable collaboration should be directed
to the class instructor of CAs prior to the collaboration.
It is a violation of the honor code to copy or derive problem set or exam question solutions from other students or anyone at all,
textbooks, previous instances of this course, other courses covering the same topics either at Stanford or at other schools. or any web
sources. Copying of solutions from other students, or from students who previously took a similar course is also clearly a violation of
the honor code.

Again, the basic rules to follow are:
You must not look at solutions or program code that are not your own.
You must not share your solutions or code with other students, except within the group (as above) that you are part of .
You must indicate on your submission any assistance you have received.

10

Etymology: Algorithm

11

Muḥammad ibn Mūsā al-
Khwārizmī

12

(د بِن مُوسَى الَْخْوَارِزْمِيعَبْداللهَ مُحَمَّ)

Khwarezm, Khiva

Khiva

City in Uzbekistan

Khiva is a city of approximately 50,000
people located in Xorazm Province,
Uzbekistan. It is the former capital of
Khwarezmia and the Khanate of Khiva.

13

14

What is an Algorithm?

Algorithms are the high-level ideas
behind computer programs.
An algorithm is the thing that stays the
same, whether the program is in C++
running on a Windows or is in JAVA
running on a Macintosh.

Following slides modified from
• http://www.cs.virginia.edu/~luebke/cs332/

http://www.cs.virginia.edu/%7Eluebke/cs332/

15

What is an Algorithm? (cont’d)

An algorithm is a precise and unambiguous
specification of a sequence of steps that can be
carried out to solve a given problem or to
achieve a given condition.
An algorithm accepts some value or set of
values as input and produces a value or set of
values as output.
Algorithms [actions] are closely intertwined with
the data structures [objects] used to go from
input to output values

16

How to Express Algorithms?

English

Pseudo-code

Real programming languages

Increasing precision

Ease of expression

Describe the ideas of an algorithm in English.
Use pseudocode to clarify sufficiently more complex details of the
algorithm.

17

Example: Sorting

Input: A sequence of n numbers a1…an

Output: the permutation (reordering) of
the input sequence so that a1 ≤ a2 … ≤ an.
Possible algorithms you may have seen

Insertionsort, Selectionsort, Bubblesort,
Quicksort, Mergesort, …
These and more in this course

We seek algorithms that are both correct
and efficient

18

Insertion Sort:
An Incremental Algorithm

InsertionSort(A, n) {
for j = 2 to n {

}
}

1 j

sorted

1. Find position i in A[1..j-1] such that A[i] ≤ A[j] < A[i+1]
2. Insert A[j] between A[i] and A[i+1]

▷ Pre condition: A[1..j-1] is sorted

▷ Post condition: A[1..j] is sorted

19

InsertionSort(A, n) {
for j = 2 to n {

key = A[j];
i = j - 1;
while (i > 0) and (A[i] > key) {

A[i+1] = A[i];
i = i – 1;

}
A[i+1] = key

}
}

Insertion Sort

1 i j

Keysorted In-place sorting!

20

Correctness

21

Correctness

What makes a sorting algorithm correct?
In the output sequence, the elements are
ordered in non-decreasing order
Each element in the input sequence has a
unique appearance in the output sequence

[2 3 1] => [1 2 2] X
[2 2 3 1] => [1 1 2 3] X

22

Correctness
For any algorithm to be correct, we must
prove that it always returns the desired
output for all legal instances of the
problem.
For sorting, this means even if (1) the
input is already sorted, or (2) it contains
repeated elements.
Algorithm correctness is NOT obvious in
many cases (e.g., optimization)

23

How to Prove Correctness?

Given a particular input, e.g. <4,2,6,1,7>
trace it and prove that it works.
Given an abstract/general input, e.g.
<a1, … an> trace it and prove that it works.
Sometimes it is easier to find a counterexample
to show that an algorithm does NOT work.

Think about all small examples
Think about examples with “extreme” data values
Think about examples with ties
Failure to find a counterexample does NOT mean
that the algorithm is correct

24

An Example: Insertion Sort
InsertionSort(A, n) {
for j = 2 to n {

key = A[j];
i = j - 1;
▷Insert A[j] into the sorted sequence A[1..j-1]
while (i > 0) and (A[i] > key) {

A[i+1] = A[i];
i = i – 1;

}
A[i+1] = key

}
} 1 i j

Keysorted

25

Example of Insertion Sort

5 2 4 6 1 3

2 5 4 6 1 3

2 4 5 6 1 3

2 4 5 6 1 3

1 2 4 5 6 3

1 2 3 4 5 6 Done!

26

Loop Invariants and Correctness of
Insertion Sort

Claim: at the start of each iteration of the
for loop, the subarray A[1..j-1] consists of
the elements originally in A[1..j-1], but in
sorted order.
Proof: by induction

27

Review: Proof By Induction

Claim: S(n) [Insertion Sort correctly sorts
any array of length n] is true for all n >= 1

Basis:
Show formula is true when n = 1

Inductive hypothesis:
Assume formula is true for an arbitrary n = k

Step:
Show that formula is then true for n = k+1

28

Prove Correctness Using Loop
Invariants

Initialization (basis): the loop invariant is true
prior to the first iteration of the loop
Maintenance:

Assume that it is true before an iteration of the loop
(Inductive hypothesis)
Show that it remains true before the next iteration
(Step)

Termination: show that when the loop
terminates, the loop invariant gives us a useful
property to show that the algorithm is correct

29

Prove Correctness Using Loop
Invariants

InsertionSort(A, n) {
for j = 2 to n {

key = A[j];
i = j - 1;
▷Insert A[j] into the sorted sequence A[1..j-1]
while (i > 0) and (A[i] > key) {

A[i+1] = A[i];
i = i – 1;

}
A[i+1] = key

}
} Loop invariant: at the start of each iteration of the for

loop, the subarray A[1..j-1] consists of the elements
originally in A[1..j-1] but in sorted order.

30

Initialization

InsertionSort(A, n) {
for j = 2 to n {

key = A[j];
i = j - 1;
▷Insert A[j] into the sorted sequence A[1..j-1]
while (i > 0) and (A[i] > key) {

A[i+1] = A[i];
i = i – 1;

}
A[i+1] = key

}
}

Subarray A[1] is sorted. So
loop invariant is true before the
loop starts.

31

Maintenance
InsertionSort(A, n) {
for j = 2 to n {

key = A[j];
i = j - 1;
▷Insert A[j] into the sorted sequence A[1..j-1]
while (i > 0) and (A[i] > key) {

A[i+1] = A[i];
i = i – 1;

}
A[i+1] = key

}
}

Assume loop variant is true
prior to iteration j

1 i j

Keysorted

Loop variant will be true
before iteration j+1

32

Termination
InsertionSort(A, n) {
for j = 2 to n {

key = A[j];
i = j - 1;
▷Insert A[j] into the sorted sequence A[1..j-1]
while (i > 0) and (A[i] > key) {

A[i+1] = A[i];
i = i – 1;

}
A[i+1] = key

}
} 1 j=n+1

Sorted

Upon termination, A[1..n]
contains all the original
elements of A in sorted order.

n

The algorithm is correct!

33

Efficiency

34

Efficiency

Correctness alone is not sufficient
Simple, brute-force algorithms exist for
most problems
To sort n numbers, we can enumerate all
permutations of these numbers and test
which permutation has the correct order

Why cannot we do this?
Too slow!
By what standard?

35

How to Measure Algorithm
Complexity?

Absolute running time is not always a
good measure
It depends on input
It depends on the machine you used and
on who implemented the algorithm
Makes it hard to compare algorithms

We would like to have a higher-level
analysis that does not depend on those
factors

36

Machine-Independent
Complexity

A generic uniprocessor random-access
machine (RAM) model

No concurrent operations
Each simple operation (e.g. +, -, =, *, if, for)
takes 1 step.

Loops and subroutine calls are not simple
operations.

All memory equally expensive to access
Constant word size
Unless we are explicitly manipulating bits

37

Running Time = Operation Count
Number of primitive steps that are
executed

Except for time of executing a function call
most statements roughly require the same
amount of time

y = m * x + b
c = 5 / 9 * (t - 32)
z = f(x) + g(x)

We can be more exact if need be

38

Asymptotic Analysis

Running time (i.e., operation count)
depends on the size of the input

Larger array takes more time to sort
T(n): the time taken on input with size n
Look at growth of T(n) as n→∞.
“Asymptotic Analysis”

Size of input is generally defined as the
number of input elements

Some cases may be tricky

39

Running Time of Insertion Sort

The running time depends on the input:
an already sorted sequence is easier to
sort.
Parameterize the running time by the size
of the input, since short sequences are
easier to sort than long ones.
Generally, we seek upper bounds on the
running time, because everybody likes a
guarantee.

40

Kinds of Analyses

Worst case
Provides an upper bound on running time
An absolute guarantee

Best case – not very useful
Average case

Provides the expected running time
Very useful, but treat with care: what is “average”?

Random (equally likely) inputs
Real-life inputs

41

Analysis of Insertion Sort

InsertionSort(A, n) {
for j = 2 to n {

key = A[j]
i = j - 1;
while (i > 0) and (A[i] > key) {

A[i+1] = A[i]
i = i - 1

}
A[i+1] = key

}
}

How many times will
this line execute?

42

Analysis of Insertion Sort

InsertionSort(A, n) {
for j = 2 to n {

key = A[j]
i = j - 1;
while (i > 0) and (A[i] > key) {

A[i+1] = A[i]
i = i - 1

}
A[i+1] = key

}
}

How many times will
this line execute?

43

Analysis of Insertion Sort
Statement cost time__

InsertionSort(A, n) {
for j = 2 to n { c1 n

key = A[j] c2 (n-1)
i = j - 1; c3 (n-1)
while (i > 0) and (A[i] > key) { c4 S

A[i+1] = A[i] c5 (S-(n-1))
i = i - 1 c6 (S-(n-1))

} 0
A[i+1] = key c7 (n-1)

} 0
}

S = t2 + t3 + … + tn where tj is number of while
expression evaluations for the jth for loop iteration

44

Analyzing Insertion Sort
T(n) = c1n + c2(n-1) + c3(n-1) + c4S + c5(S - (n-1)) + c6(S - (n-1)) + c7(n-1)

= c8S + c9n + c10

What can S be?
Best case -- inner loop body never executed

tj = 1  S = n - 1
T(n) = an + b is a linear function

Worst case -- inner loop body executed for all previous
elements

tj = j  S = 2 + 3 + … + n = n(n+1)/2 - 1
T(n) = an2 + bn + c is a quadratic function

Average case
Can assume that on average, we have to insert A[j] into the
middle of A[1..j-1], so tj = j/2
S ≈ n(n+1)/4
T(n) is still a quadratic function

45

Asymptotic Analysis
Abstract statement costs (don’t care about c1,
c2, etc)
Order of growth (as a function of n, the input
size) is the interesting measure:

Highest-order term is what counts
As the input size grows larger it is the high order term that
dominates

0 50 100 150 200
0

1

2

3

4 x 104

T(
n)

100 * n
n2

46

Comparison of functions
log2n n nlog2n n2 n3 2n n!

10 3.3 10 33 102 103 103 106

102 6.6 102 660 104 106 1030 10158

103 10 103 104 106 109

104 13 104 105 108 1012

105 17 105 106 1010 1015

106 20 106 107 1012 1018

For a super computer that does 1 trillion operations
per second, it will be longer than 1 billion years

47

Order of Growth

1 << log2n << n << nlog2n << n2 << n3 << 2n << n!

(We are slightly abusing of the “<<“ sign. It means
a smaller order of growth).

48

Asymptotic Notations

We say InsertionSort’s worst-case
running time is Θ(n2)

Properly we should say running time is in
Θ(n2)
It is also in O(n2)
What’s the relationships between Θ and O?

Formal definition next time

49

Another Example: Merge Sort

MERGE-SORT A[1 . . n]
1. If n = 1, done.
2. Recursively sort A[1 . . n/2]

and A[n/2+1 . . n] .
3. “Merge” the 2 sorted lists.

Key subroutine: MERGE

50

Merging Two Sorted Arrays

20

13

7

2

12

11

9

1

51

20

13

7

2

12

11

9

1

1

Merging Two Sorted Arrays

52

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

Merging Two Sorted Arrays

53

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

Merging Two Sorted Arrays

54

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

Merging Two Sorted Arrays

55

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

Merging Two Sorted Arrays

56

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

20

13

12

11

9

Merging Two Sorted Arrays

57

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

20

13

12

11

9

9

Merging Two Sorted Arrays

58

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

20

13

12

11

9

9

20

13

12

11

Merging Two Sorted Arrays

59

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

20

13

12

11

9

9

20

13

12

11

11

Merging Two Sorted Arrays

60

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

20

13

12

11

9

9

20

13

12

11

11

20

13

12

Merging Two Sorted Arrays

61

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

20

13

12

11

9

9

20

13

12

11

11

20

13

12

12

Merging Two Sorted Arrays

62

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

20

13

12

11

9

9

20

13

12

11

11

20

13

12

12

Time = Θ(n) to merge a
total of n elements (linear
time).

Merging Two Sorted Arrays

63

Analyzing Merge Sort

MERGE-SORT A[1 . . n]
1. If n = 1, done.
2. Recursively sort A[1 . .

n/2] and A[n/2+1 . . n] .
3. “Merge” the 2 sorted lists

T(n)
Θ(1)
2T(n/2)

Θ(n)

Sloppiness: Should be T(n/2) + T(n/2),
but it turns out not to matter asymptotically.

64

Recurrence for Merge Sort

T(n) =
Θ(1) if n = 1;
2T(n/2) + Θ(n) if n > 1.

• We shall usually omit stating the base
case when T(n) = Θ(1) for sufficiently
small n, but only when it has no effect
on the asymptotic solution to the
recurrence.

• We’ll soon see how to find a good
upper bound on T(n).

65

Recursion Tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

66

Recursion Tree

T(n)

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

67

T(n/2) T(n/2)

cn

Recursion Tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

68

cn

T(n/4) T(n/4) T(n/4) T(n/4)

cn/2 cn/2

Recursion Tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

69

cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

Θ(1)

Recursion Tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

70

cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

Θ(1)

h = lg n

Recursion Tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

71

cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

Θ(1)

h = lg n

cn

Recursion Tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

72

cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

Θ(1)

h = lg n

cn

cn

Recursion Tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

73

cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

Θ(1)

h = lg n

cn

cn

cn

…

Recursion Tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

74

cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

Θ(1)

h = lg n

cn

cn

cn

#leaves = n Θ(n)

…

Recursion Tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

75

cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

Θ(1)

h = lg n

cn

cn

cn

#leaves = n Θ(n)
Total = Θ(n lg n)

…

Recursion Tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

76

Conclusion

• Θ(n lg n) grows more slowly than
Θ(n2).

• Therefore, Merge Sort asymptotically
beats Insertion Sort in the worst
case.

• In practice, merge sort beats
insertion sort for n > 30 or so.

77

	CS161:�Design and Analysis of Algorithms�����Lecture 1�Leonidas Guibas
	The CS161 Team
	The Class
	Algorithms
	The Topics:�Algorithm Design and Analysis
	Algorithms and Data Structures
	The Textbook
	The CS161 Course Work
	More Tidbits
	CS 161 Homework Policies
	Etymology: Algorithm
	Muḥammad ibn Mūsā al-Khwārizmī
	Khwarezm, Khiva
	What is an Algorithm?
	What is an Algorithm? (cont’d)
	How to Express Algorithms?
	Example: Sorting
	Insertion Sort:�An Incremental Algorithm
	Insertion Sort
	Correctness
	Correctness
	Correctness
	How to Prove Correctness?
	An Example: Insertion Sort
	Example of Insertion Sort
	Loop Invariants and Correctness of Insertion Sort
	Review: Proof By Induction
	Prove Correctness Using Loop Invariants
	Prove Correctness Using Loop Invariants
	Initialization
	Maintenance
	Termination
	Efficiency
	Efficiency
	How to Measure Algorithm Complexity?
	Machine-Independent Complexity
	Running Time = Operation Count
	Asymptotic Analysis
	Running Time of Insertion Sort
	Kinds of Analyses
	Analysis of Insertion Sort
	Analysis of Insertion Sort
	Analysis of Insertion Sort
	Analyzing Insertion Sort
	Asymptotic Analysis
	Comparison of functions
	Order of Growth
	Asymptotic Notations
	Another Example: Merge Sort
	Merging Two Sorted Arrays
	Merging Two Sorted Arrays
	Merging Two Sorted Arrays
	Merging Two Sorted Arrays
	Merging Two Sorted Arrays
	Merging Two Sorted Arrays
	Merging Two Sorted Arrays
	Slide Number 57
	Merging Two Sorted Arrays
	Merging Two Sorted Arrays
	Merging Two Sorted Arrays
	Merging Two Sorted Arrays
	Merging Two Sorted Arrays
	Analyzing Merge Sort
	Recurrence for Merge Sort
	Recursion Tree
	Recursion Tree
	Recursion Tree
	Recursion Tree
	Recursion Tree
	Recursion Tree
	Recursion Tree
	Recursion Tree
	Recursion Tree
	Slide Number 74
	Slide Number 75
	Conclusion
	Slide Number 77

