# CS161: Design and Analysis of Algorithms



### Lecture 2 Leonidas Guibas

#### Outline

#### Review of last lecture

#### Order of growth of functions

# Asymptotic notations Big O, big Ω, Θ, etc



Slides modified from

<u>http://www.cs.virginia.edu/~luebke/cs332/</u>

## **Correctness of Algorithms**

- For any algorithm, we must prove that it always returns the desired output for all legal instances of the problem.
- For sorting, this means even if (1) the input is already sorted, or (2) it contains repeated elements.
- Algorithm correctness is NOT obvious in many cases (e.g., optimization)

# **Efficiency of Algorithms**

- Correctness alone is not sufficient
- Brute-force algorithms exist for most problems
- To sort n numbers, we can enumerate all permutations of these numbers and test which permutation has the correct order
  - Why cannot we do this?
  - Too slow!
  - By what standard?

# Exact Algorithm Analysis is Hard

 Worst-case and average-case are difficult to analyze precisely -- the details can be very complicated



Easier to talk about upper and lower bounds on the function T(n), the count of the number of operations the algorithm performs.

# **Kinds of Analyses**

#### Worst case

- Provides an upper bound on running time
- An absolute guarantee
- Best case not very useful
- Average case
  - Provides the expected running time
  - Very useful, but treat with care: what is "average"?
    - Random (equally likely) inputs
    - Real-life inputs

### **Analysis of Insertion Sort**

```
InsertionSort(A, n) {
 for j = 2 to n \{
     key = A[j]
     i = j - 1;
     while (i > 0) and (A[i] > key) {
           A[i+1] = A[i]
           i = i - 1
     }
                             How many times will
     A[i+1] = key
                             this line execute?
```

### **Analysis of Insertion Sort**

```
InsertionSort(A, n) {
  for j = 2 to n {
     key = A[j]
     i = j - 1;
     while (i > 0) and (A[i] > key) {
          A[i+1] = A[i]
           i = i - 1
     }
                            How many times will
     A[i+1] = key
                            this line execute?
```

### **Analysis of Insertion Sort**

| Statement                        | cost                  | time      |
|----------------------------------|-----------------------|-----------|
| InsertionSort(A, n) {            |                       |           |
| for j = 2 to n {                 | <b>C</b> <sub>1</sub> | n         |
| key = A[j]                       | C <sub>2</sub>        | (n-1)     |
| i = j - 1;                       | С <sub>3</sub>        | (n-1)     |
| while (i > 0) and (A[i] > key) { | <b>C</b> <sub>4</sub> | S         |
| A[i+1] = A[i]                    | <b>C</b> <sub>5</sub> | (S-(n-1)) |
| i = i - 1                        | C <sub>6</sub>        | (S-(n-1)) |
| }                                | 0                     |           |
| A[i+1] = key                     | C <sub>7</sub>        | (n-1)     |
| }                                | 0                     |           |
| <b>ን</b>                         |                       |           |

 $S = t_2 + t_3 + ... + t_n$  where  $t_j$  is number of while expression evaluations for the j<sup>th</sup> for loop iteration

# **Analyzing Insertion Sort**

- $T(n) = c_1 n + c_2(n-1) + c_3(n-1) + c_4 S + c_5(S (n-1)) + c_6(S (n-1)) + c_7(n-1)$ =  $c_8 S + c_9 n + c_{10}$
- What can S be?
  - Best case -- inner loop body never executed
    - ♦ t<sub>i</sub> = 1 → S = n 1
    - $\dot{T}(n) = an + b$  is a linear function
  - Worst case -- inner loop body executed for all previous elements
    - $t_i = j \rightarrow S = 2 + 3 + ... + n = n(n+1)/2 1$
    - $\dot{T}(n) = an^2 + bn + c$  is a quadratic function
  - Average case
    - Can assume that on average, we have to insert A[j] into the middle of A[1..j-1], so t<sub>i</sub> = j/2
    - S ≈ n(n+1)/4
    - T(n) is still a quadratic function

# **Asymptotic Analysis**

- Abstract statement costs (don't care about c<sub>1</sub>, c<sub>2</sub>, etc)
- Order of growth (as a function of n, the input size) is the interesting measure:
  - Highest-order term is what counts
    - As the input size grows larger it is the high order term that dominates



### **Comparison of functions**

|                 | log <sub>2</sub> n | n               | nlog <sub>2</sub> n | n <sup>2</sup>   | n <sup>3</sup>   | 2 <sup>n</sup>   | n!                |
|-----------------|--------------------|-----------------|---------------------|------------------|------------------|------------------|-------------------|
| 10              | 3.3                | 10              | 33                  | 10 <sup>2</sup>  | 10 <sup>3</sup>  | 10 <sup>3</sup>  | 10 <sup>6</sup>   |
| 10 <sup>2</sup> | 6.6                | 10 <sup>2</sup> | 660                 | 104              | 10 <sup>6</sup>  | 10 <sup>30</sup> | 10 <sup>158</sup> |
| 10 <sup>3</sup> | 10                 | 10 <sup>3</sup> | 104                 | 10 <sup>6</sup>  | 10 <sup>9</sup>  |                  |                   |
| 104             | 13                 | 104             | 10 <sup>5</sup>     | 10 <sup>8</sup>  | 10 <sup>12</sup> |                  |                   |
| 10 <sup>5</sup> | 17                 | 10 <sup>5</sup> | 10 <sup>6</sup>     | 10 <sup>10</sup> | 10 <sup>15</sup> |                  |                   |
| 10 <sup>6</sup> | 20                 | 10 <sup>6</sup> | 10 <sup>7</sup>     | 10 <sup>12</sup> | 10 <sup>18</sup> |                  |                   |

For a super computer that does 1 trillion operations per second, it will be longer than 1 billion years

### **Order of Growth**

#### $1 << \log_2 n << n << n \log_2 n << n^2 << n^3 << 2^n << n!$

(We are slightly abusing of the "<<" sign. It means a smaller order of growth).

# **Asymptotic Notations**

- We say InsertionSort's worst-case running time is Θ(n<sup>2</sup>)
  - Properly we should say running time is in
     Θ(n<sup>2</sup>)
  - It is also in O(n<sup>2</sup>)
  - What's the relationships between Θ and O?
- Formal definition comes next

## **Asymptotic Notations**

O: Big-Oh
Ω: Big-Omega
Θ: Theta
O: Small-oh
ω: Small-omega

# Big "O"

- Informally, O(g(n)) is the set of all functions with a smaller or same order of growth as g(n), within a constant multiple
- If we say f(n) is in O(g(n)), it means that g(n) is an asymptotic upper bound on f(n)
   Formally:
  - $\exists C (>0) \& n_0, f(n) \le Cg(n) \text{ for } \forall n \ge n_0$

#### What is O(n<sup>2</sup>)?

 The set of all functions that grow slower than or at the same order as n<sup>2</sup>

# Big "O"

#### So: $n \in O(n^2)$ $n^2 \in O(n^2)$ $1000n \in O(n^2)$ $n^2 + n \in O(n^2)$ $100n^2 + n \in O(n^2)$ But: $1/1000 n^3 \notin O(n^2)$

O is an upper bound notation, like ≤

We ignore constants, lower order terms – get to the essential growth

Even though formally we should write  $n \in O(n^2)$ , in practice we write  $n = O(n^2)$ 

### Small "o"

- Informally, o(g(n)) is the set of all functions with a strictly smaller growth as g(n), within a constant factor
- What is o(n<sup>2</sup>)?

The set of all functions that grow slower than n<sup>2</sup>

So:

 $1000n \in o(n^2)$ 

But:

 $n^2 \notin o(n^2)$ 

o is a strict upper bound notation, like < Formally,  $f(n) \in o(g(n))$  $\frac{f(n)}{g(n)} \rightarrow 0 \text{ as } n \rightarrow \infty$ 

# Big "Ω" [Omega]

- Informally, Ω(g(n)) is the set of all functions with a larger or same order of growth as g(n), within a constant multiple
- f(n) ∈ Ω(g(n)) means g(n) is an asymptotic lower bound of f(n)
  - Intuitively, it is like  $f(n) \ge g(n)$

#### So:

```
n^2 \in \Omega(n)
1/1000 n^2 \in \Omega(n)
```

#### But:

1000 n  $\notin \Omega(n^2)$ 

Intuitively,  $\Omega$  is like  $\geq$ 

a lower bound notation

1

# Small "ω" [omega]

 Informally, ω(g(n)) is the set of all functions with a strictly larger order of growth than g(n), within a constant factor

So:

$$\label{eq:n2} \begin{split} n^2 &\in \omega(n) \\ 1/1000 \ n^2 &\in \omega(n) \\ n^2 \not\in \omega(n^2) \end{split}$$

Intuitively,  $\omega$  is like >

a strict lower bound

# Theta (" $\Theta$ "): $\Theta = O$ and $\Omega$

- Informally, Θ(g(n)) is the set of all functions with the same order of growth as g(n), within a constant multiple
  f(n) ∈ Θ(g(n)) means g(n) is an asymptotically tight bound on f(n)
  Intuitively, it is like f(n) = g(n)
- What is  $\Theta(n^2)$ ?
  - The set of all functions that grow at the same order as n<sup>2</sup>

# Big "Θ" [Theta]

So:  $n^2 \in \Theta(n^2)$  $n^2 + n \in \Theta(n^2)$  $100n^2 + n \in \Theta(n^2)$  $100n^2 + \log_2 n \in \Theta(n^2)$ But:  $n\log_2 n \notin \Theta(n^2)$ 1000n  $\notin \Theta(n^2)$  $1/1000 n^3 ∉ Θ(n^2)$ 

Intuitively,  $\Theta$  is like =

**Tricky Cases** 

#### How about sqrt(n) and log<sub>2</sub> n?

#### How about log<sub>2</sub> n and log<sub>10</sub> n

How about 2<sup>n</sup> and 3<sup>n</sup>

How about 3<sup>n</sup> and n!?

# Big "O", Formally

There exist
For all
O(g(n)) = {f(n): ∃ positive constants C and n<sub>0</sub>
such that 0 ≤ f(n) ≤ Cg(n) ∀ n>n<sub>0</sub>}

#### • $\lim_{n\to\infty} g(n)/f(n) > 0$ (if the limit exists)

Abuse of notation (for convenience):
 f(n) = O(g(n)) actually means f(n) ∈ O(g(n))

# Big "O", Example

#### • Claim: $f(n) = 3n^2 + 10n + 5 \in O(n^2)$

#### Proof from the definition

To prove this claim by definition, we need to find some positive constants C and  $n_0$  such that  $f(n) \le Cn^2$  for all  $n > n_0$ .

(Note: you just need to find one concrete example of c and  $n_0$  satisfying the condition.)

```
3n^2 + 10n + 5 \le 10n^2 + 10n + 10
```

 $\leq 10n^2 + 10n^2 + 10n^2, \forall n \geq 1$ 

 $\leq$  30 n<sup>2</sup>,  $\forall$  n  $\geq$  1

Therefore, if we let C = 30 and  $n_0 = 1$ , we have  $f(n) \le C n^2$ ,  $\forall n \ge n_0$ .

Hence according to the definition of big-Oh,  $f(n) = O(n^2)$ .

Alternatively, we can show that

 $\lim_{n\to\infty} n^2 / (3n^2 + 10n + 5) = 1/3 > 0$ 

# Big "Ω", Formally

#### Definition:

 $\Omega(g(n)) = \{f(n): \exists positive constants C and n_0 such that <math>0 \le Cg(n) \le f(n) \forall n > n_0\}$ 

#### • $\lim_{n\to\infty} f(n)/g(n) > 0$ (if the limit exists.)

Abuse of notation (for convenience):
 f(n) = Ω(g(n)) actually means f(n) ∈ Ω(g(n))

# Big "Ω", Example

• Claim: 
$$f(n) = n^2 / 10 = \Omega(n)$$

Proof from the definition:
f(n) = n<sup>2</sup> / 10, g(n) = n
Need to find a C and a n<sub>0</sub> to satisfy the definition of f(n) ∈ Ω(g(n)), i.e., f(n) ≥ Cg(n) for n > n<sub>0</sub>
n ≤ n<sup>2</sup> / 10 when n ≥ 10
If we let C = 1 and n<sub>0</sub> = 10, we have f(n) ≥ Cn, ∀ n ≥ n<sub>0</sub>. Therefore, according to the definition, f(n) = Ω(n).

0

• Alternatively:  

$$\lim_{n\to\infty} f(n)/g(n) = \lim_{n\to\infty} (n/10) = \circ$$

# Big "Θ", Formally

#### Definition:

- $\Theta(g(n)) = \{f(n): \exists positive constants c_1, c_2, and n_0 such that <math>0 \le c_1 g(n) \le f(n) \le c_2 g(n), \forall n \ge n_0 \}$
- $\lim_{n\to\infty} f(n)/g(n) = c > 0$  and  $c < \infty$
- f(n) = O(g(n)) and  $f(n) = \Omega(g(n))$
- Abuse of notation (for convenience):

 $f(n) = \Theta(g(n))$  actually means  $f(n) \in \Theta(g(n))$  $\Theta(1)$  means constant time.

# Big "Θ", Example

Claim: f(n) = 2n<sup>2</sup> + n = Θ (n<sup>2</sup>)
Proof from the definition:
Need to find the three constants c<sub>1</sub>, c<sub>2</sub>, and n<sub>0</sub> such that c<sub>1</sub>n<sup>2</sup> ≤ 2n<sup>2</sup>+n ≤ c<sub>2</sub>n<sup>2</sup> for all n > n<sub>0</sub>
A simple solution is c<sub>1</sub> = 2, c<sub>2</sub> = 3, and n<sub>0</sub> = 1

• Alternatively,  $\lim_{n\to\infty} (2n^2+n)/n^2 = 2$ 

### **More Examples**

• Prove  $n^2$  + 3n + lg n is in O( $n^2$ ) • Want to find c and  $n_0$  such that  $n^{2} + 3n + lg n <= cn^{2}$  for  $n > n_{0}$ Proof:  $n^{2}$  + 3n + lg n <= 3n^{2} + 3n + 3lgn for n > 1 $<= 3n^2 + 3n^2 + 3n^2$  $<= 9n^2$ Or  $n^2$  + 3n + lg n <=  $n^2$  +  $n^2$  +  $n^2$ for n > 10 $<= 3n^2$ 

#### **More Examples**

 Prove n<sup>2</sup> + 3n + Ig n is in Ω(n<sup>2</sup>)
 Want to find c and n<sub>0</sub> such that n<sup>2</sup> + 3n + Ig n >= cn<sup>2</sup> for n > n<sub>0</sub>

 $n^2$  + 3n + lg n >=  $n^2$  for n > 1

 $n^{2} + 3n + lg n = O(n^{2})$  and  $n^{2} + 3n + lg n = \Omega (n^{2})$ =>  $n^{2} + 3n + lg n = \Theta(n^{2})$ 

### O, $\Omega$ , and $\Theta$



The definitions imply a constant  $n_0$  beyond which they are satisfied. We do not care about small values of n.

#### Using Limits to Compare Orders of Growth



### Logarithms

#### compare log<sub>2</sub>n and log<sub>10</sub>n

•  $\log_a b = \log_c b / \log_c a$ •  $\log_2 n = \log_{10} n / \log_{10} 2 \sim 3.3 \log_{10} n$ • Therefore  $\lim(\log_2 n / \log_{10} n) = 3.3$ •  $\log_2 n = \Theta (\log_{10} n)$ 

#### **Exponentials**

#### • Compare 2<sup>n</sup> and 3<sup>n</sup> • $\lim_{n \to \infty} 2^n / 3^n = \lim_{n \to \infty} (2/3)^n = 0$ • Therefore, $2^n \in o(3^n)$ , and $3^n \in \omega(2^n)$

How about 2<sup>n</sup> and 2<sup>n+1</sup>?
 2<sup>n</sup> / 2<sup>n+1</sup> = ½, therefore 2<sup>n</sup> = Θ (2<sup>n+1</sup>)

### L' Hopital's Rule

$$\lim_{n \to \infty} f(n) / g(n) = \lim_{n \to \infty} f'(n) / g'(n)$$

Condition:

If both lim f(n) and lim g(n) are  $\infty$  or 0

 You can apply this transformation as many times as you want, as long as the condition holds
Compare n<sup>0.5</sup> and log n

• 
$$\lim_{n \to \infty} n^{0.5} / \ln n = ?$$

- $\lim (1/n^{0.5} / 1/n) = \lim (n^{0.5}) = \infty$
- Therefore,  $\ln n \in o(n^{0.5})$
- In fact, In  $n \in o(n^{\epsilon})$ , for any  $\epsilon > 0$  and so is log n

## Stirling's Formula (Useful)

$$n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n = \sqrt{2\pi} n^{n+1/2} e^{-n}$$

 $n! \approx$  (constant)  $n^{n+1/2}e^{-n}$ 

• Compare 2<sup>n</sup> and n! 
$$\lim_{n \to \infty} \frac{n!}{2^n} = \lim_{n \to \infty} \frac{c\sqrt{nn^n}}{2^n e^n} = \lim_{n \to \infty} c\sqrt{n} \left(\frac{n}{2e}\right)^n = \infty$$

• Therefore,  $n^n = \omega(n!)$ 

• How about log (n!)?

$$log(n!) = log \frac{c\sqrt{nn^{n}}}{e^{n}} = C + log n^{n+1/2} - log(e^{n})$$
$$= C + n log n + \frac{1}{2} log n - n$$
$$= C + \frac{n}{2} log n + (\frac{n}{2} log n - n) + \frac{1}{2} log n$$
$$= \Theta(n log n)$$

#### More Advanced Dominance Rankings

 $n! \gg c^n \gg n^3 \gg n^2 \gg n^{1+\epsilon} \gg n \log n \gg n \gg \sqrt{n} \gg \log^2 n \gg \log n \gg \log n \gg \log n / \log \log n \gg \log \log n \gg \alpha(n) \gg 1$ 

# **Asymptotic Notation Summary**

O: Big-Oh •Ω: Big-Omega • Θ: Theta o: Small-oh •ω: Small-omega Intuitively: O is like  $\leq$  $\Omega$  is like  $\geq$  $\Theta$  is like = o is like <  $\omega$  is like >

#### **Properties of Asymptotic Notations**

#### CLRS textbook, page 51

#### Transitivity

 $f(n) = \Theta(g(n))$  and  $g(n) = \Theta(h(n))$ 

$$\Rightarrow f(n) = \Theta(h(n))$$

(holds true for o, O,  $\omega$ , and  $\Omega$  as well).

#### Symmetry

 $f(n) = \Theta(g(n))$  if and only if  $g(n) = \Theta(f(n))$ 

Transpose symmetry

f(n) = O(g(n)) if and only if  $g(n) = \Omega(f(n))$ f(n) = o(g(n)) if and only if  $g(n) = \omega(f(n))$ 

#### Exponential and Logarithmic Functions

- CLRS textbook, pages 55-56
- It is important to understand what logarithms are and where they come from.
- A logarithm is simply an inverse exponential function.
- Saying b<sup>x</sup> = y is equivalent to saying that x = log<sub>b</sub> y.
- Logarithms reflect how many times we can double something until we get to n, or halve something until we get to 1.
- log<sub>2</sub>1 = ?
- log<sub>2</sub>2 = ?

## **Useful Rules for Logarithms**

- For all a > 0, b > 0, c > 0, the following rules hold
- $\log_b a = \log_c a / \log_c b = \lg a / \lg b$
- log<sub>b</sub>a<sup>n</sup> = n log<sub>b</sub>a
- ♦ b<sup>log</sup>b<sup>a</sup> = a
- log (ab) = log a + log b
  - lg (2n) = ?
- log (a/b) = log (a) log(b)
  - lg (n/2) = ?
  - lg (1/n) = ?
- $\log_{b}a = 1 / \log_{a}b$

## **Useful Rules for Exponentials**

- For all a > 0, b > 0, c > 0, the following rules hold
- $a^{0} = 1$  (0<sup>0</sup> = ?)
- ♦ a<sup>1</sup> = a
- ♦ a<sup>-1</sup> = 1/a
- $(a^m)^n = a^{mn}$
- $\bullet$  (a<sup>m</sup>)<sup>n</sup> = (a<sup>n</sup>)<sup>m</sup>
- $\bullet a^m a^n = a^{m+n}$



## **Analyzing Recursive Algorithms**



## **Recursive Algorithms**

- General idea:
  - Divide a large problem into smaller ones
    - By a constant ratio
    - By a constant or some variable
  - Solve each smaller one recursively or explicitly
  - Combine the solutions of smaller ones to form a solution for the original problem

**Divide and Conquer** 

## MergeSort

MERGE-SORT A[1 ... n]1. If n = 1, done. 2. Recursively sort  $A[1 ... \lceil n/2 \rceil]$ and  $A[\lceil n/2 \rceil + 1 ... n]$ .

3. "*Merge*" the 2 sorted lists.

#### Key subroutine: MERGE



Subarray 1 Subarray 2



- 20 12
- 13 11
- 7 9
- 2 1

- 20 12
- 13 11
- 7 9

1 2

- 20 12
- 13 11
- 7 9







| 1     | 2     |       |
|-------|-------|-------|
|       | 2     |       |
| 79    | 7 9   | 79    |
| 13 11 | 13 11 | 13 11 |
| 20 12 | 20 12 | 20 12 |

| 1     | 2     | 7     |
|-------|-------|-------|
|       | 2     |       |
| 7 9   | 7 9   | 79    |
| 13 11 | 13 11 | 13 11 |
| 20 12 | 20 12 | 20 12 |

| 20 12    | 20 12      | 20 12      | 20 12              |
|----------|------------|------------|--------------------|
| 13 11    | 13 11      | 13 11      | <mark>13</mark> 11 |
| 79       | 7 9        | 79         | 9                  |
| 2        | 2          |            |                    |
| ¥ ∥<br>1 | ∥ ¥ ∥<br>2 | ∥ ¥ ∥<br>7 |                    |



| 20 12  | 20 12 | 20 12 | 20 12              | 20 12 |
|--------|-------|-------|--------------------|-------|
| 13 11  | 13 11 | 13 11 | <mark>13</mark> 11 | 13 11 |
| 79     | 7 9   | 79    | 9                  |       |
| 2      | 2     |       | T                  |       |
| $\int$ |       |       |                    |       |
| 1      | 2     | 7     | 9                  |       |

| 20 12 | 20 12 | 20 12 | 20 12              | 20 12   |
|-------|-------|-------|--------------------|---------|
| 13 11 | 13 11 | 13 11 | <mark>13</mark> 11 | 13 (11) |
| 7 9   | 7 9   | 79    | 9                  |         |
| 2     | 2     |       | T                  |         |
|       |       |       |                    | ļ       |
| 1     | 2     | 7     | 9                  | 11      |

| 20 12 | 20 12 | 20 12 | 20 12              | 20 12   | 20 12 |
|-------|-------|-------|--------------------|---------|-------|
| 13 11 | 13 11 | 13 11 | <mark>13</mark> 11 | 13 (11) | 13    |
| 7 9   | 7 9   | 79    | 9                  |         |       |
| 2     | 2     |       | $\int$             |         |       |
|       |       |       |                    |         |       |
| 1     | 2     | 7     | 9                  | 11      |       |

| 20 12  | 20 12 | 20 12 | 20 12              | 20 12 | 20 (12) |
|--------|-------|-------|--------------------|-------|---------|
| 13 11  | 13 11 | 13 11 | <mark>13</mark> 11 | 13 11 | 13      |
| 7 9    | 7 9   | 79    | 9                  |       |         |
| 2      | 2     |       | $\int$             |       |         |
| $\int$ |       |       |                    |       | ļ       |
| 1      | 2     | 7     | 9                  | 11    | 12      |

How to Show the Correctness of a Recursive Algorithm?

#### By induction:

- Base case: prove it works for small examples
- Inductive hypothesis: assume the solution is correct for all sub-problems
- Step: show that, if the inductive hypothesis is correct, then the algorithm is correct for the original problem.

## Correctness of MergeSort

#### MERGE-SORT $A[1 \dots n]$

- 1. If n = 1, done.
- 2. Recursively sort  $A[1 . . \lceil n/2 \rceil]$ and  $A[\lceil n/2 \rceil + 1 . . n]$ .
- 3. "*Merge*" the 2 sorted lists.

#### **Proof:**

- Base case: if n = 1, the algorithm will return the correct answer because A[1..1] is already sorted.
- 2. Inductive hypothesis: assume that the algorithm correctly sorts  $A[1.. \lceil n/2 \rceil]$  and  $A[\lceil n/2 \rceil+1..n]$ .
- 3. Step: if A[1..  $\lceil n/2 \rceil$ ] and A[ $\lceil n/2 \rceil$ +1..n] are both correctly sorted, the whole array A[1..  $\lceil n/2 \rceil$ ] and A[ $\lceil n/2 \rceil$ +1..n] is sorted after merging.

How to Analyze the Time-Efficiency of a Recursive Algorithm?

Express the running time on input of size
 n as a function of the running time on
 smaller problems

# Analyzing MergeSort

 $\begin{array}{c}
 T(n) \\
 \Theta(1) \\
 2T(n/2) \\
 f(n)
 \end{array}$ 

MERGE-SORT *A*[1 . . *n*]
1. If *n* = 1, done.
2. Recursively sort *A*[1...[*n*/2]] and *A*[[*n*/2]+1..*n*].
3. "Merge" the 2 sorted lists

Sloppiness: Should be  $T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor)$ , but it turns out not to matter asymptotically.

# Analyzing MergeSort

- *1. Divide:* Trivial.
- 2. Conquer: Recursively sort 2 subarrays.
- 3. *Combine:* Merge two sorted subarrays

subproblem size

$$T(n) = 2T(n/2) + f(n) + \Theta(1)$$

# subproblems

Dividing and Combining

Constant

- 1. What is the time for the base case?
- 2. What is f(n)?
- 3. What is the growth order of T(n)?



 $\Theta(n)$  time to merge a total of *n* elements (linear time).

#### **Recurrence for MergeSort**

$$T(n) = \begin{cases} \Theta(1) \text{ if } n = 1; \\ 2T(n/2) + \Theta(n) \text{ if } n > 1. \end{cases}$$

• Later we shall often omit stating the base case when  $T(n) = \Theta(1)$  for sufficiently small *n*, but only when it has no effect on the asymptotic solution to the recurrence.

• But what does T(n) solve to? i.e., is it O(n) or  $O(n^2)$  or  $O(n^3)$  or ...?
To find an element in a sorted array, we

- 1. Check the middle element
- 2. If ==, we've found it
- 3. Else, if less than wanted, search right half
- 4. else search left half

*Example:* Find 9

To find an element in a sorted array, we

- 1. Check the middle element
- 2. If ==, we've found it
- 3. Else, if less than wanted, search right half
- 4. else search left half

*Example:* Find 9

To find an element in a sorted array, we

- 1. Check the middle element
- 2. If ==, we've found it
- Else, if less than wanted, search right half
- 4. else search left half

*Example:* Find 9

3 5 7 8 9 12 15

To find an element in a sorted array, we

- 1. Check the middle element
- 2. If ==, we've found it
- 3. Else, if less than wanted, search right half
- else search left half
   *Example:* Find 9

To find an element in a sorted array, we

- 1. Check the middle element
- 2. If ==, we've found it
- 3. Else, if less than wanted, search right half
- 4. else search left half*Example:* Find 9

To find an element in a sorted array, we

- 1. Check the middle element
- 2. If ==, we've found it
- 3. Else, if less than wanted, search right half
- 4. else search left half

*Example:* Find 9

3 5 7 8 9 12 15

```
BinarySearch (A[1..N], value) {
  if (N == 0)
                           // not found
      return -1;
  mid = (1+N)/2;
  if (A[mid] == value)
                          // found
       return mid;
  else if (A[mid] < value)
      return BinarySearch (A[mid+1, N], value)
  else
      return BinarySearch (A[1..mid-1], value);
```

}

What's the recurrence relation for its running time?

### **Recurrence for Binary Search**

$$T(n) = T\left(\frac{n}{2}\right) + \Theta(1)$$

$$T(1) = \Theta(1)$$

#### **Recursive InsertionSort**

- RecursiveInsertionSort(A[1..n])
- 1. if (n == 1) do nothing;
- 2. RecursiveInsertionSort(A[1..n-1]);
- 3. Find index i in A such that A[i] <= A[n] < A[i+1];
- 4. Insert A[n] after A[i];

#### **Recurrence for InsertionSort**

 $T(n) = T(n-1) + \Theta(n)$ 

 $T(1) = \Theta(1)$ 

### **Compute Factorial**

# Factorial (n) if (n == 1) return 1; return n \* Factorial (n-1);

 Note: here we use n as the size of the input. However, usually for such algorithms we would use log(n), i.e., the bits needed to represent n, as the input size.

#### Recurrence for Computing Factorial

 $T(n) = T(n-1) + \Theta(1)$  $T(1) = \Theta(1)$ 

 Note: here we use n as the size of the input. However, usually for such algorithms we would use log(n), i.e., the bits needed to represent n, as the input size.

#### What do These Signify?

$$T(n) = T(n-1) + 1$$

$$T(n) = T(n-1) + n$$

$$T(n) = T(n/2) + 1$$

$$T(n) = 2T(n/2) + 1$$

Challenge: how to solve the recurrence to get a closed form, e.g.  $T(n) = \Theta(n^2)$  or  $T(n) = \Theta(nlgn)$ , or at least some bound such as  $T(n) = O(n^2)$ ?

## **Solving Recurrences**

 Running time of many algorithms can be expressed in one of the following two recursive forms

T(n) = aT(n-b) + f(n)

or

$$T(n) = aT(n/b) + f(n)$$

Both can be very hard to solve. We focus on relatively easy ones, which you will encounter frequently in many real algorithms (and exams...)

## **Solving Recurrences**

- 1. Recursion tree / iteration method
- 2. Substitution method
- 3. Master method