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Correctness of Algorithms

For any algorithm, we must prove that it 
always returns the desired output for all 
legal instances of the problem.
For sorting, this means even if (1) the 
input is already sorted, or (2) it contains 
repeated elements.
Algorithm correctness is NOT obvious in 
many cases (e.g., optimization)
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Efficiency of Algorithms

Correctness alone is not sufficient
Brute-force algorithms exist for most 
problems
To sort n numbers, we can enumerate all 
permutations of these numbers and test 
which permutation has the correct order

Why cannot we do this?
Too slow! 
By what standard?
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Exact Algorithm Analysis is 
Hard

Worst-case and average-case are difficult 
to analyze precisely -- the details can be 
very complicated

Easier to talk about upper and lower bounds on the 
function T(n), the count of the number of operations 
the algorithm performs.
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Kinds of Analyses

Worst case
Provides an upper bound on running time
An absolute guarantee

Best case – not very useful
Average case

Provides the expected running time
Very useful, but treat with care: what is “average”?

Random (equally likely) inputs
Real-life inputs
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Analysis of Insertion Sort

InsertionSort(A, n) {
for j = 2 to n {

key = A[j]
i = j - 1;
while (i > 0) and (A[i] > key) {

A[i+1] = A[i]
i = i - 1

}
A[i+1] = key

}
}

How many times will 
this line execute?
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Analysis of Insertion Sort
Statement cost   time__

InsertionSort(A, n) {
for j = 2 to n { c1 n

key = A[j] c2 (n-1)
i = j - 1; c3 (n-1)
while (i > 0) and (A[i] > key) { c4 S

A[i+1] = A[i] c5 (S-(n-1))
i = i - 1 c6 (S-(n-1))

} 0
A[i+1] = key c7 (n-1)

} 0
}

S = t2 + t3 + … + tn where tj is number of while 
expression evaluations for the  jth for loop iteration
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Analyzing Insertion Sort
T(n) = c1n + c2(n-1) + c3(n-1) + c4S + c5(S - (n-1)) + c6(S - (n-1)) + c7(n-1) 

= c8S + c9n + c10

What can S be?
Best case -- inner loop body never executed

tj = 1  S = n - 1 
T(n) = an + b is a linear function

Worst case -- inner loop body executed for all previous 
elements

tj = j  S = 2 + 3 + … + n = n(n+1)/2 - 1
T(n) = an2 + bn + c is a quadratic function

Average case
Can assume that on average, we have to insert A[j] into the 
middle of A[1..j-1], so tj = j/2
S ≈ n(n+1)/4
T(n) is still a quadratic function
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Asymptotic Analysis
Abstract statement costs (don’t care about c1, 
c2, etc) 
Order of growth (as a function of n, the input 
size) is the interesting measure:

Highest-order term is what counts
As the input size grows larger it is the high order term that 
dominates
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Comparison of functions
log2n n nlog2n n2 n3 2n n!

10 3.3 10 33 102 103 103 106

102 6.6 102 660 104 106 1030 10158

103 10 103 104 106 109

104 13 104 105 108 1012

105 17 105 106 1010 1015

106 20 106 107 1012 1018

For a super computer that does 1 trillion operations 
per second, it will be longer than 1 billion years
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Order of Growth

1 << log2n << n << nlog2n << n2 << n3 << 2n << n!

(We are slightly abusing of the “<<“ sign. It means 
a smaller order of growth).
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Asymptotic Notations

We say InsertionSort’s worst-case 
running time is Θ(n2)

Properly we should say running time is in
Θ(n2)
It is also in O(n2 )
What’s the relationships between Θ and O?

Formal definition comes next
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Asymptotic Notations

O: Big-Oh
Ω: Big-Omega
Θ: Theta
o: Small-oh
ω: Small-omega
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Big “O”
Informally, O(g(n)) is the set of all 
functions with a smaller or same order of 
growth as g(n), within a constant multiple
If we say f(n) is in O(g(n)), it means that 
g(n) is an asymptotic upper bound on f(n)

Formally:
∃ C (>0) & n0, f(n) ≤ Cg(n) for ∀ n >= n0

What is O(n2)?
The set of all functions that grow slower than 
or at the same order as n2
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Big “O”

So: 
n ∈ O(n2)
n2 ∈ O(n2) 
1000n ∈ O(n2)
n2 + n ∈ O(n2) 
100n2 + n ∈ O(n2)

But:
1/1000 n3 ∉ O(n2)

O is an upper bound
notation, like ≤

We ignore constants,
lower order terms –
get to the essential
growth

Even though formally we should
write n ∈ O(n2), in practice we write
n = O(n2)
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Small “o”

Informally, o(g(n)) is the set of all functions with 
a strictly smaller growth as g(n), within a 
constant factor
What is o(n2)?

The set of all functions that grow slower than n2

So: 
1000n ∈ o(n2)

But: 
n2 ∉ o(n2)

o is a strict upper bound
notation, like < 

Formally,

𝑓𝑓 𝑛𝑛 ∈ 𝑜𝑜(𝑔𝑔 𝑛𝑛 )

𝑓𝑓 𝑛𝑛
𝑔𝑔 𝑛𝑛 → 0 𝑎𝑎𝑎𝑎 𝑛𝑛 → ∞
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Big “Ω” [Omega]

Informally, Ω(g(n)) is the set of all functions with a larger 
or same order of growth as g(n), within a constant 
multiple
f(n) ∈ Ω(g(n)) means g(n) is an asymptotic lower bound
of f(n)

Intuitively, it is like f(n) ≥ g(n)

So: 
n2 ∈ Ω(n) 
1/1000 n2 ∈ Ω(n)

But:
1000 n ∉ Ω(n2)

Intuitively, Ω is like ≥

a lower bound notation
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Small “ω” [omega]

Informally, ω(g(n)) is the set of all 
functions with a strictly larger order of 
growth than g(n), within a constant factor

So: 
n2 ∈ ω(n) 
1/1000 n2 ∈ ω(n)
n2 ∉ ω(n2) 

Intuitively, ω is like >

a strict lower bound
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Theta (“Θ”): Θ = O and Ω

Informally, Θ(g(n)) is the set of all 
functions with the same order of growth 
as g(n), within a constant multiple
f(n) ∈ Θ(g(n)) means g(n) is an 
asymptotically tight bound on f(n)

Intuitively, it is like f(n) = g(n)
What is Θ(n2)?

The set of all functions that grow at the same 
order as n2
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Big “Θ” [Theta]

So: 
n2 ∈ Θ(n2) 
n2 + n ∈ Θ(n2) 
100n2 + n ∈ Θ(n2)
100n2 + log2n ∈ Θ(n2)

But:
nlog2n ∉ Θ(n2)
1000n ∉ Θ(n2)
1/1000 n3 ∉ Θ(n2)

Intuitively, Θ is like =
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Tricky Cases

How about sqrt(n) and log2 n?

How about log2 n and log10 n

How about 2n and 3n

How about 3n and n!? 
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Big “O”, Formally

Definition:
O(g(n)) = {f(n):  ∃ positive constants C and n0
such that 0 ≤ f(n) ≤ Cg(n) ∀ n>n0}

lim n→∞ g(n)/f(n) > 0 (if the limit exists)

Abuse of notation (for convenience):
f(n) = O(g(n)) actually means f(n) ∈ O(g(n))

There exist
For all
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Big “O”, Example

Claim: f(n) = 3n2 + 10n + 5 ∈ O(n2)
Proof from the definition
To prove this claim by definition, we need to find some positive 
constants C and n0 such that f(n) <= Cn2 for all n > n0.
(Note: you just need to find one concrete example of c and n0
satisfying the condition.)
3n2 + 10n + 5 ≤ 10n2 + 10n + 10 

≤ 10n2 + 10n2 + 10n2,∀ n ≥ 1
≤ 30 n2, ∀ n ≥ 1

Therefore, if we let C = 30 and n0 = 1, we have f(n) ≤ C n2, ∀ n ≥
n0. 
Hence according to the definition of big-Oh, f(n) = O(n2).
Alternatively, we can show that

lim n→∞ n2 / (3n2 + 10n + 5) = 1/3 > 0
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Big “Ω”, Formally

Definition:
Ω(g(n)) = {f(n):  ∃ positive constants C and n0
such that 0 ≤ Cg(n) ≤ f(n) ∀ n>n0}

lim n→∞ f(n)/g(n) > 0 (if the limit exists.)
Abuse of notation (for convenience):
f(n) = Ω(g(n)) actually means f(n) ∈ Ω(g(n))
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Big “Ω”, Example

Claim: f(n) = n2 / 10 = Ω(n)

Proof from the definition: 
f(n) = n2 / 10, g(n) = n
Need to find a C and a n0 to satisfy the definition of f(n) ∈

Ω(g(n)), i.e., f(n) ≥ Cg(n) for n > n0
n ≤ n2 / 10 when n ≥ 10
If we let C = 1 and n0 = 10, we have f(n) ≥ Cn, ∀ n ≥ n0. 

Therefore, according to the definition, f(n) = Ω(n).

Alternatively: 
lim n→∞ f(n)/g(n) = lim n→∞ (n/10) = ∞
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Big “Θ”, Formally

Definition:
Θ(g(n)) = {f(n):  ∃ positive constants c1, c2, 
and n0 such that 0 ≤ c1 g(n) ≤ f(n) ≤ c2 g(n),    
∀ n ≥ n0 }

lim n→∞ f(n)/g(n) = c > 0 and c < ∞
f(n) = O(g(n)) and f(n) = Ω(g(n))
Abuse of notation (for convenience):
f(n) = Θ(g(n)) actually means f(n) ∈ Θ(g(n))
Θ(1) means constant time.
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Big “Θ”, Example

Claim: f(n) = 2n2 + n = Θ (n2)
Proof from the definition:

Need to find the three constants c1, c2, and 
n0 such that 
c1n2 ≤ 2n2+n ≤ c2n2 for all n > n0

A simple solution is c1 = 2, c2 = 3, and n0 = 1

Alternatively, limn→∞(2n2+n)/n2 = 2
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More Examples

Prove n2 + 3n + lg n is in O(n2)
Want to find c and n0 such that 

n2 + 3n + lg n <= cn2 for n > n0
Proof:
n2 + 3n + lg n <= 3n2 + 3n + 3lgn        for n > 1

<= 3n2 + 3n2 + 3n2   

<= 9n2

Or n2 + 3n + lg n <= n2 + n2 + n2 for n > 10 
<= 3n2
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More Examples

Prove n2 + 3n + lg n is in Ω(n2)
Want to find c and n0 such that 

n2 + 3n + lg n >= cn2 for n > n0

n2 + 3n + lg n >= n2 for n > 1

n2 + 3n + lg n = O(n2) and n2 + 3n + lg n = Ω (n2) 
=> n2 + 3n + lg n = Θ(n2)
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O, Ω, and Θ

The definitions imply a constant n0 beyond which they are
satisfied. We do not care about small values of n.
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Using Limits to Compare Orders of 
Growth

0
lim f(n) / g(n) =     c   > 0

∞n→∞

f(n) ∈ o(g(n))

f(n) ∈ Θ (g(n))

f(n) ∈ ω (g(n))

f(n) ∈ O(g(n))

f(n) ∈ Ω(g(n))
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Logarithms

compare log2n and log10n

logab = logcb / logca
log2n = log10n / log102 ~ 3.3 log10n
Therefore lim(log2n / log10 n) = 3.3
log2n = Θ (log10n)
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Exponentials

Compare 2n and 3n

lim 2n / 3n = lim(2/3)n = 0
Therefore, 2n ∈ o(3n), and 3n ∈ ω(2n)

How about 2n and 2n+1?
2n / 2n+1 = ½, therefore 2n = Θ (2n+1)

n→∞ n→∞
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L’ Hopital’s Rule

You can apply this transformation as many 
times as you want, as long as the condition 
holds

lim f(n) / g(n) = lim f’(n) / g’(n)
n→∞ n→∞

Condition: 

If both lim f(n) and 
lim g(n) are  ∞ or 0
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Compare n0.5 and log n

lim n0.5 / ln n = ?

(n0.5)’ = 0.5 1/n0.5

(ln n)’ = 1 / n
lim (1/n0.5 / 1/n) = lim (n0.5) = ∞
Therefore, ln n ∈ o(n0.5)
In fact, ln n ∈ o(nε), for any ε > 0 – and so is log n

n→∞



38

Stirling’s Formula (Useful)
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Compare 2n and n!

Therefore, 2n = o(n!)

Compare nn and n!

Therefore, nn = ω(n!)

How about log (n!)?
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More Advanced Dominance 
Rankings
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Asymptotic Notation Summary

O: Big-Oh
Ω: Big-Omega
Θ: Theta
o: Small-oh
ω: Small-omega
Intuitively:
O is like ≤
o is like <

Ω is like ≥
ω is like >

Θ is like =
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Properties of Asymptotic Notations

CLRS textbook, page 51 
Transitivity
f(n) = Θ(g(n)) and g(n) = Θ(h(n)) 
=> f(n) = Θ(h(n))
(holds true for o, O, ω, and Ω as well).

Symmetry
f(n) = Θ(g(n)) if and only if g(n) = Θ(f(n))

Transpose symmetry
f(n) = O(g(n)) if and only if g(n) = Ω(f(n))
f(n) = o(g(n)) if and only if g(n) = ω(f(n))
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Exponential and Logarithmic 
Functions

CLRS textbook, pages 55-56
It is important to understand what logarithms are and 
where they come from.
A logarithm is simply an inverse exponential function.
Saying bx = y is equivalent to saying that 
x = logb y. 
Logarithms reflect how many times we can double 
something until we get to n, or halve something until we 
get to 1.
log21 = ?
log22 = ?
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Useful Rules for Logarithms

For all a > 0, b > 0, c > 0, the following rules 
hold
logba = logca / logcb = lg a / lg b
logban = n logba
b

logba = a
log (ab) = log a + log b

lg (2n) = ?
log (a/b) = log (a) – log(b)

lg (n/2) = ?
lg (1/n) = ?

logba = 1 / logab
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Useful Rules for Exponentials

For all a > 0, b > 0, c > 0, the following 
rules hold
a0 = 1   (00 = ?)
a1 = a
a-1 = 1/a
(am)n = amn

(am)n = (an)m

aman = am+n
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Analyzing Recursive Algorithms
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Recursive Algorithms

General idea:
Divide a large problem into smaller ones

By a constant ratio
By a constant or some variable

Solve each smaller one recursively or 
explicitly
Combine the solutions of smaller ones to 
form a solution for the original problem

Divide and Conquer
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MergeSort

MERGE-SORT A[1 . . n]
1. If n = 1, done.
2. Recursively sort A[ 1 . . n/2 ]

and A[ n/2+1 . . n ] .
3. “Merge” the 2 sorted lists.

Key subroutine: MERGE
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How to Show the Correctness of a 
Recursive Algorithm?

By induction:
Base case: prove it works for small examples
Inductive hypothesis: assume the solution is 
correct for all sub-problems
Step: show that, if the inductive hypothesis is 
correct, then the algorithm is correct for the 
original problem.
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Correctness of MergeSort
MERGE-SORT A[1 . . n]

1. If n = 1, done.
2. Recursively sort A[ 1 . . n/2 ]

and A[ n/2+1 . . n ] .
3. “Merge” the 2 sorted lists.

Proof:
1. Base case: if n = 1, the algorithm will return the correct answer 

because A[1..1] is already sorted.
2. Inductive hypothesis: assume that the algorithm correctly sorts 

A[1.. n/2 ] and A[n/2+1..n].
3. Step: if A[1.. n/2 ] and A[n/2+1..n] are both correctly sorted, the 

whole array A[1.. n/2 ] and A[n/2+1..n] is sorted after merging.
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How to Analyze the Time-Efficiency 
of a Recursive Algorithm?

Express the running time on input of size 
n as a function of the running time on 
smaller problems
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Analyzing MergeSort

MERGE-SORT A[1 . . n]
1. If n = 1, done.
2. Recursively sort A[ 1 . . n/2 ]

and A[ n/2+1 . . n ] .
3. “Merge” the 2 sorted lists

T(n)
Θ(1)
2T(n/2)

f(n)

Sloppiness: Should be T( n/2 ) + T( n/2 ) , 
but it turns out not to matter asymptotically.



70

Analyzing MergeSort
1. Divide: Trivial.
2. Conquer: Recursively sort 2 subarrays.
3. Combine: Merge two sorted subarrays

T(n) = 2 T(n/2) + f(n)  +Θ(1)

# subproblems
subproblem size

Dividing and 
Combining

1. What is the time for the base case? 

2. What is f(n)?

3. What is the growth order of T(n)?

Constant
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Merging Two Sorted Arrays
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Recurrence for MergeSort

T(n) =
Θ(1) if n = 1;
2T(n/2) + Θ(n) if n > 1.

• Later we shall often omit stating the base 
case when T(n) = Θ(1) for sufficiently 
small n, but only when it has no effect on 
the asymptotic solution to the recurrence.

• But what does T(n) solve to? i.e., is it O(n)
or O(n2) or O(n3) or …? 
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Binary Search
To find an element in a sorted array, we
1. Check the middle element
2. If ==, we’ve found it
3. Else, if less than wanted, search right 

half
4. else search left half

Example: Find 9

3 5 7 8 9 12 15
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Binary Search
To find an element in a sorted array, we
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3 5 7 8 9 12 15
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Binary Search
To find an element in a sorted array, we
1. Check the middle element
2. If ==, we’ve found it
3. Else, if less than wanted, search right 

half
4. else search left half

Example: Find 9

3 5 7 8 9 12 15
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Binary Search

BinarySearch (A[1..N], value) { 
if (N == 0) 

return -1; // not found
mid = (1+N)/2;
if (A[mid] == value) 

return mid; // found 
else if (A[mid] < value) 

return BinarySearch (A[mid+1, N], value) 
else 

return BinarySearch (A[1..mid-1], value); 
} 

What’s the recurrence relation for its running time?
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Recurrence for Binary Search

)1(
2

)( Θ+





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Recursive InsertionSort

RecursiveInsertionSort(A[1..n])
1. if (n == 1) do nothing;
2.RecursiveInsertionSort(A[1..n-1]);
3.Find index i in A such that A[i] <= A[n] < A[i+1];
4. Insert A[n] after A[i];
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Recurrence for InsertionSort

( ) )(1)( nnTnT Θ+−=

)1()1( Θ=T
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Compute Factorial

Factorial (n)
if (n == 1) return 1;
return n * Factorial (n-1);

• Note: here we use n as the size of the input. However, 
usually for such algorithms we would use log(n), i.e., the 
bits needed to represent n, as the input size.
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Recurrence for Computing 
Factorial

Note: here we use n as the size of the input. However, 
usually for such algorithms we would use log(n), i.e., the 
bits needed to represent n, as the input size.

( ) )1(1)( Θ+−= nTnT

)1()1( Θ=T
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What do These Signify?
( )

( )

( )

( ) 12/2)(

12/)(

1)(

11)(

+=

+=

+−=

+−=

nTnT

nTnT

nnTnT

nTnT

Challenge: how to solve the recurrence to get a closed 
form, e.g. T(n) = Θ (n2) or T(n) = Θ(nlgn), or at least some 
bound such as T(n) = O(n2)?



86

Solving Recurrences
Running time of many algorithms can be 
expressed in one of the following two 
recursive forms

)()/()(

)()()(

nfbnaTnT

nfbnaTnT

+=

+−=

or

Both can be very hard to solve. We focus on 
relatively easy ones, which you will encounter 
frequently in many real algorithms (and exams…)
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Solving Recurrences

1. Recursion tree / iteration method
2. Substitution method
3. Master method
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