CS161.
Design and Analysis of
Algorithms

=4 .
v, W 4
J
L ecture 3

Leonidas Guibas

Qutline

+ Review of last lecture (asymptotic
notations, recurrence relations)

+Key Topic: Solving Recurrences
#Uusing recursion trees (or iteration)
+the master method
+the substitution method

Slides modified from
e http://lwww.cs.virginia.edu/~luebke/cs332/

http://www.cs.virginia.edu/%7Eluebke/cs332/

Asymptotic Bounds on
Algorithm Performance

+\Worst-case and average-case are difficult
to analyze precisely -- the detalls can be
very complicated

A

T(n)

>
n

It may be easier to talk about upper and
lower bounds on the function T(n).

Review: Asymptotic Notations

+O: Big-Oh

+(): Big-Omega
+0O: Theta

¢ 0. Small-oh

¢ . Small-omega

Big O

+ Informally, O(g(n)) Is the set of all
functions with a smaller or same order of
growth as g(n), within a constant multiple

Intuitively, O is like <

an upper bound notation

+If we say f(n) is in O(g(n)), this means
that g(n) Is an asymptotic upper bound on
f(n)
+Formally. 3 C (>0) & ng, f(n) = Cg(n) for ¥ n
>= nO

g(n) should be a “simple” function

Big Q

+ Informally, Q(g(n)) is the set of all functions with a larger
or same order of growth as g(n), within a constant
multiple

+ f(n) € Q(g(n)) means g(n) is an asymptotic lower bound
of f(n)
+ Intuitively, it is like f(n) = g(n)

Intuitively, Q is like =

a lower bound notation

Theta (©@): © = 0O and Q

+ Informally, ©(g(n)) Is the set of all

functions with the same order of growth

as g(n), within a constant multiple

O is like =

+f(n) € ©(g(n)) means g(n) Is an
asymptotically tight bound on f(n)
¢ ntuitively, it is like f(n) = g(n)

O, Q and ©

c,g(n) cg(n)

) f(n)

7 f(n)

c18(n)

n ' n : n
No) no No .

f(n) = ©O(g(n)) f(n) = 0O(g(n)) f(n) = Q(g(n))
(a) (b) (c)

The definitions imply a constant ny beyond which they are
satisfied. We do not care about small values of n.

Algorithm Efficiency via
Recurrences

T(N)=T(n-1)+1
T(N)=T(n-1)+n
T(N)=T(n/2)+1

T(n)=2T(n/2)+1

Challenge: how to solve the recurrence to get a tight bound,
e.g. T(n) = O (n?) or T(n) = O(n Ign), or at least an upper
bound such as T(n) = O(n?)?

Solving Recurrences

+ The running time of many algorithms can
be expressed in one of the following two
recursive forms

T(n)=aT(n-b)+ f(n)

or

T(n)=aT(n/b)+ f(n)

Both can be hard to solve. We focus on relatively
easy ones, which you will encounter frequently in
many real algorithms (and exams...)

10

Solving Recurrences

1. Recursion tree / iteration method
2. Master method
3. Substitution method

11

The Recursion Tree Method

12

Review: Back to MergeSort

T(n) MERGE-SORT A[1 . . n]
O(1) 1. 1f n=1, done.
2T(n/2)| 2. Recursively sort A[1 . .

'n/21]and A[n/21+1..n].
/®(”) 3. “Merge” the 2 sorted lists

Sloppiness: Should be T(n/21) + T(Ln/2]),
but It turns out not to matter asymptotically.

13

Recurrence for MergeSort

[O@)ifn=1,;
T = {ZT(n/Z) + @) ifn> 1.

* We saw that the cost of the Merge
step is ®(n).

* We shall usually omit stating the base
case when T(n) = ®(1) for sufficiently
small n, but only when it has no effect

on the asymptotic solution to the
recurrence.

14

Recursion Tree

Solve T(n) = 2T(n/2) + cn, where ¢ > 0 IS constant.

15

Recursion Tree

Solve T(n) =2T(n/2) + cn, where ¢ > 0 IS constant.

T(n)

16

Recursion Tree

Solve T(n) = 2T(n/2) + cn, where ¢ > 0 IS constant.

/ chn ~_
T(n/2) T(n/2)

17

Recursion Tree

Solve T(n) = 2T(n/2) + cn, where ¢ > 0 Is constant.

cn
/ \
cn/2 cn/2
/ /S

T(/4) T(n/4) T(n/4) T(n/4)

18

Recursion Tree

Solve T(n) = 2T(n/2) + cn, where ¢ > 0 Is constant.

cn
/ \
cn/2 cn/2
/ /.

cn/4 cn/4 cn/4 cn/4
/

o(1)

19

Recursion Tree

Solve T(n) = 2T(n/2) + cn, where ¢ > 0 IS constant.

cn
/ \
cn/2 cn/2
/ /.

h=1Ign ¢4 cn/4 cn/4 cn/4
/

o(1)

20

Recursion Tree

Solve T(n) = 2T(n/2) + cn, where ¢ > 0 IS constant.

cn/2 cn/2
/ /.

h=1Ign ¢4 cn/4 cn/4 cn/4
/

o(1)

21

Recursion Tree

Solve T(n) = 2T(n/2) + cn, where ¢ > 0 IS constant.

cn/2 cn/2 cn
N RN

h=1Ign ¢4 cn/4 cn/4 cn/4
/

o(1)

22

Recursion Tree

Solve T(n) = 2T(n/2) + cn, where ¢ > 0 Is constant.

cn/2 cn/2 cn
N RN

h=1Ign ¢4 cn/4 cn/4 cn/4 - ¢n
/

o(1)

23

Solve T(n) =

Recursion Tree

2T(n/2) + cn, where ¢ > 0 Is constant.

CN s cn
/ \
cn/2 cn/2 cn
- /N / N\
=190 cnia e enia cnid——cn
/
-

O(1) #leaves = n l ------------------------------- O(n)

24

Solve T(n) =

h=1Ign ¢4
/

Recursion Tree

2T(n/2) + cn, where ¢ > 0 Is constant.

CN s ch
T
cn/2 cn/2 cn
RN RN
cn/4 cn/4 cn/4 ——-cn
------------ #leaves = n l O(n)

Total = ©(n Ig n)

Another Example

+ How many multiplications do we need to
compute 31672

316=3 x3x3....x3 Answer: 15
316=38 x 38
38 =34 x 34

Answer: 4
34=32 x 32
32=3 x 3

Pseudocode for Recursion

iInt pow (b, n) // compute b"
m=n>>1; //divide by ?2
p = pow (b, m);

P=p~*p;
If (N % 2)
return p * b;
else
return p;

27

Pseudocode Variations

iInt pow (b, n)
m=n>>1;
p = pow (b, m);
P=p*p;
If (n % 2)
return p * b;
else
return p;

Int pow (b, n)
m=n>>1;

p = pow(b,m) * pow(b,m);

iIf (n % 2)
return p * b;
else
return p;

28

Recurrence for Computing Power

iInt pow (b, n)
m=n>>1;
p = pow (b, m);
P=p*p;
If (n % 2)
return p * b;
else
return p;

T(n) =T(n/2)+B(1)

Algl

Int pow (b, n) Alg2
m=n>>1,
p=pow(b,m)*pow(b,m);
If (n % 2)

return p * b;
else
return p;

T(n) =2T(n/2)+6(1)

Which algorithm is more efficient asymptotically?

29

Time Complexity for Algl

Solve T(n) =T(n/2) + 1

¢«T(N)=T(N/2) +1
=T(n4)+1+1
=T(n/8)+1+1+1
=T(1)+1 +1+...+1

J

log(n)

- 6 (log(y) O™

lteration method

30

Time Complexity for Alg2
Solve T(n) = 2T(n/2) + 1.

31

Time Complexity for Alg2

Solve T(n) = 2T(n/2) + 1.
T(n)

32

Time Complexity for Alg2
Solve T(n) = 2T(n/2) + 1.

T(n/2) T(n/2)

33

Time Complexity for Alg2
Solve T(n) = 2T(n/2) + 1.
1
1 T~ 1

RN /N
T(V4) T(n4) T(d) T(n/4)

34

Time Complexity for Alg2
Solve T(n) = 2T(n/2) + 1.

/\
/\ 1/\1

/

o(1)

35

h=

Time Complexity for Alg2
Solve T(n) = 2T(n/2) + 1.

/\
/\ 1/\1

/

Ig n

o(1)

36

h=

Time Complexity for Alg2
Solve T(n) =2T(n/2) + 1.

g n / \ 1/ \1

/

o(1)

37

h=

Time Complexity for Alg2
Solve T(n) =2T(n/2) + 1.

g n / \ 1/ \1

/

o(1)

38

h=

Time Complexity for Alg2
Solve T(n) = 2T(n/2) + 1.

Ign / \ 1/ \1 _______________

/

o(1)

39

Time Complexity for Alg2
Solve T(n) = 2T(n/2) + 1.

h=Ign 1 g [— 4

40

Time Complexity for Alg2
Solve T(n) = 2T(n/2) + 1.

/ T~ " ,
h= |g N / \ 1 / \ g [— 4
@(/1) ---------------- #leaves = n l ------------------------------- O(n)
Total ®(n)

41

More lteration Method
Examples

¢«T(N)=T(n-1)+ 1
=T(n-2)+1+1
=Tn-3)+1+1+1
=T)+1 +1+...+]

ntl

= Q(n)

42

More Iteration Method
Examples

+T(n)=T(n-1) +n
=T(n-2) + (n-1) + n
T(n-3) + (n-2) + (n-1) + n
T()+2 +3+...+n
© (n?)

Saw the same sum in InsertionSort

43

3-Way-MergeSort

3-way-merge-sort (A[1..n])
If (n <=1) return;
3-way-merge-sort(A[1..n/3));
3-way-merge-sort(A[n/3+1..2n/3]);
3-way-merge-sort(A[2n/3+1.. n]);
Merge A[1..n/3] and A[n/3+1..2n/3];
Merge A[1..2n/3] and A[2n/3+1..n];

e |s this algorithm correct?
 What's the recurrence function for the running time?
 What does the recurrence function solve to?

44

Unbalanced-MergeSort

ub-merge-sort (A[1..n])
If (n<=1) return;
ub-merge-sort(A[1..n/3));
ub-merge-sort(A[n/3+1.. n));
Merge A[l.. n/3] and A[n/3+1..n].

e |s this algorithm correct?
 What's the recurrence function for the running time?
 What does the recurrence function solve to?

45

More Recursion Tree Examples

+T(n) =3T(n/3) +n [3-Way MergeSort]
+T(n) =T(n/3) + T(2n/3) + n [ub-MergeSort]
¢T(n) =3T(n/4) + n

¢T(n) = 3T(n/4) + n?

46

The Master Method

47

The Master Method

The master method applies to recurrences of
the form

T(n)=aT(n/b) +f(n),

wherea>1,b>1, and f is asymptotically
positive.

1. Divide the problem into a subproblems, each of size n/b
2. Conquer the subproblems by solving them recursively.
3. Combine subproblem solutions

Divide + combine takes f(n) time.

48

Master Theorem

T(n) =a T(n/b) + f (n)
Key: compare f(n) with n'ogba
Cask 1: f(n) = O(nlogba-2) = T(n) = O(n'o%wa) ,
Cask 2: f(n) = ©(nlo%p?) = T(n) = O(n'°%2 |og n)

Cask 3: f(n) = Q(n'ogwa+2) and af (n/b) < cf(n)

Regularity Condition

— T(n) = O(f(n)) .

log, a log,, N

N =d

49

Case 1

f (n) = O(n'°%a-¢) for some constant € > 0.
Alternatively: n'oga/ f(n) = Q(n¢)

Intuition: f (n) grows polynomially slower than n'ogp?
Or: n'oga dominates f(n) by an n¢ factor for some € > 0
Solution: T(n) = ©(n'o%va)

T(n) =4T(n/2) + n T(n) = 2T(n/2) + n/logn
b=2,a=4,f(n)=n b=2,a=2,fn)= n/logn
log,4 = 2 log,2 =1

f(n) = n = 0(n??), or f(n) = n/logn ¢ O(n**), or

n2/n=nt=Q(n?, fore=1 nt/f(n) =logn & Q(n?), forany £ >0
- T(n) = O(n?) . CASE 1 does not apply

50

Case 2

f(n) = © (nlogwa),

Intuition: f(n) and n'°%2 have the same asymptotic order.

e.g.

Solution: T(n) = ®(n'o%2 |og n)

T(n)=T(n/2) +1

T(n)=2T(n/2) +n
T(n) = 4T(n/2) + n?
T(n) = 8T(n/2) + n3

log,a =0
log,a =1
log,a = 2

log,a = 3

51

Case 3

f (n) = Q(n'°%a+2) for some constant &= 0.
Alternatively: f(n) / nlogba = Q(ng)

Intuition: f (n) grows polynomially faster than n'og?
Or: f(n) dominates n'°9v2 by an ne factor for some &> 0
Solution: T(n) = @(f(n))

T(n) =T(n/2) +n T(n) = T(n/2) + log n
b=2a=11fn)=n b=2a=1,f(n) = logn
nlogxl =nd=1 nlog,l =p0=1

f(n) =n=Q(n°*), or f(n) = log n & Q(n°*4), or

- T(n) = O(n) .. CASE 3 does not apply

52

Regularity Condition

¢ af(n/b) <cf(n) for some c <1 and all sufficiently
large n

This 1s needed for the master method to be
mathematically correct.

+ to deal with some non-converging functions such as sine
or cosine functions
+ For most f(n) you’ll see (e.g., polynomial, logarithm,
exponential), you can safely ignore this condition,

because It Is implied by the first condition f (n) =
Q(nlogba+s)

53

A L) I ———
/q>\
f(ny) f(ny) F(11y) e
a
|log, n |
fn2) f(n2) - f(n2) S(na) f(nz) - f(ny) f(ny) f(no) = f(ny) wem :

Y G)('[) G)(Il) @(Il) G)(Il) G)(Il) @(I]) G)(Il)

O(n'osr @)

log, a log, n

n =a

flah ey L JMM%M flah et [l

o) O(1) O(1) .. ©O(1) O(1) O(1) it

@(nl‘-‘gb a)

Llogp, 7] —1

Total: O(n'%» %) + Z a’ f(n)) 54

J=0

Examples

T(n) =4T(n/2) + n
a=4,b=2=nlgka=n2 f(n)=n.
Cast 1: f(n) = O(n°-¢) for ¢ = 1.
- T(n) = ©(n?).

T(n) = 4T(n/2) + n?

a=4,b=2=nlga=n? f(n) =n2

Cast 2: f(n) = ©(n?).
- T(n) = ®(n%logn).

55

Examples

T(n) =4T(n/2) + n3
a=4,b=2=nlgwa=n? f(n)=ns
Case 3:f(n) =Q(n**¢) fore =1
and 4(n/2)? < cn? (reg. cond.) for ¢ = 1/2.
- T(n) = ©(nd).

T(n) = 4T(n/2) + n4/logn
a=4,b=2= nlogwa=n? f(n) =n?logn.
Master method does not apply. In particular, for
every constant € > 0, we have n¢ =w(logn).

56

Examples

T(n) = 4T(n/2) + n2>
a=4,b=2= nlogwa=n? f(n) =n2>,
Case 3: f(n) =Q(n**¢) fore = 0.5
and 4(n/2)?> < cn?>(reg. cond.) for ¢ = 0.75.
- T(n) = ©(n%>).

T(n) = 4T(n/2) + n?logn
a=4,b=2= nlogwa=n? f(n) =n?logn.
Master method does not apply. In particular, for
every constant € > 0, we have n¢ =w(logn).

57

How do | know which case to use? Do |
need to try all three cases one by one?

58

+ Compare f(n) with n'ogp?

+f(n) e {

check if nlogva/ f(n) e Q(n?)

o(n'e9va) Possible CASE 1
O(n'o%a) CASE 2

o(n'°9?) Possible CASE 3 N

check if f(n) / nlogv2 = Q(n?)

59

Examples

2. T(0) = 4T(0/2) +
b. T'(n) = 9T(n/3) + n*;
c. T(n)=061T(n/4) +n;

d. T(n) = 2T (n/4) +n;

e. T(n) = T(n/2) + nlogn;

f. T'(n) =4T(n/4) + nlogn.

log,a = 2. n = 0(n?) => Check case 1

log,a = 2. n? = ©(n?) => Check case 2

log,a = 1.3. n = o(n'3) => Check case 1

log,a = 0.5. n = ®(n®%) => Check case 3

log,a = 0. nlogn = ©(n°) => Check case 3

log,a = 1. nlogn = w(n) => Check case 3

60

Some Tricks

¢+ Changing variables

+ Obtaining upper and lower bounds
+Make a guess based on the bounds
+Prove using the substitution method

61

Changing Variables

T(n)=2T(n-1) +1
sletn=Igm,l.e., m=2"
=>T(lgm)=2T(lg(m/2)) + 1
¢Let S(m)=T(lgm) =T(n)
=>5S(m) =2S(m/2) + 1
=> S(m) = ®(m)
=>T(n) =S(m) = (M) = B(2")

62

Changing Variables

T(n)=T(/n)+1

¢ Letn=2m

=> sqrt(n) = 2M?2

+ We then have T(2™) = T(2™?) + 1
¢ Let T(n) =T(2™) = S(m)

=>S(m) = S(m/2) + 1

=S(m) =0 (log m) = O (log log n)
=T(n) = O (log log n)

63

Changing Variables

¢T(n)=2T(n-2) +1

eletn=Igm,l.e., m=2"
=>T(lgm)=2T(lgm/4) + 1

¢Let S(m)=T(lgm) =T(n)

=>5S(m) =2S(m/4) + 1

=> S(m) — ml/2

=> T(n) = S(m) = (2")¥2= (sqrt(2)) "~ 1.4"

64

Obtaining Bounds

Solve the Fibonacci variant:
T(nN)=T(n-1) + T(n-2) +1

¢T(n)>= 2]

¢T(n) <=2

+ Solving
+ Solving

1],
2],

(n-2) + 1 1]
‘(n-1) +1 2]

we obtain T(n) >= 1.4"
we obtain T(n) <= 2"

¢ Actually, T(n) = 1.62"

65

Obtaining Bounds

+T(n)=T(n/2) +log n
+T(n) € Q(log n)
¢+T(n) € O(T(n/2) + n?)
+ Solving T(n) = T(n/2) + ng,
we obtain T(n) = O(n?), for any € > 0

+S0: T(n) eO(n?) forany € >0

+T(n) Is unlikely polynomial

+Actually, T(n) = ©(log?n) by extended case 2

66

Extended Case 2

Cask 2: f(n) = ©(n'°93) = T(n) = O(n'°%2 log n).

Extended Case 2: (k >=0)
f(n) = ©(nl°%2 Jogkn) = T(n) = O(n'o9ba Jogk+in),

67

Solving Recurrences

1. Recursion tree / iteration method
- Good for guessing an answer
- Need to verify guess
2. Master method
- Easy to learn, useful in limited cases only
- Some tricks may help in other cases
3. Substitution method
- Generic method, rigid, may be hard

68

The Substitution Method

SR "@k

F° Substitutions

For
‘Buttermilk - 1 cup
'Whole Milk - 1 cup
Unsweetened Chocolate - 1 0z
Honey - 1 cup
‘Shortening (for baking) - 1 cup
Corn Syrup - 1 cup
'Cornstarch - 1% tsp
1 whole egg
Peppermint extract-1TB
Cream 2 & %2 - 1 cup
Cream, heavy for baking & cooking - 1 cup

Marshmallow Creme - 1 cup (jar =2 1/8 cups)

Catsup

Use
1 TB lemon juice + enough milk to =1 cup
2 ¢. evaporated milk + ' c. water
1 TB fat+ 3 TB cocoa

Y4 ¢. liquid + 1 % c. sugar

1 1/8 c. butter or margine less ’; tsp of salt in recipe

1 c. sugar + % c. of liquid
1 TB flour
2 egg yolks + 1 TB water
Y4 c. fresh mint, chopped
3 TB oil + milk to =1 cup
3/4 ¢. milk + % c. butter or margarine
16 Ig (160 sm) marshmallows + 2 TB corn syrup
(melted in double broiler)

1 c. tomato sauce, c. sugar, 2 TB vinegar

69

Substitution Method

The most general method to solve a recurrence
(prove O and Q) separately):

1. Guess the form of the solution
(e.g. by recursion tree / iteration method)
2. Verify by induction (inductive step).
3. Solve for O/C2 -constants n, and ¢ (base
cases of induction)

70

Substitution Method = 2w~

¢+ Recurrence: T(n) = 2T(n/2) + n.
¢ Guess: T(n) = O(n log n). (e.q., by recursion
tree method)

¢ To prove, have to show T(n) <cnlogn for
some c > 0 and for all n > n,

¢ Proof by induction: assume it is true for T(n/2),
prove that it is also true for T(n). This means:

¢ Given: T(n) = 2T(n/2) + n
+ Need to Prove: T(n)< c nlog (n)
¢ Assuming: T(n/2)< cn/2 log (n/2)

71

Proof

¢ Given: T(n) =2T(n/2) + n
¢+ Need to Prove: T(n)<c nlog (n)
¢ Assuming: T(n/2)< cn/2 log (n/2)

¢+ Proof:

Substituting T(n/2) < cn/2 log (n/2) into the recurrence,
we get

T(nN)=2T(n/2) +n
<cnlog (n/2) + n
<chnlogn-cn+n
<cnlogn -(c-1)n
<cnlogn foralln>0(fc=1).
Therefore, by definition, T(n) = O(n log n).

72

Substitution method — Example 2

¢+ Recurrence: T(n) = 2T(n/2) + n.

¢ Guess: T(n) = Q(n log n).

¢ To prove, have to show T(n) 2cnlogn for
some c > 0 and for all n > n,

+ Proof by induction: assume it is true for T(n/2),
prove that it is also true for T(n). This means:

¢ Given: T(n) =2T(n/2) +n
+ Need to Prove: T(n) 2 c nlog (n)
¢ Assuming: T(n/2) =2 cn/2 log (n/2)

73

Proof

¢ Given: T(n) =2T(n/2) + n
¢+ Need to Prove: T(n) 2c nlog (n)
¢ Assuming: T(n/2) 2 cn/2 log (n/2)

¢+ Proof:

Substituting T(n/2) =2 cn/2 log (n/2) into the recurrence,
we get

T(nN)=2T(n/2) +n
=2cnlog (n/2) + n
2cnlogn-cn+n
2cnlogn+(1-c)n
=2cnlogn foralln>0 (ifc <1).
Therefore, by definition, T(n) = Q(n log n).

74

More Substitution Examples [1]

¢ Prove that T(n) = 3T(n/3) + n = O(n logn)

+Need to show that T(n) < c nlog n for
some c, and sufficiently large n

¢+ Assume above Is true for T(n/3), I.e.
T(n/3) <cn/3 log (n/3)

3-way Merge Sort

75

T(n)=3T(n/3) +n
<3cn/3log (n/3) + n
<cnlogn-cnlog3 +n
<cnlog n-(cnlog3 —n)
<cnlogn (ifcnlog3—n=0)

cnlog3—-n=z=0
=> clog3-1=20 (forn>0)
=> c = 1/log3
=> c2log;2

Therefore, T(n) =3 T(n/3) + n < cn log n for ¢ = log;2 and
n > 0. By definition, T(n) = O(n log n).

76

More Substitution Examples [2]

¢+ Prove that T(n) = T(n/3) + T(2n/3) + n =
O(n logn)

+Need to show that T(n) < c nlog n for
some c, and sufficiently large n

+ Assume above is true for T(n/3) and
T(2n/3), 1.e.
T(n/3) <cn/3 log (n/3)
T(2n/3) < 2cn/3 log (2n/3)

Unbalanced Merge Sort

77

T(n) =T(n/3) + T(2n/3) + n
< cn/3 log(n/3) + 2cn/3 log(2n/3) + n
<cnlogn+n-cn(log 3-2/3)
<cnlog n+ n(1-clog3 + 2c¢/3)
<cnlogn, foralln>0 (if 1- clog3 + 2¢c/3 < 0)

clog3-2c/3=1
—=c=21/(log3-2/3) >0

Therefore, T(n) = T(n/3) + T(2n/3) + n<cnlognforc=1/
(log3-2/3) and n > 0. By definition, T(n) = O(n log n).

78

More Substitution Examples [3]

+ Prove that T(n) = 3T(n/4) + n2 = O(n?)

¢+ Need to show that T(n) < ¢ n? for some c,
and sufficiently large n

+ Assume above is true for T(n/4), I.e.
T(n/4) < c(n/4)? = cn?/16

79

T(n) = 3T(n/4) + n?
<3cn?/16 + n?
< (3c/16 + 1) n?

?< cn2

3c/16 + 1 < c implies that ¢ = 16/13

Therefore, T(n) = 3(n/4) + n? < cn? for ¢ =
16/13 and all n. By definition, T(n) =
O(n?).

80

Avoiding Pitfalls

¢ Guess T(n) = 2T(n/2) + n = O(n) [really O(n log n)]
¢+ Need to prove that T(n) <c n

¢+ Assume T(n/2) <cn/2
¢T(N)<2*cn/2+n=cn+n=0(n)

+ What's wrong?

¢+ Need to prove T(n) <cn, not T(n) <cn +n = (c+1l)n

81

Subtleties

¢ Prove that T(n) = T(Ln/2)) + T(n/2]) + 1 = O(n)
+ Need to prove that T(n) < cn
¢ Assume above is true for T(Ln/2]) & T(n/2)
T(n)<=cln/2]+dn2]+1
<cn+1
Is it a correct proof?
No! have to prove T(n) <=cn
However we can prove T(n) = O(n — 1)

may be easier to prove a stronger induction hypothesis

Making a Good Guess

T(n) =2T(n/2 + 17) +n

When n approaches infinity, n/2 + 17 are not too different from n/2
Therefore can guess T(n) = ®(n log n)
Prove Q:
Assume T(n/2 + 17) 2 ¢ (n/2+17) log (n/2 + 17)
Then we have
T(n) =n+ 2T(n/2+17)

2n+ 2c (n/2+17) log (n/2 + 17)

2n+cnlog (n/2+17) + 34 c log (n/2+17)
2cnlog (n/2+17)+ 34 clog (n/2+17)

Maybe can guess T(n) = ®((n-17) log (n-17)) (trying to get rid of the +17).
Details skipped.

83

Summary: Solving Recurrences

1. Recursion tree / iteration method
- Good for guessing an answer

2. Master method
- Easy to learn, useful in limited cases only
- Some tricks may help in other cases

3. Substitution method
- Generic method, rigid, may be hard

84

Th)z 3TR) +n

%I
5]1&13 Sukﬁ%kﬂho
1%.\
Tt werc = ia 5= h%%-)

- ~ O(La) = n— O(Slqi)
= O(n “"313) L NS h“*ﬂﬂ

85

	CS161:�Design and Analysis of Algorithms�����Lecture 3�Leonidas Guibas
	Outline
	Asymptotic Bounds on Algorithm Performance
	Review: Asymptotic Notations
	Big O
	Big Ω
	Theta (Θ): Θ = O and Ω
	O, Ω, and Θ
	Algorithm Efficiency via Recurrences
	Solving Recurrences
	Solving Recurrences
	The Recursion Tree Method
	Review: Back to MergeSort
	Recurrence for MergeSort
	Recursion Tree
	Recursion Tree
	Recursion Tree
	Recursion Tree
	Recursion Tree
	Recursion Tree
	Recursion Tree
	Recursion Tree
	Recursion Tree
	Slide Number 24
	Slide Number 25
	Another Example
	Pseudocode for Recursion
	Pseudocode Variations
	Recurrence for Computing Power
	Time Complexity for Alg1
	Time Complexity for Alg2
	Time Complexity for Alg2
	Time Complexity for Alg2
	Time Complexity for Alg2
	Time Complexity for Alg2
	Time Complexity for Alg2
	Time Complexity for Alg2
	Time Complexity for Alg2
	Time Complexity for Alg2
	Time Complexity for Alg2
	Time Complexity for Alg2
	More Iteration Method Examples
	More Iteration Method Examples
	3-Way-MergeSort
	Unbalanced-MergeSort
	More Recursion Tree Examples
	The Master Method
	The Master Method
	Master Theorem
	Case 1
	Case 2
	Case 3
	Regularity Condition
	Proof by Picture
	Examples
	Examples
	Examples
	Slide Number 58
	Slide Number 59
	Examples
	Some Tricks
	Changing Variables
	Changing Variables
	Changing Variables
	Obtaining Bounds
	Obtaining Bounds
	Extended Case 2
	Solving Recurrences
	The Substitution Method
	Substitution Method
	Substitution Method
	Proof
	Substitution method – Example 2
	Proof
	More Substitution Examples [1]
	Slide Number 76
	More Substitution Examples [2]
	Slide Number 78
	More Substitution Examples [3]
	Slide Number 80
	Avoiding Pitfalls
	Subtleties
	Making a Good Guess
	Summary: Solving Recurrences
	Slide Number 85

