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+ Review of last lecture (asymptotic
notations, recurrence relations)

+Key Topic: Solving Recurrences
#Uusing recursion trees (or iteration)
+the master method
+the substitution method
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Asymptotic Bounds on
Algorithm Performance

+\Worst-case and average-case are difficult
to analyze precisely -- the detalls can be
very complicated

A

T(n)

>
n

It may be easier to talk about upper and
lower bounds on the function T(n).



Review: Asymptotic Notations

+O: Big-Oh

+(): Big-Omega
+0O: Theta

¢ 0. Small-oh

¢ . Small-omega



Big O

+ Informally, O(g(n)) Is the set of all
functions with a smaller or same order of
growth as g(n), within a constant multiple

Intuitively, O is like <

an upper bound notation

+If we say f(n) is in O(g(n)), this means
that g(n) Is an asymptotic upper bound on
f(n)
+Formally. 3 C (>0) & ng, f(n) = Cg(n) for ¥ n
>= nO

g(n) should be a “simple” function



Big Q

+ Informally, Q(g(n)) is the set of all functions with a larger
or same order of growth as g(n), within a constant
multiple

+ f(n) € Q(g(n)) means g(n) is an asymptotic lower bound
of f(n)
+ Intuitively, it is like f(n) = g(n)

Intuitively, Q is like =

a lower bound notation




Theta (©@): © = 0O and Q

+ Informally, ©(g(n)) Is the set of all

functions with the same order of growth

as g(n), within a constant multiple

O is like =

+f(n) € ©(g(n)) means g(n) Is an
asymptotically tight bound on f(n)
¢ ntuitively, it is like f(n) = g(n)




O, Q and ©

c,g(n) cg(n)

) f(n)

7 f(n)

c18(n)

n ' n : n
No ) no No .

f(n) = ©O(g(n)) f(n) = 0O(g(n)) f(n) = Q(g(n))
(a) (b) (c)

The definitions imply a constant ny beyond which they are
satisfied. We do not care about small values of n.



Algorithm Efficiency via
Recurrences

T(N)=T(n-1)+1
T(N)=T(n-1)+n
T(N)=T(n/2)+1

T(n)=2T(n/2)+1

Challenge: how to solve the recurrence to get a tight bound,
e.g. T(n) = O (n?) or T(n) = O(n Ign), or at least an upper
bound such as T(n) = O(n?)?



Solving Recurrences

+ The running time of many algorithms can
be expressed in one of the following two
recursive forms

T(n)=aT(n-b)+ f(n)

or

T(n)=aT(n/b)+ f(n)

Both can be hard to solve. We focus on relatively
easy ones, which you will encounter frequently in
many real algorithms (and exams...)
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Solving Recurrences

1. Recursion tree / iteration method
2. Master method
3. Substitution method
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The Recursion Tree Method
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Review: Back to MergeSort

T(n) MERGE-SORT A[1 . . n]
O(1) 1. 1f n=1, done.
2T(n/2)| 2. Recursively sort A[ 1 . .

'n/21]and A[n/21+1..n].
/®(”) 3. “Merge” the 2 sorted lists

Sloppiness: Should be T(n/21) + T(Ln/2]),
but It turns out not to matter asymptotically.
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Recurrence for MergeSort

[ O@)ifn=1,;
T = {ZT(n/Z) + @) ifn> 1.

* We saw that the cost of the Merge
step is ®(n).

* We shall usually omit stating the base
case when T(n) = ®(1) for sufficiently
small n, but only when it has no effect

on the asymptotic solution to the
recurrence.
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Recursion Tree

Solve T(n) = 2T(n/2) + cn, where ¢ > 0 IS constant.
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Recursion Tree

Solve T(n) =2T(n/2) + cn, where ¢ > 0 IS constant.

T(n)
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Recursion Tree

Solve T(n) = 2T(n/2) + cn, where ¢ > 0 IS constant.

/ chn ~_
T(n/2) T(n/2)
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Recursion Tree

Solve T(n) = 2T(n/2) + cn, where ¢ > 0 Is constant.

cn
/ \
cn/2 cn/2
/ /S

T(/4)  T(n/4) T(n/4)  T(n/4)
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Recursion Tree

Solve T(n) = 2T(n/2) + cn, where ¢ > 0 Is constant.

cn
/ \
cn/2 cn/2
/ /.

cn/4 cn/4 cn/4 cn/4
/

o(1)
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Recursion Tree

Solve T(n) = 2T(n/2) + cn, where ¢ > 0 IS constant.

cn
/ \
cn/2 cn/2
/ /.

h=1Ign ¢4 cn/4 cn/4 cn/4
/

o(1)
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Recursion Tree

Solve T(n) = 2T(n/2) + cn, where ¢ > 0 IS constant.

cn/2 cn/2
/ /.

h=1Ign ¢4 cn/4 cn/4 cn/4
/

o(1)
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Recursion Tree

Solve T(n) = 2T(n/2) + cn, where ¢ > 0 IS constant.

cn/2 cn/2 cn
N RN

h=1Ign ¢4 cn/4 cn/4 cn/4
/

o(1)
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Recursion Tree

Solve T(n) = 2T(n/2) + cn, where ¢ > 0 Is constant.

cn/2 cn/2 cn
N RN

h=1Ign ¢4 cn/4 cn/4 cn/4 - ¢n
/

o(1)
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Solve T(n) =

Recursion Tree

2T(n/2) + cn, where ¢ > 0 Is constant.

CN s cn
/ \
cn/2 cn/2 cn
- /N / N\
=190 cnia e enia cnid——cn
/
-

O(1) #leaves = n l ------------------------------- O(n)
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Solve T(n) =

h=1Ign ¢4
/

Recursion Tree

2T(n/2) + cn, where ¢ > 0 Is constant.

CN s ch
T
cn/2 cn/2 cn
RN RN
cn/4 cn/4 cn/4 ——-cn
------------ #leaves = n l O(n)

Total = ©(n Ig n)



Another Example

+ How many multiplications do we need to
compute 31672

316=3 x3x3....x3 Answer: 15
316=38 x 38
38 =34 x 34

Answer: 4
34=32 x 32
32=3 x 3




Pseudocode for Recursion

iInt pow (b, n) // compute b"
m=n>>1; //divide by ?2
p = pow (b, m);

P=p~*p;
If (N % 2)
return p * b;
else
return p;
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Pseudocode Variations

iInt pow (b, n)
m=n>>1;
p = pow (b, m);
P=p*p;
If (n % 2)
return p * b;
else
return p;

Int pow (b, n)
m=n>>1;

p = pow(b,m) * pow(b,m);

iIf (n % 2)
return p * b;
else
return p;
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Recurrence for Computing Power

iInt pow (b, n)
m=n>>1;
p = pow (b, m);
P=p*p;
If (n % 2)
return p * b;
else
return p;

T(n) =T(n/2)+B(1)

Algl

Int pow (b, n) Alg2
m=n>>1,
p=pow(b,m)*pow(b,m);
If (n % 2)

return p * b;
else
return p;

T(n) =2T(n/2)+6(1)

Which algorithm is more efficient asymptotically?
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Time Complexity for Algl

Solve T(n) =T(n/2) + 1

¢«T(N)=T(N/2) +1
=T(n4)+1+1
=T(n/8)+1+1+1
=T(1)+1 +1+...+1

J

log(n)

- 6 (log(y) O™

lteration method
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Time Complexity for Alg2
Solve T(n) = 2T(n/2) + 1.
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Time Complexity for Alg2

Solve T(n) = 2T(n/2) + 1.
T(n)
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Time Complexity for Alg2
Solve T(n) = 2T(n/2) + 1.

T(n/2) T(n/2)
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Time Complexity for Alg2
Solve T(n) = 2T(n/2) + 1.
1
1 T~ 1

RN /N
T(V4)  T(n4)  T(d)  T(n/4)
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Time Complexity for Alg2
Solve T(n) = 2T(n/2) + 1.

/\
/\ 1/\1

/

o(1)
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h=

Time Complexity for Alg2
Solve T(n) = 2T(n/2) + 1.

/\
/\ 1/\1

/

Ig n

o(1)
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h=

Time Complexity for Alg2
Solve T(n) =2T(n/2) + 1.

g n / \ 1/ \1

/

o(1)
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h=

Time Complexity for Alg2
Solve T(n) =2T(n/2) + 1.

g n / \ 1/ \1

/

o(1)
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h=

Time Complexity for Alg2
Solve T(n) = 2T(n/2) + 1.

Ign / \ 1/ \1 _______________

/

o(1)
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Time Complexity for Alg2
Solve T(n) = 2T(n/2) + 1.

h=Ign 1 g [— 4
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Time Complexity for Alg2
Solve T(n) = 2T(n/2) + 1.

/ T~ " ,
h= |g N / \ 1 / \ g [— 4
@(/1) ---------------- #leaves = n l ------------------------------- O(n)
Total ®(n)
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More lteration Method
Examples

¢«T(N)=T(n-1)+ 1
=T(n-2)+1+1
=Tn-3)+1+1+1
=T)+1 +1+...+]

ntl

= Q(n)
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More Iteration Method
Examples

+T(n)=T(n-1) +n
=T(n-2) + (n-1) + n
T(n-3) + (n-2) + (n-1) + n
T()+2 +3+...+n
© (n?)

Saw the same sum in InsertionSort
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3-Way-MergeSort

3-way-merge-sort (A[1..n])
If (n <=1) return;
3-way-merge-sort(A[1..n/3));
3-way-merge-sort(A[n/3+1..2n/3]);
3-way-merge-sort(A[2n/3+1.. n]);
Merge A[1..n/3] and A[n/3+1..2n/3];
Merge A[1..2n/3] and A[2n/3+1..n];

e |s this algorithm correct?
 What's the recurrence function for the running time?
 What does the recurrence function solve to?
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Unbalanced-MergeSort

ub-merge-sort (A[1..n])
If (n<=1) return;
ub-merge-sort(A[1..n/3));
ub-merge-sort(A[n/3+1.. n));
Merge A[l.. n/3] and A[n/3+1..n].

e |s this algorithm correct?
 What's the recurrence function for the running time?
 What does the recurrence function solve to?
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More Recursion Tree Examples

+T(n) =3T(n/3) +n [3-Way MergeSort]
+T(n) =T(n/3) + T(2n/3) + n [ub-MergeSort]
¢T(n) =3T(n/4) + n

¢T(n) = 3T(n/4) + n?
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The Master Method
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The Master Method

The master method applies to recurrences of
the form

T(n)=aT(n/b) +f(n),

wherea>1,b>1, and f is asymptotically
positive.

1. Divide the problem into a subproblems, each of size n/b
2. Conquer the subproblems by solving them recursively.
3. Combine subproblem solutions

Divide + combine takes f(n) time.
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Master Theorem

T(n) =a T(n/b) + f (n)
Key: compare f(n) with n'ogba
Cask 1: f(n) = O(nlogba-2) = T(n) = O(n'o%wa) ,
Cask 2: f(n) = ©(nlo%p?) = T(n) = O(n'°%2 |og n)

Cask 3: f(n) = Q(n'ogwa+2) and af (n/b) < cf(n)

Regularity Condition

— T(n) = O(f(n)) .

log, a log,, N

N =d
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Case 1

f (n) = O(n'°%a-¢) for some constant € > 0.
Alternatively: n'oga/ f(n) = Q(n¢)

Intuition: f (n) grows polynomially slower than n'ogp?
Or: n'oga dominates f(n) by an n¢ factor for some € > 0
Solution: T(n) = ©(n'o%va)

T(n) =4T(n/2) + n T(n) = 2T(n/2) + n/logn
b=2,a=4,f(n)=n b=2,a=2,fn)= n/logn
log,4 = 2 log,2 =1

f(n) = n = 0(n??), or f(n) = n/logn ¢ O(n**), or

n2/n=nt=Q(n?, fore=1 nt/f(n) =logn & Q(n?), forany £ >0
- T(n) = O(n?) . CASE 1 does not apply
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Case 2

f(n) = © (nlogwa),

Intuition: f(n) and n'°%2 have the same asymptotic order.

e.g.

Solution: T(n) = ®(n'o%2 |og n)

T(n)=T(n/2) +1

T(n)=2T(n/2) +n
T(n) = 4T(n/2) + n?
T(n) = 8T(n/2) + n3

log,a =0
log,a =1
log,a = 2

log,a = 3
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Case 3

f (n) = Q(n'°%a+2) for some constant &= 0.
Alternatively: f(n) / nlogba = Q(ng)

Intuition: f (n) grows polynomially faster than n'og?
Or: f(n) dominates n'°9v2 by an ne factor for some &> 0
Solution: T(n) = @(f(n))

T(n) =T(n/2) +n T(n) = T(n/2) + log n
b=2a=11fn)=n b=2a=1,f(n) = logn
nlogxl =nd=1 nlog,l =p0=1

f(n) =n=Q(n°*), or f(n) = log n & Q(n°*4), or

- T(n) = O(n) .. CASE 3 does not apply
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Regularity Condition

¢ af(n/b) <cf(n) for some c <1 and all sufficiently
large n

# This 1s needed for the master method to be
mathematically correct.

+ to deal with some non-converging functions such as sine
or cosine functions
+ For most f(n) you’ll see (e.g., polynomial, logarithm,
exponential), you can safely ignore this condition,

because It Is implied by the first condition f (n) =
Q(nlogba+s)
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A L) I ———
/q>\
f(ny) f(ny) F(11y) e
a
|log, n |
fn2)  f(n2) - f(n2) S(na)  f(nz) - f(ny) f(ny)  f(no) = f(ny) wem :

Y G)('[) G)(Il) @(Il) G)(Il) G)(Il) @(I]) G)(Il)

O(n'osr @)

log, a log, n

n =a

flah ey L JMM%M flah et [l

o) O(1) O(1) ..  ©O(1) O(1) O(1) it

@(nl‘-‘gb a)

Llogp, 7] —1

Total: O(n'%» %) + Z a’ f(n)) 54
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Examples

T(n) =4T(n/2) + n
a=4,b=2=nlgka=n2 f(n)=n.
Cast 1: f(n) = O(n°-¢) for ¢ = 1.
- T(n) = ©(n?).

T(n) = 4T(n/2) + n?

a=4,b=2=nlga=n? f(n) =n2

Cast 2: f(n) = ©(n?).
- T(n) = ®(n%logn).
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Examples

T(n) =4T(n/2) + n3
a=4,b=2=nlgwa=n? f(n)=ns
Case 3:f(n) =Q(n**¢) fore =1
and 4(n/2)? < cn? (reg. cond.) for ¢ = 1/2.
- T(n) = ©(nd).

T(n) = 4T(n/2) + n4/logn
a=4,b=2= nlogwa=n? f(n) =n?logn.
Master method does not apply. In particular, for
every constant € > 0, we have n¢ =w(logn).
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Examples

T(n) = 4T(n/2) + n2>
a=4,b=2= nlogwa=n? f(n) =n2>,
Case 3: f(n) =Q(n**¢) fore = 0.5
and 4(n/2)?> < cn?>(reg. cond.) for ¢ = 0.75.
- T(n) = ©(n%>).

T(n) = 4T(n/2) + n?logn
a=4,b=2= nlogwa=n? f(n) =n?logn.
Master method does not apply. In particular, for
every constant € > 0, we have n¢ =w(logn).
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How do | know which case to use? Do |
need to try all three cases one by one?
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+ Compare f(n) with n'ogp?

+f(n) e {

check if nlogva/ f(n) e Q(n?)

o(n'e9va) Possible CASE 1
O(n'o%a) CASE 2

o(n'°9?) Possible CASE 3 N

check if f(n) / nlogv2 = Q(n?)
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Examples

2. T(0) = 4T(0/2) +
b. T'(n) = 9T(n/3) + n*;
c. T(n)=061T(n/4) +n;

d. T(n) = 2T (n/4) +n;

e. T(n) = T(n/2) + nlogn;

f. T'(n) =4T(n/4) + nlogn.

log,a = 2. n = 0(n?) => Check case 1

log,a = 2. n? = ©(n?) => Check case 2

log,a = 1.3. n = o(n'3) => Check case 1

log,a = 0.5. n = ®(n®%) => Check case 3

log,a = 0. nlogn = ©(n°) => Check case 3

log,a = 1. nlogn = w(n) => Check case 3
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Some Tricks

¢+ Changing variables

+ Obtaining upper and lower bounds
+Make a guess based on the bounds
+Prove using the substitution method
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Changing Variables

T(n)=2T(n-1) +1
sletn=Igm,l.e., m=2"
=>T(lgm)=2T(lg(m/2)) + 1
¢Let S(m)=T(lgm) =T(n)
=>5S(m) =2S(m/2) + 1
=> S(m) = ®(m)
=>T(n) =S(m) = (M) = B(2")
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Changing Variables

T(n)=T(/n)+1

¢ Letn=2m

=> sqrt(n) = 2M?2

+ We then have T(2™) = T(2™?) + 1
¢ Let T(n) =T(2™) = S(m)

=>S(m) = S(m/2) + 1

=S(m) =0 (log m) = O (log log n)
=T(n) = O (log log n)
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Changing Variables

¢T(n)=2T(n-2) +1

eletn=Igm,l.e., m=2"
=>T(lgm)=2T(lgm/4) + 1

¢Let S(m)=T(lgm) =T(n)

=>5S(m) =2S(m/4) + 1

=> S(m) — ml/2

=> T(n) = S(m) = (2")¥2= (sqrt(2)) "~ 1.4"
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Obtaining Bounds

Solve the Fibonacci variant:
T(nN)=T(n-1) + T(n-2) +1

¢T(n)>= 2]

¢T(n) <=2

+ Solving
+ Solving

1],
2],

(n-2) + 1 1]
‘(n-1) +1 2]

we obtain T(n) >= 1.4"
we obtain T(n) <= 2"

¢ Actually, T(n) = 1.62"
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Obtaining Bounds

+T(n)=T(n/2) +log n
+T(n) € Q(log n)
¢+T(n) € O(T(n/2) + n?)
+ Solving T(n) = T(n/2) + ng,
we obtain T(n) = O(n?), for any € > 0

+S0: T(n) eO(n?) forany € >0

+T(n) Is unlikely polynomial

+Actually, T(n) = ©(log?n) by extended case 2
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Extended Case 2

Cask 2: f(n) = ©(n'°93) = T(n) = O(n'°%2 log n).

Extended Case 2: (k >=0)
f(n) = ©(nl°%2 Jogkn) = T(n) = O(n'o9ba Jogk+in),
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Solving Recurrences

1. Recursion tree / iteration method
- Good for guessing an answer
- Need to verify guess
2. Master method
- Easy to learn, useful in limited cases only
- Some tricks may help in other cases
3. Substitution method
- Generic method, rigid, may be hard
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The Substitution Method

SR "@k

F° Substitutions

For
‘Buttermilk - 1 cup
'Whole Milk - 1 cup
Unsweetened Chocolate - 1 0z
Honey - 1 cup
‘Shortening (for baking) - 1 cup
Corn Syrup - 1 cup
'Cornstarch - 1% tsp
1 whole egg
Peppermint extract-1TB
Cream 2 & %2 - 1 cup
Cream, heavy for baking & cooking - 1 cup

Marshmallow Creme - 1 cup (jar =2 1/8 cups)

Catsup

Use
1 TB lemon juice + enough milk to =1 cup
2 ¢. evaporated milk + ' c. water
1 TB fat+ 3 TB cocoa

Y4 ¢. liquid + 1 % c. sugar

1 1/8 c. butter or margine less ’; tsp of salt in recipe

1 c. sugar + % c. of liquid
1 TB flour
2 egg yolks + 1 TB water
Y4 c. fresh mint, chopped
3 TB oil + milk to =1 cup
3/4 ¢. milk + % c. butter or margarine
16 Ig (160 sm) marshmallows + 2 TB corn syrup
(melted in double broiler)

1 c. tomato sauce,  c. sugar, 2 TB vinegar
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Substitution Method

The most general method to solve a recurrence
(prove O and Q) separately):

1. Guess the form of the solution
(e.g. by recursion tree / iteration method)
2. Verify by induction (inductive step).
3. Solve for O/C2 -constants n, and ¢ (base
cases of induction)
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Substitution Method = 2w~

¢+ Recurrence: T(n) = 2T(n/2) + n.
¢ Guess: T(n) = O(n log n). (e.q., by recursion
tree method)

¢ To prove, have to show T(n) <cnlogn for
some c > 0 and for all n > n,

¢ Proof by induction: assume it is true for T(n/2),
prove that it is also true for T(n). This means:

¢ Given: T(n) = 2T(n/2) + n
+ Need to Prove: T(n)< c nlog (n)
¢ Assuming: T(n/2)< cn/2 log (n/2)
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Proof

¢ Given: T(n) =2T(n/2) + n
¢+ Need to Prove: T(n)<c nlog (n)
¢ Assuming: T(n/2)< cn/2 log (n/2)

¢+ Proof:

Substituting T(n/2) < cn/2 log (n/2) into the recurrence,
we get

T(nN)=2T(n/2) +n
<cnlog (n/2) + n
<chnlogn-cn+n
<cnlogn -(c-1)n
<cnlogn foralln>0(fc=1).
Therefore, by definition, T(n) = O(n log n).
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Substitution method — Example 2

¢+ Recurrence: T(n) = 2T(n/2) + n.

¢ Guess: T(n) = Q(n log n).

¢ To prove, have to show T(n) 2cnlogn for
some c > 0 and for all n > n,

+ Proof by induction: assume it is true for T(n/2),
prove that it is also true for T(n). This means:

¢ Given: T(n) =2T(n/2) +n
+ Need to Prove: T(n) 2 c nlog (n)
¢ Assuming: T(n/2) =2 cn/2 log (n/2)
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Proof

¢ Given: T(n) =2T(n/2) + n
¢+ Need to Prove: T(n) 2c nlog (n)
¢ Assuming: T(n/2) 2 cn/2 log (n/2)

¢+ Proof:

Substituting T(n/2) =2 cn/2 log (n/2) into the recurrence,
we get

T(nN)=2T(n/2) +n
=2cnlog (n/2) + n
2cnlogn-cn+n
2cnlogn+(1-c)n
=2cnlogn foralln>0 (ifc <1).
Therefore, by definition, T(n) = Q(n log n).
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More Substitution Examples [1]

¢ Prove that T(n) = 3T(n/3) + n = O(n logn)

+Need to show that T(n) < c nlog n for
some c, and sufficiently large n

¢+ Assume above Is true for T(n/3), I.e.
T(n/3) <cn/3 log (n/3)

3-way Merge Sort
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T(n)=3T(n/3) +n
<3cn/3log (n/3) + n
<cnlogn-cnlog3 +n
<cnlog n-(cnlog3 —n)
<cnlogn (ifcnlog3—n=0)

cnlog3—-n=z=0
=> clog3-1=20 (forn>0)
=> c = 1/log3
=> c2log;2

Therefore, T(n) =3 T(n/3) + n < cn log n for ¢ = log;2 and
n > 0. By definition, T(n) = O(n log n).
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More Substitution Examples [2]

¢+ Prove that T(n) = T(n/3) + T(2n/3) + n =
O(n logn)

+Need to show that T(n) < c nlog n for
some c, and sufficiently large n

+ Assume above is true for T(n/3) and
T(2n/3), 1.e.
T(n/3) <cn/3 log (n/3)
T(2n/3) < 2cn/3 log (2n/3)

Unbalanced Merge Sort
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T(n) =T(n/3) + T(2n/3) + n
< cn/3 log(n/3) + 2cn/3 log(2n/3) + n
<cnlogn+n-cn(log 3-2/3)
<cnlog n+ n(1-clog3 + 2c¢/3)
<cnlogn, foralln>0 (if 1- clog3 + 2¢c/3 < 0)

clog3-2c/3=1
—=c=21/(log3-2/3) >0

Therefore, T(n) = T(n/3) + T(2n/3) + n<cnlognforc=1/
(log3-2/3) and n > 0. By definition, T(n) = O(n log n).
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More Substitution Examples [3]

+ Prove that T(n) = 3T(n/4) + n2 = O(n?)

¢+ Need to show that T(n) < ¢ n? for some c,
and sufficiently large n

+ Assume above is true for T(n/4), I.e.
T(n/4) < c(n/4)? = cn?/16
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T(n) = 3T(n/4) + n?
<3cn?/16 + n?
< (3c/16 + 1) n?

?< cn2

3c/16 + 1 < c implies that ¢ = 16/13

Therefore, T(n) = 3(n/4) + n? < cn? for ¢ =
16/13 and all n. By definition, T(n) =
O(n?).
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Avoiding Pitfalls

¢ Guess T(n) = 2T(n/2) + n = O(n) [really O(n log n)]
¢+ Need to prove that T(n) <c n

¢+ Assume T(n/2) <cn/2
¢T(N)<2*cn/2+n=cn+n=0(n)

+ What's wrong?

¢+ Need to prove T(n) <cn, not T(n) <cn +n = (c+1l)n
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Subtleties

¢ Prove that T(n) = T(Ln/2)) + T(n/2]) + 1 = O(n)
+ Need to prove that T(n) < cn
¢ Assume above is true for T(Ln/2]) & T( n/2 )
T(n)<=cln/2]+dn2]+1
<cn+1
Is it a correct proof?
No! have to prove T(n) <=cn
However we can prove T(n) = O(n — 1)

may be easier to prove a stronger induction hypothesis



Making a Good Guess

T(n) =2T(n/2 + 17) +n

When n approaches infinity, n/2 + 17 are not too different from n/2
Therefore can guess T(n) = ®(n log n)
Prove Q:
Assume T(n/2 + 17) 2 ¢ (n/2+17) log (n/2 + 17)
Then we have
T(n) =n+ 2T(n/2+17)

2n+ 2c (n/2+17) log (n/2 + 17)

2n+cnlog (n/2+17) + 34 c log (n/2+17)
2cnlog (n/2+17)+ 34 clog (n/2+17)

Maybe can guess T(n) = ®((n-17) log (n-17)) (trying to get rid of the +17).
Details skipped.
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Summary: Solving Recurrences

1. Recursion tree / iteration method
- Good for guessing an answer

2. Master method
- Easy to learn, useful in limited cases only
- Some tricks may help in other cases

3. Substitution method
- Generic method, rigid, may be hard
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