CS161: Design and Analysis of Algorithms

Lecture 3 Leonidas Guibas

Outline

 Review of last lecture (asymptotic notations, recurrence relations)

Key Topic: Solving Recurrences
 using recursion trees (or iteration)
 the master method
 the substitution method

Slides modified from

http://www.cs.virginia.edu/~luebke/cs332/

Asymptotic Bounds on Algorithm Performance

 Worst-case and average-case are difficult to analyze precisely -- the details can be very complicated

n

It may be easier to talk about upper and lower bounds on the function T(n).

Review: Asymptotic Notations

O: Big-Oh
Ω: Big-Omega
Θ: Theta
O: Small-oh
ω: Small-omega

Big O

 Informally, O(g(n)) is the set of all functions with a smaller or same order of growth as g(n), within a constant multiple

Intuitively, O is like \leq

an upper bound notation

- If we say f(n) is in O(g(n)), this means that g(n) is an asymptotic upper bound on f(n)
 - Formally. ∃ C (>0) & n_0 , f(n) ≤ Cg(n) for \forall n >= n_0

g(n) should be a "simple" function

- Informally, Ω(g(n)) is the set of all functions with a larger or same order of growth as g(n), within a constant multiple
- $f(n) \in \Omega(g(n))$ means g(n) is an asymptotic lower bound of f(n)

• Intuitively, it is like $f(n) \ge g(n)$

Intuitively, Ω is like \geq

a lower bound notation

Theta (Θ): $\Theta = O$ and Ω

 Informally, Θ(g(n)) is the set of all functions with the same order of growth as g(n), within a constant multiple

 Θ is like =

f(n) ∈ Θ(g(n)) means g(n) is an asymptotically tight bound on f(n)
Intuitively, it is like f(n) = g(n)

O, Ω , and Θ

The definitions imply a constant n_0 beyond which they are satisfied. We do not care about small values of n.

Algorithm Efficiency via Recurrences

$$T(n) = T(n-1) + 1$$

$$T(n) = T(n-1) + n$$

$$T(n) = T(n/2) + 1$$

$$T(n) = 2T(n/2) + 1$$

Challenge: how to solve the recurrence to get a tight bound, e.g. $T(n) = \Theta(n^2)$ or $T(n) = \Theta(n \lg n)$, or at least an upper bound such as $T(n) = O(n^2)$?

Solving Recurrences

 The running time of many algorithms can be expressed in one of the following two recursive forms

T(n) = aT(n-b) + f(n)

or

$$T(n) = aT(n/b) + f(n)$$

Both can be hard to solve. We focus on relatively easy ones, which you will encounter frequently in many real algorithms (and exams...)

Solving Recurrences

- 1. Recursion tree / iteration method
- 2. Master method
- 3. Substitution method

The Recursion Tree Method

Review: Back to MergeSort

 $\begin{array}{c|c}
T(n) \\
\Theta(1) \\
2T(n/2) \\
\end{array}$

Sloppiness: Should be $T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor)$, but it turns out not to matter asymptotically.

Recurrence for MergeSort

$$T(n) = \begin{cases} \Theta(1) \text{ if } n = 1;\\ 2T(n/2) + \Theta(n) \text{ if } n > 1. \end{cases}$$

- We saw that the cost of the Merge step is $\Theta(n)$.
- We shall usually omit stating the base case when $T(n) = \Theta(1)$ for sufficiently small n, but only when it has no effect on the asymptotic solution to the recurrence.

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

T(n)

Another Example

 How many multiplications do we need to compute 3¹⁶?

Pseudocode for Recursion

```
int pow (b, n) // compute b<sup>n</sup>
  m = n >> 1; // divide by 2
  p = pow (b, m);
  p = p * p;
  if (n % 2)
     return p * b;
  else
      return p;
```

Pseudocode Variations

```
int pow (b, n)
  m = n >> 1;
  p = pow (b, m);
  p = p * p;
  if (n % 2)
      return p * b;
  else
      return p;
```

int pow (b, n)
 m = n >> 1;
 p = pow(b,m) * pow(b,m);
 if (n % 2)
 return p * b;
 else
 return p;

Recurrence for Computing Power

int pow (b, n) Alg1 m = n >> 1; p = pow (b, m);p = p * p;if (n % 2) return p * b; else return p; $T(n) = T(n/2) + \Theta(1)$

int pow (b, n) Alg2
m = n >> 1;
p=pow(b,m)*pow(b,m);
if (n % 2)
return p * b;
else
return p;

 $T(n) = 2T(n/2) + \Theta(1)$

Which algorithm is more efficient asymptotically?

Solve T(n) = T(n/2) + 1• T(n) = T(n/2) + 1= T(n/4) + 1 + 1= T(n/8) + 1 + 1 + 1 $= T(1) + 1 + 1 + \ldots + 1$ log(n) $= \Theta(log(n))$ Iteration method

log(n)

Solve T(n) = 2T(n/2) + 1.

T(n)

Solve T(n) = 2T(n/2) + 1. T(n/2) T(n/2)

More Iteration Method Examples

•
$$T(n) = T(n-1) + 1$$

= $T(n-2) + 1 + 1$
= $T(n-3) + 1 + 1 + 1$
= $T(1) + 1 + 1 + ... + 1$
 $n = 0$

More Iteration Method Examples

•
$$T(n) = T(n-1) + n$$

= $T(n-2) + (n-1) + n$
= $T(n-3) + (n-2) + (n-1) + n$
= $T(1) + 2 + 3 + ... + n$
= $\Theta(n^2)$

Saw the same sum in InsertionSort

3-Way-MergeSort

- Is this algorithm correct?
- What's the recurrence function for the running time?
- What does the recurrence function solve to?

Unbalanced-MergeSort

ub-merge-sort (A[1..n])
if (n<=1) return;
ub-merge-sort(A[1..n/3]);
ub-merge-sort(A[n/3+1..n]);
Merge A[1..n/3] and A[n/3+1..n].</pre>

- Is this algorithm correct?
- What's the recurrence function for the running time?
- What does the recurrence function solve to?

More Recursion Tree Examples

• T(n) = 3T(n/3) + n [3-Way MergeSort]

T(n) = T(n/3) + T(2n/3) + n [ub-MergeSort]

• T(n) = 3T(n/4) + n

• $T(n) = 3T(n/4) + n^2$

The Master Method

The Master Method

The master method applies to recurrences of the form

T(n) = a T(n/b) + f(n) ,

where $a \ge 1$, b > 1, and f is asymptotically positive.

- 1. *Divide* the problem into *a* subproblems, each of size *n/b*
- 2. *Conquer* the subproblems by solving them recursively.
- 3. *Combine* subproblem solutions Divide + combine takes f(n) time.

Master Theorem T(n) = a T(n/b) + f(n)**Key:** compare f(n) with $n^{\log_b a}$ **CASE 1**: $f(n) = O(n^{\log_b a - \varepsilon}) \Longrightarrow T(n) = \Theta(n^{\log_b a})$. **CASE 2:** $f(n) = \Theta(n^{\log b^a}) \Longrightarrow T(n) = \Theta(n^{\log b^a} \log n)$ **CASE 3:** $f(n) = \Omega(n^{\log_b a + \varepsilon})$ and $af(n/b) \le cf(n)$ **Regularity Condition** \Rightarrow $T(n) = \Theta(f(n))$.

$$n^{\log_b a} = a^{\log_b n}$$

Case 1

 $f(n) = O(n^{\log_b a - \varepsilon})$ for some constant $\varepsilon > 0$. Alternatively: $n^{\log_b a} / f(n) = \Omega(n^{\varepsilon})$ Intuition: f(n) grows polynomially slower than $n^{\log_b a}$ Or: $n^{\log_b a}$ dominates f(n) by an n^{ε} factor for some $\varepsilon > 0$ **Solution:** $T(n) = \Theta(n^{\log_b a})$

T(n) = 4T(n/2) + n b = 2, a = 4, f(n) = n $log_2 4 = 2$ $f(n) = n = O(n^{2-\varepsilon}), \text{ or }$ $n^2 / n = n^1 = \Omega(n^{\varepsilon}), \text{ for } \varepsilon = 1$ $\therefore T(n) = \Theta(n^2)$ $T(n) = 2T(n/2) + n/\log n$ $b = 2, a = 2, f(n) = n / \log n$ $\log_2 2 = 1$ $f(n) = n/\log n \notin O(n^{1-\varepsilon}), \text{ or }$ $n^1/f(n) = \log n \notin \Omega(n^{\varepsilon}), \text{ for any } \varepsilon > 0$ $\therefore CASE 1 \text{ does not apply}$

Case 2

 $f(n) = \Theta(n^{\log_b a}).$ Intuition: f(n) and $n^{\log_b a}$ have the same asymptotic order. Solution: $T(n) = \Theta(n^{\log_b a} \log n)$

e.g.
$$T(n) = T(n/2) + 1$$
 $\log_b a = 0$
 $T(n) = 2 T(n/2) + n$ $\log_b a = 1$
 $T(n) = 4T(n/2) + n^2$ $\log_b a = 2$
 $T(n) = 8T(n/2) + n^3$ $\log_b a = 3$

Case 3

 $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$. Alternatively: $f(n) / n^{\log_b a} = \Omega(n^{\varepsilon})$ Intuition: f(n) grows polynomially faster than $n^{\log_b a}$ Or: f(n) dominates $n^{\log_b a}$ by an n^{ε} factor for some $\varepsilon > 0$ **Solution:** $T(n) = \Theta(f(n))$

$$T(n) = T(n/2) + n$$

$$b = 2, a = 1, f(n) = n$$

$$n^{\log_2 1} = n^0 = 1$$

$$f(n) = n = \Omega(n^{0+\varepsilon}), \text{ or }$$

$$n / 1 = n = \Omega(n^{\varepsilon})$$

$$\therefore T(n) = \Theta(n)$$

$$T(n) = T(n/2) + \log n$$

$$b = 2, a = 1, f(n) = \log n$$

$$n^{\log_2 1} = n^0 = 1$$

$$f(n) = \log n \notin \Omega(n^{0+\varepsilon}), \text{ or }$$

$$f(n) / n^{\log_2 1} = \log n \notin \Omega(n^{\varepsilon})$$

$$\therefore CASE 3 \text{ does not apply}$$

Regularity Condition

- $af(n/b) \le cf(n)$ for some c < 1 and all sufficiently large n
- This is needed for the master method to be mathematically correct.
 - to deal with some non-converging functions such as sine or cosine functions
- For most f(n) you'll see (e.g., polynomial, logarithm, exponential), you can safely ignore this condition, because it is implied by the first condition f(n) = $\Omega(n^{\log b^a + \varepsilon})$

Proof by Picture

 $n_i = n / b^i$

$$T(n) = 4T(n/2) + n$$

$$a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n.$$

$$CASE \ 1: f(n) = O(n^{2-\varepsilon}) \text{ for } \varepsilon = 1.$$

$$\therefore T(n) = \Theta(n^2).$$

$$T(n) = 4T(n/2) + n^2$$

$$a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n^2.$$

CASE 2: $f(n) = \Theta(n^2).$
 $\therefore T(n) = \Theta(n^2 \log n).$

$$T(n) = 4T(n/2) + n^{3}$$

 $a = 4, b = 2 \Rightarrow n^{\log_{b}a} = n^{2}; f(n) = n^{3}.$
CASE 3: $f(n) = \Omega(n^{2+\varepsilon})$ for $\varepsilon = 1$
and $4(n/2)^{3} \le cn^{3}$ (reg. cond.) for $c = 1/2.$
 $\therefore T(n) = \Theta(n^{3}).$

$$T(n) = 4T(n/2) + n^2/\log n$$

 $a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n^2/\log n.$
Master method does not apply. In particular, for
every constant $\varepsilon > 0$, we have $n^{\varepsilon} = \omega(\log n)$.

$$T(n) = 4T(n/2) + n^{2.5}$$

 $a = 4, b = 2 \implies n^{\log_b a} = n^2; f(n) = n^{2.5}.$
CASE 3: $f(n) = \Omega(n^{2+\varepsilon})$ for $\varepsilon = 0.5$
and $4(n/2)^{2.5} \le cn^{2.5}$ (reg. cond.) for $c = 0.75.$
 $\therefore T(n) = \Theta(n^{2.5}).$

$$T(n) = 4T(n/2) + n^2 \log n$$

$$a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n^2 \log n.$$

Master method does not apply. In particular, for
every constant $\varepsilon > 0$, we have $n^{\varepsilon} = \omega(\log n)$.

How do I know which case to use? Do I need to try all three cases one by one?

• Compare f(n) with $n^{\log_b a}$ check if $n^{\log_b a} / f(n) \in \Omega(n^{\varepsilon})$ • $f(n) \in \begin{cases} \mathsf{O}(n^{\log_b a}) & \text{Possible CASE 1} \\ \Theta(n^{\log_b a}) & \text{CASE 2} \\ \omega(n^{\log_b a}) & \text{Possible CASE 3} \end{cases}$ check if $f(n) / n^{\log_b a} \in \Omega(n^{\varepsilon})$

a.
$$T(n) = 4T(n/2) + n;$$
 $\log_{b}a = 2. n = o(n^{2}) =>$ Check case 1

b.
$$T(n) = 9T(n/3) + n^2;$$

c.
$$T(n) = 6T(n/4) + n;$$

d.
$$T(n) = 2T(n/4) + n;$$

e. $T(n) = T(n/2) + n \log n$;

$$\log_b a = 2$$
. $n^2 = \Theta(n^2) =>$ Check case 2

 $log_b a = 1.3$. n = o(n^{1.3}) => Check case 1

 $log_b a = 0.5$. $n = \omega(n^{0.5}) =>$ Check case 3

 $\log_{b}a = 0$. nlogn = $\omega(n^{0}) =>$ Check case 3

f. $T(n) = 4T(n/4) + n \log n$. $\log_{b}a = 1$. $n\log n = \omega(n) = 2$ Check case 3

Some Tricks

Changing variables

Obtaining upper and lower bounds Make a guess based on the bounds Prove using the substitution method

Changing Variables

$$T(n) = 2T(n-1) + 1$$

• Let n = lg m, i.e., $m = 2^n$ => T(lg m) = 2 T(lg (m/2)) + 1• Let S(m) = T(lg m) = T(n)=> S(m) = 2S(m/2) + 1=> $S(m) = \Theta(m)$ => $T(n) = S(m) = \Theta(m) = \Theta(2^n)$

Changing Variables

$$T(n) = T(\sqrt{n}) + 1$$

• Let
$$n = 2^m$$

=> sqrt(n) = $2^{m/2}$
• We then have $T(2^m) = T(2^{m/2}) + 1$
• Let $T(n) = T(2^m) = S(m)$
=> $S(m) = S(m/2) + 1$
 $\Rightarrow S(m) = \Theta (\log m) = \Theta (\log \log n)$
 $\Rightarrow T(n) = \Theta (\log \log n)$

Changing Variables

• T(n) = 2T(n-2) + 1• Let $n = \lg m$, i.e., $m = 2^n$ => T(lg m) = 2 T(lg m/4) + 1• Let $S(m) = T(\lg m) = T(n)$ => S(m) = 2S(m/4) + 1 $=> S(m) = m^{1/2}$ $=> T(n) = S(m) = (2^n)^{1/2} = (sqrt(2))^n \approx 1.4^n$

Obtaining Bounds

- Solve the Fibonacci variant: T(n) = T(n-1) + T(n-2) + 1 T(n) >= 2T(n-2) + 1 [1] T(n) <= 2T(n-1) + 1 [2]
- Solving [1], we obtain T(n) >= 1.4ⁿ
 Solving [2], we obtain T(n) <= 2ⁿ
 Actually, T(n) ≈ 1.62ⁿ

Obtaining Bounds

• $T(n) = T(n/2) + \log n$ • T(n) $\in \Omega(\log n)$ • T(n) \in O(T(n/2) + n^{ε}) • Solving $T(n) = T(n/2) + n^{\varepsilon}$, we obtain $T(n) = O(n^{\varepsilon})$, for any $\varepsilon > 0$ • So: T(n) \in O(n^{ε}) for any ε > 0 T(n) is unlikely polynomial • Actually, $T(n) = \Theta(\log^2 n)$ by extended case 2

Extended Case 2

CASE 2: $f(n) = \Theta(n^{\log_b a}) \Rightarrow T(n) = \Theta(n^{\log_b a} \log n).$

Extended CASE 2: (k >= 0) $f(n) = \Theta(n^{\log_b a} \log^k n) \Rightarrow T(n) = \Theta(n^{\log_b a} \log^{k+1} n).$

Solving Recurrences

- 1. Recursion tree / iteration method
 - Good for guessing an answer
 - Need to verify guess
- 2. Master method
 - Easy to learn, useful in limited cases only
 - Some tricks may help in other cases
- 3. Substitution method
 - Generic method, rigid, may be hard

The Substitution Method

For	Use
Buttermilk - 1 cup	1 TB lemon juice + enough milk to = 1 cup
Whole Milk - 1 cup	1/2 c. evaporated milk + 1/2 c. water
Unsweetened Chocolate - 1 oz	1 TB fat + 3 TB cocoa
Honey - 1 cup	¼ c. liquid + 1 ¼ c. sugar
Shortening (for baking) - 1 cup	1 1/8 c. butter or margine less ½ tsp of salt in recipe
Corn Syrup - 1 cup	1 c. sugar + ¼ c. of liquid
Cornstarch - 1 ½ tsp	1 TB flour
1 whole egg	2 egg yolks + 1 TB water
Peppermint extract - 1 TB	¹ / ₄ c. fresh mint, chopped
Cream ½ & ½ - 1 cup	3 TB oil + milk to = 1 cup
Cream, heavy for baking & cooking - 1 cup	$3/4$ c. milk + $\frac{1}{2}$ c. butter or margarine
Marshmallow Creme - 1 cup (jar = 2 1/8 cups)	16 lg (160 sm) marshmallows + 2 TB corn syrup (melted in double broiler)
Catsup	1 c. tomato sauce, ½ c. sugar, 2 TB vinegar

Substitution Method

The most general method to solve a recurrence (prove O and Ω separately):

Guess the form of the solution

 (e.g. by recursion tree / iteration method)

 Verify by induction (inductive step).
 Solve for O/Ω -constants n₀ and c (base cases of induction)

Substitution Method

By log we mean lg

- Recurrence: T(n) = 2T(n/2) + n.
- Guess: T(n) = O(n log n). (e.g., by recursion tree method)
- To prove, have to show T(n) ≤ c n log n for some c > 0 and for all n > n₀
- Proof by induction: assume it is true for T(n/2), prove that it is also true for T(n). This means:
- Given: T(n) = 2T(n/2) + n
- Need to Prove: $T(n) \le c n \log(n)$
- Assuming: $T(n/2) \le cn/2 \log (n/2)$

Proof

- Given: T(n) = 2T(n/2) + n
- Need to Prove: $T(n) \le c n \log (n)$
- Assuming: $T(n/2) \le cn/2 \log (n/2)$
- Proof:

Substituting $T(n/2) \le cn/2 \log (n/2)$ into the recurrence, we get T(n) = 2 T(n/2) + n $\le cn \log (n/2) + n$ $\le c n \log n - c n + n$ $\le c n \log n - (c - 1) n$ $\le c n \log n$ for all n > 0 (if $c \ge 1$). Therefore, by definition, $T(n) = O(n \log n)$.
Substitution method – Example 2

- Recurrence: T(n) = 2T(n/2) + n.
- Guess: $T(n) = \Omega(n \log n)$.
- To prove, have to show T(n) ≥ c n log n for some c > 0 and for all n > n₀
- Proof by induction: assume it is true for T(n/2), prove that it is also true for T(n). This means:
- Given: T(n) = 2T(n/2) + n
- Need to Prove: $T(n) \ge c n \log(n)$
- Assuming: $T(n/2) \ge cn/2 \log (n/2)$

Proof

- Given: T(n) = 2T(n/2) + n
- Need to Prove: $T(n) \ge c n \log (n)$
- Assuming: $T(n/2) \ge cn/2 \log (n/2)$
- Proof:

Substituting $T(n/2) \ge cn/2 \log (n/2)$ into the recurrence, we get

T(n) = 2 T(n/2) + n≥ cn log (n/2) + n ≥ c n log n - c n + n ≥ c n log n + (1 - c) n

 $\geq c n \log n$ for all n > 0 (if $c \leq 1$).

Therefore, by definition, $T(n) = \Omega(n \log n)$.

More Substitution Examples [1]

- Prove that $T(n) = 3T(n/3) + n = O(n \log n)$
- Need to show that T(n) ≤ c n log n for some c, and sufficiently large n
- Assume above is true for T(n/3), i.e.

 $T(n/3) \le cn/3 \log (n/3)$

3-way Merge Sort

$$\begin{split} \mathsf{T}(\mathsf{n}) &= 3 \ \mathsf{T}(\mathsf{n}/3) + \mathsf{n} \\ &\leq 3 \ \mathsf{cn}/3 \ \mathsf{log} \ (\mathsf{n}/3) + \mathsf{n} \\ &\leq \mathsf{cn} \ \mathsf{log} \ \mathsf{n} - \mathsf{cn} \ \mathsf{log} 3 + \mathsf{n} \\ &\leq \mathsf{cn} \ \mathsf{log} \ \mathsf{n} - (\mathsf{cn} \ \mathsf{log} 3 - \mathsf{n}) \\ &\leq \mathsf{cn} \ \mathsf{log} \ \mathsf{n} \ (\mathsf{if} \ \mathsf{cn} \ \mathsf{log} 3 - \mathsf{n} \geq \mathsf{0}) \end{split}$$

cn log3 – n \geq 0

 $\begin{array}{ll} \Rightarrow & c \log 3 - 1 \geq 0 \mbox{ (for } n > 0) \\ \Rightarrow & c \geq 1/log3 \\ \Rightarrow & c \geq log_32 \end{array}$ Therefore, T(n) = 3 T(n/3) + n \leq cn log n for c = log_32 and n > 0. By definition, T(n) = O(n log n).

More Substitution Examples [2]

- Prove that T(n) = T(n/3) + T(2n/3) + n =
 O(n logn)
- Need to show that T(n) ≤ c n log n for some c, and sufficiently large n
- Assume above is true for T(n/3) and T(2n/3), i.e.
 - $T(n/3) \le cn/3 \log (n/3)$
 - $T(2n/3) \le 2cn/3 \log (2n/3)$

Unbalanced Merge Sort

$$\begin{split} \mathsf{T}(\mathsf{n}) &= \mathsf{T}(\mathsf{n}/3) + \mathsf{T}(2\mathsf{n}/3) + \mathsf{n} \\ &\leq \mathsf{cn}/3 \, \mathsf{log}(\mathsf{n}/3) + 2\mathsf{cn}/3 \, \mathsf{log}(2\mathsf{n}/3) + \mathsf{n} \\ &\leq \mathsf{cn} \, \mathsf{log} \, \mathsf{n} + \mathsf{n} - \mathsf{cn} \, (\mathsf{log} \, 3 - 2/3) \\ &\leq \mathsf{cn} \, \mathsf{log} \, \mathsf{n} + \mathsf{n}(1 - \mathsf{clog}3 + 2\mathsf{c}/3) \\ &\leq \mathsf{cn} \, \mathsf{log} \, \mathsf{n}, \, \mathsf{for} \, \mathsf{all} \, \mathsf{n} > 0 \, (\mathsf{if} \, 1 - \mathsf{c} \, \mathsf{log}3 + 2\mathsf{c}/3 \leq 0) \end{split}$$

 $c \log 3 - 2c/3 \ge 1$ $\Rightarrow c \ge 1 / (\log 3 - 2/3) > 0$

Therefore, $T(n) = T(n/3) + T(2n/3) + n \le cn \log n$ for c = 1 / (log3-2/3) and n > 0. By definition, $T(n) = O(n \log n)$.

More Substitution Examples [3]

- Prove that $T(n) = 3T(n/4) + n^2 = O(n^2)$
- Need to show that T(n) ≤ c n² for some c, and sufficiently large n
- Assume above is true for T(n/4), i.e.

 $T(n/4) \le c(n/4)^2 = cn^2/16$

$$T(n) = 3T(n/4) + n^2$$

$$\leq 3 c n^2 / 16 + n^2$$

$$\leq (3c/16 + 1) n^2$$

$$?_{\leq cn^2}$$

 $3c/16 + 1 \le c$ implies that $c \ge 16/13$ Therefore, $T(n) = 3(n/4) + n^2 \le cn^2$ for c = 16/13 and all n. By definition, $T(n) = O(n^2)$.

Avoiding Pitfalls

- Guess T(n) = 2T(n/2) + n = O(n) [really O(n log n)]
 Need to prove that T(n) ≤ c n
 Assume T(n/2) ≤ cn/2
- $T(n) \le 2 * cn/2 + n = cn + n = O(n)$
- What's wrong?
- Need to prove $T(n) \le cn$, not $T(n) \le cn + n = (c+1)n$

Subtleties

- Prove that $T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 1 = O(n)$ • Need to prove that $T(n) \le cn$
- Assume above is true for $T(\lfloor n/2 \rfloor) \& T(\lceil n/2 \rceil)$ T(n) <= c $\lfloor n/2 \rfloor$ + c $\lceil n/2 \rceil$ + 1

 \leq cn + 1

Is it a correct proof?

No! have to prove $T(n) \le cn$

However we can prove T(n) = O(n - 1)

Making a Good Guess

T(n) = 2T(n/2 + 17) + n

```
When n approaches infinity, n/2 + 17 are not too different from n/2
Therefore can guess T(n) = \Theta(n \log n)
Prove \Omega:
Assume T(n/2 + 17) \ge c (n/2+17) \log (n/2 + 17)
Then we have
T(n) = n + 2T(n/2+17)
\ge n + 2c (n/2+17) \log (n/2 + 17)
\ge n + c n \log (n/2 + 17) + 34 c \log (n/2+17)
\ge c n \log (n/2 + 17) + 34 c \log (n/2+17)
....
```

Maybe can guess $T(n) = \Theta((n-17) \log (n-17))$ (trying to get rid of the +17). Details skipped.

Summary: Solving Recurrences

- 1. Recursion tree / iteration method
 - Good for guessing an answer
- 2. Master method
 - Easy to learn, useful in limited cases only
 - Some tricks may help in other cases
- 3. Substitution method
 - Generic method, rigid, may be hard

$$T(n) = 3T(\frac{1}{2}) + n$$

$$\# subproblems at level i g reconstant dree

3i

Size g subproblems

$$\frac{1}{2} = n \frac{1}{2} \frac{1}{$$$$