
CS161:
Design and Analysis of

Algorithms

Lecture 3
Leonidas Guibas

1

2

Outline

Review of last lecture (asymptotic
notations, recurrence relations)

Key Topic: Solving Recurrences
using recursion trees (or iteration)
the master method
the substitution method

Slides modified from
• http://www.cs.virginia.edu/~luebke/cs332/

http://www.cs.virginia.edu/%7Eluebke/cs332/

3

Asymptotic Bounds on
Algorithm Performance

Worst-case and average-case are difficult
to analyze precisely -- the details can be
very complicated

It may be easier to talk about upper and
lower bounds on the function T(n).

n

T(n)

4

Review: Asymptotic Notations

O: Big-Oh
Ω: Big-Omega
Θ: Theta
o: Small-oh
ω: Small-omega

5

Big O
Informally, O(g(n)) is the set of all
functions with a smaller or same order of
growth as g(n), within a constant multiple

If we say f(n) is in O(g(n)), this means
that g(n) is an asymptotic upper bound on
f(n)

Formally. ∃ C (>0) & n0, f(n) ≤ Cg(n) for ∀ n
>= n0

Intuitively, O is like ≤

an upper bound notation

g(n) should be a “simple” function

6

Big Ω

Informally, Ω(g(n)) is the set of all functions with a larger
or same order of growth as g(n), within a constant
multiple

f(n) ∈ Ω(g(n)) means g(n) is an asymptotic lower bound
of f(n)

Intuitively, it is like f(n) ≥ g(n)

Intuitively, Ω is like ≥

a lower bound notation

7

Theta (Θ): Θ = O and Ω

Informally, Θ(g(n)) is the set of all
functions with the same order of growth
as g(n), within a constant multiple

f(n) ∈ Θ(g(n)) means g(n) is an
asymptotically tight bound on f(n)

Intuitively, it is like f(n) = g(n)

Θ is like =

8

O, Ω, and Θ

The definitions imply a constant n0 beyond which they are
satisfied. We do not care about small values of n.

9

Algorithm Efficiency via
Recurrences

()

()

()

() 12/2)(

12/)(

1)(

11)(

+=

+=

+−=

+−=

nTnT

nTnT

nnTnT

nTnT

Challenge: how to solve the recurrence to get a tight bound,
e.g. T(n) = Θ (n2) or T(n) = Θ(n lgn), or at least an upper
bound such as T(n) = O(n2)?

10

Solving Recurrences
The running time of many algorithms can
be expressed in one of the following two
recursive forms

)()/()(

)()()(

nfbnaTnT

nfbnaTnT

+=

+−=

or

Both can be hard to solve. We focus on relatively
easy ones, which you will encounter frequently in
many real algorithms (and exams…)

11

Solving Recurrences

1. Recursion tree / iteration method
2. Master method
3. Substitution method

The Recursion Tree Method

12

13

Review: Back to MergeSort

MERGE-SORT A[1 . . n]
1. If n = 1, done.
2. Recursively sort A[1 . .

n/2] and A[n/2+1 . . n] .
3. “Merge” the 2 sorted lists

T(n)
Θ(1)
2T(n/2)

Θ(n)

Sloppiness: Should be T(n/2) + T(n/2),
but it turns out not to matter asymptotically.

14

Recurrence for MergeSort

T(n) =
Θ(1) if n = 1;
2T(n/2) + Θ(n) if n > 1.

• We saw that the cost of the Merge
step is Θ(n) .

• We shall usually omit stating the base
case when T(n) = Θ(1) for sufficiently
small n, but only when it has no effect
on the asymptotic solution to the
recurrence.

15

Recursion Tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

16

Recursion Tree

T(n)

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

17

T(n/2) T(n/2)

cn

Recursion Tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

18

cn

T(n/4) T(n/4) T(n/4) T(n/4)

cn/2 cn/2

Recursion Tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

19

cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

Θ(1)

Recursion Tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

20

cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

Θ(1)

h = lg n

Recursion Tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

21

cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

Θ(1)

h = lg n

cn

Recursion Tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

22

cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

Θ(1)

h = lg n

cn

cn

Recursion Tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

23

cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

Θ(1)

h = lg n

cn

cn

cn

…

Recursion Tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

24

cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

Θ(1)

h = lg n

cn

cn

cn

#leaves = n Θ(n)

…

Recursion Tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

25

cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

Θ(1)

h = lg n

cn

cn

cn

#leaves = n Θ(n)
Total = Θ(n lg n)

…

Recursion Tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

26

Another Example

How many multiplications do we need to
compute 316?

316 =38 x 38

38 =34 x 34

34 =32 x 32

32 =3 x 3

316 =3 x 3 x 3 …. x 3 Answer: 15

Answer: 4

27

Pseudocode for Recursion

int pow (b, n) // compute bn

m = n >> 1; // divide by 2
p = pow (b, m);
p = p * p;
if (n % 2)

return p * b;
else

return p;

28

Pseudocode Variations
int pow (b, n)

m = n >> 1;
p = pow(b,m) * pow(b,m);
if (n % 2)

return p * b;
else

return p;

int pow (b, n)
m = n >> 1;
p = pow (b, m);
p = p * p;
if (n % 2)

return p * b;
else

return p;

29

Recurrence for Computing Power
int pow (b, n)

m = n >> 1;
p=pow(b,m)*pow(b,m);
if (n % 2)

return p * b;
else

return p;

int pow (b, n)
m = n >> 1;
p = pow (b, m);
p = p * p;
if (n % 2)

return p * b;
else

return p;

T(n) = T(n/2)+Θ(1) T(n) = 2T(n/2)+Θ(1)

Which algorithm is more efficient asymptotically?

Alg1 Alg2

30

Time Complexity for Alg1

Solve T(n) = T(n/2) + 1
T(n) = T(n/2) + 1

= T(n/4) + 1 + 1
= T(n/8) + 1 + 1 + 1
= T(1) + 1 + 1 + … + 1

= Θ (log(n))
log(n)

Iteration method

log(n)

31

Time Complexity for Alg2
Solve T(n) = 2T(n/2) + 1.

32

Time Complexity for Alg2
Solve T(n) = 2T(n/2) + 1.

T(n)

33

Time Complexity for Alg2

T(n/2) T(n/2)

1
Solve T(n) = 2T(n/2) + 1.

34

Time Complexity for Alg2

1

T(n/4) T(n/4) T(n/4) T(n/4)

1 1

Solve T(n) = 2T(n/2) + 1.

35

Time Complexity for Alg2

1

1 1 1 1

1 1

Θ(1)

Solve T(n) = 2T(n/2) + 1.

36

Time Complexity for Alg2

1

1 1 1 1

1 1

Θ(1)

h = lg n

Solve T(n) = 2T(n/2) + 1.

37

Time Complexity for Alg2

1

1 1 1 1

1 1

Θ(1)

h = lg n

1
Solve T(n) = 2T(n/2) + 1.

38

Time Complexity for Alg2

1

1 1 1 1

1 1

Θ(1)

h = lg n

1

2

Solve T(n) = 2T(n/2) + 1.

39

Time Complexity for Alg2

1

1 1 1 1

1 1

Θ(1)

h = lg n

1

2

4

…

Solve T(n) = 2T(n/2) + 1.

40

Time Complexity for Alg2

1

1 1 1 1

1 1

Θ(1)

h = lg n

1

2

4

#leaves = n Θ(n)

…

Solve T(n) = 2T(n/2) + 1.

41

Time Complexity for Alg2

1

1 1 1 1

1 1

Θ(1)

h = lg n

1

2

4

#leaves = n Θ(n)

…

Solve T(n) = 2T(n/2) + 1.

Total Θ(n)
1 + 2 + 4 + … + 2k = 2k+1 -1

42

More Iteration Method
Examples

T(n) = T(n-1) + 1
= T(n-2) + 1 + 1
= T(n-3) + 1 + 1 + 1
= T(1) + 1 + 1 + … + 1

= Θ(n)
n - 1

43

More Iteration Method
Examples

T(n) = T(n-1) + n
= T(n-2) + (n-1) + n
= T(n-3) + (n-2) + (n-1) + n
= T(1) + 2 + 3 + … + n
= Θ (n2)

Saw the same sum in InsertionSort

44

3-Way-MergeSort
3-way-merge-sort (A[1..n])

If (n <= 1) return;
3-way-merge-sort(A[1..n/3]);
3-way-merge-sort(A[n/3+1..2n/3]);
3-way-merge-sort(A[2n/3+1.. n]);
Merge A[1..n/3] and A[n/3+1..2n/3];
Merge A[1..2n/3] and A[2n/3+1..n];

• Is this algorithm correct?
• What’s the recurrence function for the running time?
• What does the recurrence function solve to?

45

Unbalanced-MergeSort

ub-merge-sort (A[1..n])
if (n<=1) return;
ub-merge-sort(A[1..n/3]);
ub-merge-sort(A[n/3+1.. n]);
Merge A[1.. n/3] and A[n/3+1..n].

• Is this algorithm correct?
• What’s the recurrence function for the running time?
• What does the recurrence function solve to?

46

More Recursion Tree Examples

T(n) = 3T(n/3) + n [3-Way MergeSort]

T(n) = T(n/3) + T(2n/3) + n [ub-MergeSort]

T(n) = 3T(n/4) + n

T(n) = 3T(n/4) + n2

The Master Method

47

48

The Master Method
The master method applies to recurrences of
the form
T(n) = a T(n/b) + f (n) ,
where a ≥ 1, b > 1, and f is asymptotically
positive.

1. Divide the problem into a subproblems, each of size n/b
2. Conquer the subproblems by solving them recursively.
3. Combine subproblem solutions

Divide + combine takes f(n) time.

49

Master Theorem
T(n) = a T(n/b) + f (n)

CASE 1: f (n) = O(nlogba – ε) ⇒ T(n) = Θ(nlogba) .

CASE 2: f (n) = Θ(nlogba) ⇒ T(n) = Θ(nlogba log n)
.

CASE 3: f (n) = Ω(nlogba + ε) and a f (n/b) ≤ c f (n)

⇒ T(n) = Θ(f (n)) .

Key: compare f(n) with nlogba

Regularity Condition

log logb ba nn a=

50

Case 1
f (n) = O(nlogba – ε) for some constant ε > 0.
Alternatively: nlogba / f(n) = Ω(nε)
Intuition: f (n) grows polynomially slower than nlogba

Or: nlogba dominates f(n) by an nε factor for some ε > 0
Solution: T(n) = Θ(nlogba)

T(n) = 4T(n/2) + n
b = 2, a = 4, f(n) = n
log24 = 2
f(n) = n = O(n2-ε), or
n2 / n = n1 = Ω(nε), for ε = 1
∴ T(n) = Θ(n2)

T(n) = 2T(n/2) + n/logn
b = 2, a = 2, f(n) = n / log n
log22 = 1
f(n) = n/logn ∉ O(n1-ε), or
n1/ f(n) = log n ∉ Ω(nε), for any ε > 0
∴ CASE 1 does not apply

51

Case 2

f (n) = Θ (nlogba).
Intuition: f (n) and nlogba have the same asymptotic order.

Solution: T(n) = Θ(nlogba log n)

e.g. T(n) = T(n/2) + 1 logba = 0
T(n) = 2 T(n/2) + n logba = 1
T(n) = 4T(n/2) + n2 logba = 2
T(n) = 8T(n/2) + n3 logba = 3

52

Case 3
f (n) = Ω(nlogba + ε) for some constant ε > 0.
Alternatively: f(n) / nlogba = Ω(nε)
Intuition: f (n) grows polynomially faster than nlogba

Or: f(n) dominates nlogba by an nε factor for some ε > 0
Solution: T(n) = Θ(f(n))

T(n) = T(n/2) + n
b = 2, a = 1, f(n) = n
nlog21 = n0 = 1
f(n) = n = Ω(n0+ε), or
n / 1= n = Ω(nε)
∴ T(n) = Θ(n)

T(n) = T(n/2) + log n
b = 2, a = 1, f(n) = log n
nlog21 = n0 = 1
f(n) = log n ∉ Ω(n0+ε), or
f(n) / nlog21 = log n ∉ Ω(nε)
∴ CASE 3 does not apply

53

Regularity Condition

a f (n/b) ≤ c f (n) for some c < 1 and all sufficiently
large n
This is needed for the master method to be
mathematically correct.

to deal with some non-converging functions such as sine
or cosine functions

For most f(n) you’ll see (e.g., polynomial, logarithm,
exponential), you can safely ignore this condition,
because it is implied by the first condition f (n) =
Ω(nlogba + ε)

Proof by Picture

54
log logb ba nn a=

/ i
in n b=

55

Examples

T(n) = 4T(n/2) + n
a = 4, b = 2 ⇒ nlogba = n2; f (n) = n.
CASE 1: f (n) = O(n2 – ε) for ε = 1.
∴ T(n) = Θ(n2).

T(n) = 4T(n/2) + n2

a = 4, b = 2 ⇒ nlogba = n2; f (n) = n2.
CASE 2: f (n) = Θ(n2).

∴ T(n) = Θ(n2log n).

56

Examples

T(n) = 4T(n/2) + n3

a = 4, b = 2 ⇒ nlogba = n2; f (n) = n3.
CASE 3: f (n) = Ω(n2 + ε) for ε = 1

and 4(n/2)3 ≤ cn3 (reg. cond.) for c = 1/2.
∴ T(n) = Θ(n3).

T(n) = 4T(n/2) + n2/logn
a = 4, b = 2 ⇒ nlogba = n2; f (n) = n2/logn.
Master method does not apply. In particular, for
every constant ε > 0, we have nε = ω(logn).

57

Examples

T(n) = 4T(n/2) + n2.5

a = 4, b = 2 ⇒ nlogba = n2; f (n) = n2.5.
CASE 3: f (n) = Ω(n2 + ε) for ε = 0.5

and 4(n/2)2.5 ≤ cn2.5 (reg. cond.) for c = 0.75.
∴ T(n) = Θ(n2.5).

T(n) = 4T(n/2) + n2 logn
a = 4, b = 2 ⇒ nlogba = n2; f (n) = n2logn.
Master method does not apply. In particular, for
every constant ε > 0, we have nε = ω(logn).

58

How do I know which case to use? Do I
need to try all three cases one by one?

59

Compare f(n) with nlogba

o(nlogba) Possible CASE 1
f(n) ∈ Θ(nlogba) CASE 2

ω(nlogba) Possible CASE 3

check if nlogba / f(n) ∈ Ω(nε)

check if f(n) / nlogba ∈ Ω(nε)

60

Examples

logba = 2. n = o(n2) => Check case 1

logba = 2. n2 = Θ(n2) => Check case 2

logba = 1.3. n = o(n1.3) => Check case 1

logba = 0.5. n = ω(n0.5) => Check case 3

logba = 0. nlogn = ω(n0) => Check case 3

logba = 1. nlogn = ω(n) => Check case 3

61

Some Tricks

Changing variables

Obtaining upper and lower bounds
Make a guess based on the bounds
Prove using the substitution method

62

Changing Variables

Let n = lg m, i.e., m = 2n

=> T(lg m) = 2 T(lg (m/2)) + 1
Let S(m) = T(lg m) = T(n)

=> S(m) = 2S(m/2) + 1
=> S(m) = Θ(m)
=> T(n) = S(m) = Θ(m) = Θ(2n)

T(n) = 2T(n-1) + 1

63

Changing Variables

Let n =2m

=> sqrt(n) = 2m/2

We then have T(2m) = T(2m/2) + 1
Let T(n) = T(2m) = S(m)

=> S(m) = S(m/2) + 1
⇒S(m) = Θ (log m) = Θ (log log n)
⇒T(n) = Θ (log log n)

1)()(+= nTnT

64

Changing Variables

T(n) = 2T(n-2) + 1
Let n = lg m, i.e., m = 2n

=> T(lg m) = 2 T(lg m/4) + 1
Let S(m) = T(lg m) = T(n)

=> S(m) = 2S(m/4) + 1
=> S(m) = m1/2

=> T(n) = S(m) = (2n)1/2 = (sqrt(2)) n ≈ 1.4n

65

Obtaining Bounds

Solve the Fibonacci variant:
T(n) = T(n-1) + T(n-2) + 1

T(n) >= 2T(n-2) + 1 [1]
T(n) <= 2T(n-1) + 1 [2]

Solving [1], we obtain T(n) >= 1.4n

Solving [2], we obtain T(n) <= 2n

Actually, T(n) ≈ 1.62n

66

Obtaining Bounds

T(n) = T(n/2) + log n
T(n) ∈ Ω(log n)
T(n) ∈ O(T(n/2) + nε)
Solving T(n) = T(n/2) + nε,
we obtain T(n) = O(nε), for any ε > 0
So: T(n) ∈O(nε) for any ε > 0

T(n) is unlikely polynomial
Actually, T(n) = Θ(log2n) by extended case 2

67

Extended Case 2

CASE 2: f (n) = Θ(nlogba) ⇒ T(n) = Θ(nlogba log n).

Extended CASE 2: (k >= 0)
f (n) = Θ(nlogba logkn) ⇒ T(n) = Θ(nlogba logk+1n).

68

Solving Recurrences

1. Recursion tree / iteration method
- Good for guessing an answer
- Need to verify guess

2. Master method
- Easy to learn, useful in limited cases only
- Some tricks may help in other cases

3. Substitution method
- Generic method, rigid, may be hard

The Substitution Method

69

70

Substitution Method

1. Guess the form of the solution
(e.g. by recursion tree / iteration method)

2. Verify by induction (inductive step).
3. Solve for O/Ω -constants n0 and c (base

cases of induction)

The most general method to solve a recurrence
(prove O and Ω separately):

71

Recurrence: T(n) = 2T(n/2) + n.
Guess: T(n) = O(n log n). (e.g., by recursion
tree method)
To prove, have to show T(n) ≤ c n log n for
some c > 0 and for all n > n0
Proof by induction: assume it is true for T(n/2),
prove that it is also true for T(n). This means:
Given: T(n) = 2T(n/2) + n
Need to Prove: T(n)≤ c n log (n)
Assuming: T(n/2)≤ cn/2 log (n/2)

Substitution Method By log we
mean lg

72

Proof
Given: T(n) = 2T(n/2) + n
Need to Prove: T(n)≤ c n log (n)
Assuming: T(n/2)≤ cn/2 log (n/2)

Proof:
Substituting T(n/2) ≤ cn/2 log (n/2) into the recurrence,
we get
T(n) = 2 T(n/2) + n

≤ cn log (n/2) + n
≤ c n log n - c n + n
≤ c n log n - (c - 1) n
≤ c n log n for all n > 0 (if c ≥ 1).

Therefore, by definition, T(n) = O(n log n).

73

Recurrence: T(n) = 2T(n/2) + n.
Guess: T(n) = Ω(n log n).
To prove, have to show T(n) ≥ c n log n for
some c > 0 and for all n > n0

Proof by induction: assume it is true for T(n/2),
prove that it is also true for T(n). This means:
Given:
Need to Prove: T(n) ≥ c n log (n)
Assuming:

Substitution method – Example 2

T(n) = 2T(n/2) + n

T(n/2) ≥ cn/2 log (n/2)

74

Proof
Given: T(n) = 2T(n/2) + n
Need to Prove: T(n) ≥ c n log (n)
Assuming: T(n/2) ≥ cn/2 log (n/2)

Proof:
Substituting T(n/2) ≥ cn/2 log (n/2) into the recurrence,
we get

T(n) = 2 T(n/2) + n
≥ cn log (n/2) + n
≥ c n log n - c n + n
≥ c n log n + (1 – c) n
≥ c n log n for all n > 0 (if c ≤ 1).

Therefore, by definition, T(n) = Ω(n log n).

75

More Substitution Examples [1]

Prove that T(n) = 3T(n/3) + n = O(n logn)
Need to show that T(n) ≤ c n log n for
some c, and sufficiently large n
Assume above is true for T(n/3), i.e.
T(n/3) ≤ cn/3 log (n/3)

3-way Merge Sort

76

T(n) = 3 T(n/3) + n
≤ 3 cn/3 log (n/3) + n
≤ cn log n – cn log3 + n
≤ cn log n – (cn log3 – n)
≤ cn log n (if cn log3 – n ≥ 0)

cn log3 – n ≥ 0
=> c log 3 – 1 ≥ 0 (for n > 0)
=> c ≥ 1/log3
=> c ≥ log32

Therefore, T(n) = 3 T(n/3) + n ≤ cn log n for c = log32 and
n > 0. By definition, T(n) = O(n log n).

77

More Substitution Examples [2]

Prove that T(n) = T(n/3) + T(2n/3) + n =
O(n logn)
Need to show that T(n) ≤ c n log n for
some c, and sufficiently large n
Assume above is true for T(n/3) and
T(2n/3), i.e.
T(n/3) ≤ cn/3 log (n/3)
T(2n/3) ≤ 2cn/3 log (2n/3)

Unbalanced Merge Sort

78

T(n) = T(n/3) + T(2n/3) + n
≤ cn/3 log(n/3) + 2cn/3 log(2n/3) + n
≤ cn log n + n – cn (log 3 – 2/3)
≤ cn log n + n(1 – clog3 + 2c/3)
≤ cn log n, for all n > 0 (if 1– c log3 + 2c/3 ≤ 0)

c log3 – 2c/3 ≥ 1
⇒ c ≥ 1 / (log3-2/3) > 0

Therefore, T(n) = T(n/3) + T(2n/3) + n ≤ cn log n for c = 1 /
(log3-2/3) and n > 0. By definition, T(n) = O(n log n).

79

More Substitution Examples [3]

Prove that T(n) = 3T(n/4) + n2 = O(n2)
Need to show that T(n) ≤ c n2 for some c,
and sufficiently large n
Assume above is true for T(n/4), i.e.
T(n/4) ≤ c(n/4)2 = cn2/16

80

T(n) = 3T(n/4) + n2

≤ 3 c n2 / 16 + n2

≤ (3c/16 + 1) n2

≤ cn2

3c/16 + 1 ≤ c implies that c ≥ 16/13
Therefore, T(n) = 3(n/4) + n2 ≤ cn2 for c =

16/13 and all n. By definition, T(n) =
O(n2).

?

81

Avoiding Pitfalls

Guess T(n) = 2T(n/2) + n = O(n) [really O(n log n)]
Need to prove that T(n) ≤ c n
Assume T(n/2) ≤ cn/2

T(n) ≤ 2 * cn/2 + n = cn + n = O(n)

What’s wrong?

Need to prove T(n) ≤ cn, not T(n) ≤ cn + n = (c+1)n

82

Subtleties

Prove that T(n) = T(n/2) + T(n/2) + 1 = O(n)
Need to prove that T(n) ≤ cn
Assume above is true for T(n/2) & T(n/2)

T(n) <= c n/2 + cn/2 + 1
≤ cn + 1

Is it a correct proof?
No! have to prove T(n) <= cn
However we can prove T(n) = O(n – 1)

may be easier to prove a stronger induction hypothesis

83

Making a Good Guess

T(n) = 2T(n/2 + 17) + n

When n approaches infinity, n/2 + 17 are not too different from n/2
Therefore can guess T(n) = Θ(n log n)
Prove Ω:
Assume T(n/2 + 17) ≥ c (n/2+17) log (n/2 + 17)
Then we have
T(n) = n + 2T(n/2+17)

≥ n + 2c (n/2+17) log (n/2 + 17)
≥ n + c n log (n/2 + 17) + 34 c log (n/2+17)
≥ c n log (n/2 + 17) + 34 c log (n/2+17)
….

Maybe can guess T(n) = Θ((n-17) log (n-17)) (trying to get rid of the +17).
Details skipped.

84

Summary: Solving Recurrences

1. Recursion tree / iteration method
- Good for guessing an answer

2. Master method
- Easy to learn, useful in limited cases only
- Some tricks may help in other cases

3. Substitution method
- Generic method, rigid, may be hard

85

	CS161:�Design and Analysis of Algorithms�����Lecture 3�Leonidas Guibas
	Outline
	Asymptotic Bounds on Algorithm Performance
	Review: Asymptotic Notations
	Big O
	Big Ω
	Theta (Θ): Θ = O and Ω
	O, Ω, and Θ
	Algorithm Efficiency via Recurrences
	Solving Recurrences
	Solving Recurrences
	The Recursion Tree Method
	Review: Back to MergeSort
	Recurrence for MergeSort
	Recursion Tree
	Recursion Tree
	Recursion Tree
	Recursion Tree
	Recursion Tree
	Recursion Tree
	Recursion Tree
	Recursion Tree
	Recursion Tree
	Slide Number 24
	Slide Number 25
	Another Example
	Pseudocode for Recursion
	Pseudocode Variations
	Recurrence for Computing Power
	Time Complexity for Alg1
	Time Complexity for Alg2
	Time Complexity for Alg2
	Time Complexity for Alg2
	Time Complexity for Alg2
	Time Complexity for Alg2
	Time Complexity for Alg2
	Time Complexity for Alg2
	Time Complexity for Alg2
	Time Complexity for Alg2
	Time Complexity for Alg2
	Time Complexity for Alg2
	More Iteration Method Examples
	More Iteration Method Examples
	3-Way-MergeSort
	Unbalanced-MergeSort
	More Recursion Tree Examples
	The Master Method
	The Master Method
	Master Theorem
	Case 1
	Case 2
	Case 3
	Regularity Condition
	Proof by Picture
	Examples
	Examples
	Examples
	Slide Number 58
	Slide Number 59
	Examples
	Some Tricks
	Changing Variables
	Changing Variables
	Changing Variables
	Obtaining Bounds
	Obtaining Bounds
	Extended Case 2
	Solving Recurrences
	The Substitution Method
	Substitution Method
	Substitution Method
	Proof
	Substitution method – Example 2
	Proof
	More Substitution Examples [1]
	Slide Number 76
	More Substitution Examples [2]
	Slide Number 78
	More Substitution Examples [3]
	Slide Number 80
	Avoiding Pitfalls
	Subtleties
	Making a Good Guess
	Summary: Solving Recurrences
	Slide Number 85

