
CS161:
Design and Analysis of 

Algorithms

Lecture 3
Leonidas Guibas

1



2

Outline

Review of last lecture (asymptotic 
notations, recurrence relations)

Key Topic: Solving Recurrences
using recursion trees (or iteration)
the master method
the substitution method

Slides modified from
• http://www.cs.virginia.edu/~luebke/cs332/

http://www.cs.virginia.edu/%7Eluebke/cs332/
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Asymptotic Bounds on 
Algorithm Performance

Worst-case and average-case are difficult 
to analyze precisely -- the details can be 
very complicated

It may be easier to talk about upper and 
lower bounds on the function T(n).

n

T(n)
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Review: Asymptotic Notations

O: Big-Oh
Ω: Big-Omega
Θ: Theta
o: Small-oh
ω: Small-omega
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Big O
Informally, O(g(n)) is the set of all 
functions with a smaller or same order of 
growth as g(n), within a constant multiple

If we say f(n) is in O(g(n)), this means 
that g(n) is an asymptotic upper bound on 
f(n)

Formally. ∃ C (>0) & n0, f(n) ≤ Cg(n) for ∀ n 
>= n0

Intuitively, O is like ≤

an upper bound notation

g(n) should be a “simple” function
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Big Ω

Informally, Ω(g(n)) is the set of all functions with a larger 
or same order of growth as g(n), within a constant 
multiple

f(n) ∈ Ω(g(n)) means g(n) is an asymptotic lower bound
of f(n)

Intuitively, it is like f(n) ≥ g(n)

Intuitively, Ω is like ≥

a lower bound notation
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Theta (Θ): Θ = O and Ω

Informally, Θ(g(n)) is the set of all 
functions with the same order of growth 
as g(n), within a constant multiple

f(n) ∈ Θ(g(n)) means g(n) is an 
asymptotically tight bound on f(n)

Intuitively, it is like f(n) = g(n)

Θ is like =
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O, Ω, and Θ

The definitions imply a constant n0 beyond which they are
satisfied. We do not care about small values of n.
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Algorithm Efficiency via 
Recurrences
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Challenge: how to solve the recurrence to get a tight bound, 
e.g. T(n) = Θ (n2) or T(n) = Θ(n lgn), or at least an upper 
bound such as T(n) = O(n2)?
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Solving Recurrences
The running time of many algorithms can 
be expressed in one of the following two 
recursive forms
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or

Both can be hard to solve. We focus on relatively 
easy ones, which you will encounter frequently in 
many real algorithms (and exams…)
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Solving Recurrences

1. Recursion tree / iteration method
2. Master method
3. Substitution method



The Recursion Tree Method

12
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Review: Back to MergeSort

MERGE-SORT A[1 . . n]
1. If n = 1, done.
2. Recursively sort A[ 1 . . 

n/2 ] and A[ n/2+1 . . n ] .
3. “Merge” the 2 sorted lists

T(n)
Θ(1)
2T(n/2)

Θ(n)

Sloppiness: Should be T( n/2 ) + T( n/2 ),
but it turns out not to matter asymptotically.
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Recurrence for MergeSort

T(n) =
Θ(1) if n = 1;
2T(n/2) + Θ(n) if n > 1.

• We saw that the cost of the Merge 
step is Θ(n) .

• We shall usually omit stating the base 
case when T(n) = Θ(1) for sufficiently 
small n, but only when it has no effect 
on the asymptotic solution to the 
recurrence.
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Recursion Tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.
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Recursion Tree

T(n)

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.
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T(n/2) T(n/2)

cn

Recursion Tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.
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cn

T(n/4) T(n/4) T(n/4) T(n/4)

cn/2 cn/2

Recursion Tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.
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cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

Θ(1)

Recursion Tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.
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cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

Θ(1)

h = lg n

Recursion Tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.
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cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

Θ(1)

h = lg n

cn

Recursion Tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.
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cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

Θ(1)

h = lg n

cn

cn

Recursion Tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.
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cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

Θ(1)

h = lg n

cn

cn

cn

…

Recursion Tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.
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cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

Θ(1)

h = lg n

cn

cn

cn

#leaves = n Θ(n)

…

Recursion Tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.
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cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

Θ(1)

h = lg n

cn

cn

cn

#leaves = n Θ(n)
Total = Θ(n lg n)

…

Recursion Tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.
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Another Example

How many multiplications do we need to 
compute 316?

316 =38  x 38

38 =34  x 34

34 =32  x 32

32 =3 x 3

316 =3 x 3 x 3 …. x 3 Answer: 15

Answer: 4
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Pseudocode for Recursion

int pow (b, n)    // compute bn

m = n >> 1;    // divide by 2
p = pow (b, m);
p = p * p;
if (n % 2) 

return p * b;
else

return p;
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Pseudocode Variations
int pow (b, n) 

m = n >> 1;
p = pow(b,m) * pow(b,m);
if (n % 2) 

return p * b;
else

return p;

int pow (b, n) 
m = n >> 1;
p = pow (b, m);
p = p * p;
if (n % 2) 

return p * b;
else

return p;
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Recurrence for Computing Power
int pow (b, n) 

m = n >> 1;
p=pow(b,m)*pow(b,m);
if (n % 2) 

return p * b;
else

return p;

int pow (b, n) 
m = n >> 1;
p = pow (b, m);
p = p * p;
if (n % 2) 

return p * b;
else

return p;

T(n) = T(n/2)+Θ(1) T(n) = 2T(n/2)+Θ(1)

Which algorithm is more efficient asymptotically? 

Alg1 Alg2
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Time Complexity for Alg1

Solve T(n) = T(n/2) + 1
T(n) = T(n/2) + 1

= T(n/4) + 1 + 1
= T(n/8) + 1 + 1 + 1
= T(1) + 1  + 1 + … + 1

= Θ (log(n))
log(n)

Iteration method

log(n)
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Time Complexity for Alg2
Solve T(n) = 2T(n/2) + 1.



32

Time Complexity for Alg2
Solve T(n) = 2T(n/2) + 1.

T(n)



33

Time Complexity for Alg2

T(n/2) T(n/2)

1
Solve T(n) = 2T(n/2) + 1.
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Time Complexity for Alg2

1

T(n/4) T(n/4) T(n/4) T(n/4)

1 1

Solve T(n) = 2T(n/2) + 1.
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Time Complexity for Alg2

1

1 1 1 1

1 1

Θ(1)

Solve T(n) = 2T(n/2) + 1.
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Time Complexity for Alg2

1

1 1 1 1

1 1

Θ(1)

h = lg n

Solve T(n) = 2T(n/2) + 1.
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Time Complexity for Alg2

1

1 1 1 1

1 1

Θ(1)

h = lg n

1
Solve T(n) = 2T(n/2) + 1.
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Time Complexity for Alg2

1

1 1 1 1

1 1

Θ(1)

h = lg n

1

2

Solve T(n) = 2T(n/2) + 1.
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Time Complexity for Alg2

1

1 1 1 1

1 1

Θ(1)

h = lg n

1

2

4

…

Solve T(n) = 2T(n/2) + 1.
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Time Complexity for Alg2

1

1 1 1 1

1 1

Θ(1)

h = lg n

1

2

4

#leaves = n Θ(n)

…

Solve T(n) = 2T(n/2) + 1.
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Time Complexity for Alg2

1

1 1 1 1

1 1

Θ(1)

h = lg n

1

2

4

#leaves = n Θ(n)

…

Solve T(n) = 2T(n/2) + 1.

Total Θ(n)
1 + 2 + 4 + … + 2k =  2k+1 -1
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More Iteration Method 
Examples

T(n) = T(n-1) + 1
= T(n-2) + 1 + 1
= T(n-3) + 1 + 1 + 1
= T(1) + 1  + 1 + … + 1

= Θ(n)
n - 1
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More Iteration Method 
Examples

T(n) = T(n-1) + n
= T(n-2) + (n-1) + n
= T(n-3) + (n-2) + (n-1) + n
= T(1) + 2  + 3 + … + n
= Θ (n2)

Saw the same sum in InsertionSort
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3-Way-MergeSort
3-way-merge-sort (A[1..n])

If (n <= 1) return;
3-way-merge-sort(A[1..n/3]);
3-way-merge-sort(A[n/3+1..2n/3]);
3-way-merge-sort(A[2n/3+1.. n]);
Merge A[1..n/3] and A[n/3+1..2n/3];
Merge A[1..2n/3] and A[2n/3+1..n];

• Is this algorithm correct?
• What’s the recurrence function for the running time?
• What does the recurrence function solve to?
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Unbalanced-MergeSort

ub-merge-sort (A[1..n])
if (n<=1) return;
ub-merge-sort(A[1..n/3]);
ub-merge-sort(A[n/3+1.. n]);
Merge A[1.. n/3] and A[n/3+1..n].

• Is this algorithm correct?
• What’s the recurrence function for the running time?
• What does the recurrence function solve to?
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More Recursion Tree Examples

T(n) = 3T(n/3) + n         [3-Way MergeSort]

T(n) = T(n/3) + T(2n/3) + n [ub-MergeSort]

T(n) = 3T(n/4) + n

T(n) = 3T(n/4) + n2



The Master Method

47
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The Master Method
The master method applies to recurrences of 
the form
T(n) = a T(n/b) + f (n) , 
where a ≥ 1, b > 1, and f is asymptotically 
positive.

1. Divide the problem into a subproblems, each of size n/b
2. Conquer the subproblems by solving them recursively.
3. Combine subproblem solutions 

Divide + combine takes f(n) time.
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Master Theorem
T(n) = a T(n/b) + f (n)

CASE 1: f (n) = O(nlogba – ε) ⇒ T(n) = Θ(nlogba) .

CASE 2: f (n) = Θ(nlogba) ⇒ T(n) = Θ(nlogba log n)
.

CASE 3: f (n) = Ω(nlogba + ε) and a f (n/b) ≤ c f (n)

⇒ T(n) = Θ( f (n)) .

Key: compare f(n) with nlogba

Regularity Condition

log logb ba nn a=
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Case 1
f (n) = O(nlogba – ε) for some constant ε > 0.
Alternatively: nlogba / f(n) = Ω(nε)
Intuition: f (n) grows polynomially slower than nlogba

Or: nlogba dominates f(n) by an nε factor for some ε > 0
Solution: T(n) = Θ(nlogba)

T(n) = 4T(n/2) + n
b = 2, a = 4, f(n) =  n
log24 = 2
f(n) = n = O(n2-ε), or
n2 / n = n1 = Ω(nε), for ε = 1
∴ T(n) = Θ(n2)

T(n) = 2T(n/2) + n/logn
b = 2, a = 2, f(n) =  n / log n
log22 = 1
f(n) = n/logn ∉ O(n1-ε), or
n1/ f(n) = log n ∉ Ω(nε), for any ε > 0
∴ CASE 1 does not apply
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Case 2

f (n) = Θ (nlogba).
Intuition: f (n) and nlogba have the same asymptotic order.

Solution: T(n) = Θ(nlogba log n)

e.g. T(n) = T(n/2) + 1 logba = 0
T(n) = 2 T(n/2) + n logba = 1
T(n) = 4T(n/2) + n2 logba = 2
T(n) = 8T(n/2) + n3 logba = 3
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Case 3
f (n) = Ω(nlogba + ε) for some constant ε > 0.
Alternatively: f(n) / nlogba = Ω(nε)
Intuition: f (n) grows polynomially faster than nlogba

Or: f(n) dominates nlogba by an nε factor for some ε > 0
Solution: T(n) = Θ(f(n))

T(n) = T(n/2) + n
b = 2, a = 1, f(n) =  n
nlog21 = n0 = 1
f(n) = n = Ω(n0+ε), or
n / 1= n = Ω(nε)
∴ T(n) = Θ(n)

T(n) = T(n/2) + log n
b = 2, a = 1, f(n) =  log n
nlog21 = n0 = 1
f(n) = log n ∉ Ω(n0+ε), or
f(n) / nlog21 = log n ∉ Ω(nε)
∴ CASE 3 does not apply
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Regularity Condition

a f (n/b) ≤ c f (n) for some c < 1 and all sufficiently 
large n
This is needed for the master method to be 
mathematically correct. 

to deal with some non-converging functions such as sine 
or cosine functions

For most f(n) you’ll see (e.g., polynomial, logarithm, 
exponential), you can safely ignore this condition, 
because it is implied by the first condition f (n) = 
Ω(nlogba + ε)



Proof by Picture

54
log logb ba nn a=

/ i
in n b=
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Examples

T(n) = 4T(n/2) + n
a = 4, b = 2 ⇒ nlogba = n2; f (n) = n.
CASE 1: f (n) = O(n2 – ε) for ε = 1.
∴ T(n) = Θ(n2).

T(n) = 4T(n/2) + n2

a = 4, b = 2 ⇒ nlogba = n2; f (n) = n2.
CASE 2: f (n) = Θ(n2).

∴ T(n) = Θ(n2log n).
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Examples

T(n) = 4T(n/2) + n3

a = 4, b = 2 ⇒ nlogba = n2; f (n) = n3.
CASE 3: f (n) = Ω(n2 + ε) for ε = 1

and 4(n/2)3 ≤ cn3 (reg. cond.) for c = 1/2.
∴ T(n) = Θ(n3).

T(n) = 4T(n/2) + n2/logn
a = 4, b = 2 ⇒ nlogba = n2; f (n) = n2/logn.
Master method does not apply.  In particular, for 
every constant ε > 0, we have nε = ω(logn).
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Examples

T(n) = 4T(n/2) + n2.5

a = 4, b = 2 ⇒ nlogba = n2; f (n) = n2.5.
CASE 3: f (n) = Ω(n2 + ε) for ε = 0.5

and 4(n/2)2.5 ≤ cn2.5 (reg. cond.) for c = 0.75.
∴ T(n) = Θ(n2.5).

T(n) = 4T(n/2) + n2 logn
a = 4, b = 2 ⇒ nlogba = n2; f (n) = n2logn.
Master method does not apply.  In particular, for 
every constant ε > 0, we have nε = ω(logn).
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How do I know which case to use? Do I 
need to try all three cases one by one? 
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Compare f(n) with nlogba

o(nlogba)   Possible CASE 1
f(n) ∈ Θ(nlogba)   CASE 2

ω(nlogba)   Possible CASE 3

check if nlogba / f(n) ∈ Ω(nε)

check if f(n) / nlogba ∈ Ω(nε)
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Examples

logba = 2. n = o(n2) => Check case 1

logba = 2. n2 = Θ(n2) => Check case 2

logba = 1.3. n = o(n1.3) => Check case 1

logba = 0.5. n = ω(n0.5) => Check case 3

logba = 0. nlogn = ω(n0) => Check case 3

logba = 1. nlogn = ω(n) => Check case 3
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Some Tricks

Changing variables

Obtaining upper and lower bounds
Make a guess based on the bounds
Prove using the substitution method
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Changing Variables

Let n = lg m, i.e., m = 2n

=> T(lg m) = 2 T(lg (m/2)) + 1
Let S(m) = T(lg m) = T(n)

=> S(m) = 2S(m/2) + 1
=> S(m) = Θ(m)
=> T(n) = S(m) = Θ(m) = Θ(2n)

T(n) = 2T(n-1) + 1
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Changing Variables

Let n =2m

=> sqrt(n) = 2m/2

We then have T(2m) =  T(2m/2) + 1
Let T(n) = T(2m) = S(m)

=> S(m) =  S(m/2) + 1
⇒S(m) = Θ (log m) = Θ (log log n) 
⇒T(n) = Θ (log log n) 

1)()( += nTnT
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Changing Variables

T(n) = 2T(n-2) + 1
Let n = lg m, i.e., m = 2n

=> T(lg m) = 2 T(lg m/4) + 1
Let S(m) = T(lg m) = T(n)

=> S(m) = 2S(m/4) + 1
=> S(m) = m1/2

=> T(n) = S(m) = (2n)1/2 = (sqrt(2)) n ≈ 1.4n
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Obtaining Bounds

Solve the Fibonacci variant: 
T(n) = T(n-1) + T(n-2) + 1

T(n) >= 2T(n-2) + 1           [1]
T(n) <= 2T(n-1) + 1 [2]

Solving [1], we obtain T(n) >= 1.4n

Solving [2], we obtain T(n) <= 2n

Actually, T(n) ≈ 1.62n
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Obtaining Bounds

T(n) = T(n/2) + log n
T(n) ∈ Ω(log n)
T(n) ∈ O(T(n/2) + nε)
Solving T(n) = T(n/2) + nε, 
we obtain T(n) = O(nε), for any ε > 0
So: T(n) ∈O(nε) for any ε > 0 

T(n) is unlikely polynomial
Actually, T(n) = Θ(log2n) by extended case 2



67

Extended Case 2

CASE 2: f (n) = Θ(nlogba) ⇒ T(n) = Θ(nlogba log n).

Extended CASE 2: (k >= 0)
f (n) = Θ(nlogba logkn) ⇒ T(n) = Θ(nlogba logk+1n).
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Solving Recurrences

1. Recursion tree / iteration method
- Good for guessing an answer
- Need to verify guess

2. Master method
- Easy to learn, useful in limited cases only
- Some tricks may help in other cases

3. Substitution method
- Generic method, rigid, may be hard



The Substitution Method

69
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Substitution Method

1. Guess the form of the solution
(e.g. by recursion tree / iteration method)

2. Verify by induction (inductive step).
3. Solve for O/Ω -constants n0 and c (base 

cases of induction)

The most general method to solve a recurrence 
(prove O and Ω separately):
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Recurrence: T(n) = 2T(n/2) + n.
Guess: T(n) = O(n log n). (e.g., by recursion 
tree method)
To prove, have to show T(n) ≤ c n log n for 
some c > 0 and for all n > n0
Proof by induction: assume it is true for T(n/2), 
prove that it is also true for T(n). This means: 
Given: T(n) = 2T(n/2) + n
Need to Prove: T(n)≤ c n log (n)
Assuming: T(n/2)≤ cn/2 log (n/2)

Substitution Method By log we
mean lg
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Proof
Given: T(n) = 2T(n/2) + n
Need to Prove: T(n)≤ c n log (n)
Assuming: T(n/2)≤ cn/2 log (n/2)

Proof:
Substituting T(n/2) ≤ cn/2 log (n/2) into the recurrence, 
we get
T(n) = 2 T(n/2) + n 

≤ cn log (n/2) + n
≤ c n log n - c n + n
≤ c n log n  - (c - 1) n
≤ c n log n  for all n > 0 (if c ≥ 1).

Therefore, by definition, T(n) = O(n log n).
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Recurrence: T(n) = 2T(n/2) + n.
Guess: T(n) = Ω(n log n). 
To prove, have to show T(n) ≥ c n log n for 
some c > 0 and for all n > n0

Proof by induction: assume it is true for T(n/2), 
prove that it is also true for T(n). This means: 
Given: 
Need to Prove: T(n) ≥ c n log (n)
Assuming:

Substitution method – Example 2

T(n) = 2T(n/2) + n

T(n/2) ≥ cn/2 log (n/2)
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Proof
Given: T(n) = 2T(n/2) + n
Need to Prove: T(n) ≥ c n log (n)
Assuming: T(n/2) ≥ cn/2 log (n/2)

Proof:
Substituting T(n/2) ≥ cn/2 log (n/2) into the recurrence, 
we get

T(n) = 2 T(n/2) + n 
≥ cn log (n/2) + n
≥ c n log n - c n + n
≥ c n log n + (1 – c) n
≥ c n log n  for all n > 0 (if c ≤ 1).

Therefore, by definition, T(n) = Ω(n log n).
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More Substitution Examples [1]

Prove that T(n) = 3T(n/3) + n = O(n logn)
Need to show that T(n) ≤ c n log n for 
some c, and sufficiently large n
Assume above is true for T(n/3), i.e.
T(n/3) ≤ cn/3 log (n/3)

3-way Merge Sort
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T(n) = 3 T(n/3) + n
≤ 3 cn/3 log (n/3) + n
≤ cn log n – cn log3 + n
≤ cn log n – (cn log3 – n)
≤ cn log n (if cn log3 – n ≥ 0)

cn log3 – n ≥ 0 
=> c log 3 – 1 ≥ 0 (for n > 0)
=> c ≥ 1/log3 
=> c ≥ log32 

Therefore, T(n) = 3 T(n/3) + n ≤ cn log n for c = log32 and 
n > 0. By definition, T(n) = O(n log n).
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More Substitution Examples [2]

Prove that T(n) = T(n/3) + T(2n/3) + n = 
O(n logn)
Need to show that T(n) ≤ c n log n for 
some c, and sufficiently large n
Assume above is true for T(n/3) and 
T(2n/3), i.e.
T(n/3) ≤ cn/3 log (n/3)
T(2n/3) ≤ 2cn/3 log (2n/3)

Unbalanced Merge Sort



78

T(n) = T(n/3) + T(2n/3) + n
≤ cn/3 log(n/3) + 2cn/3 log(2n/3) + n
≤ cn log n + n – cn (log 3 – 2/3)
≤ cn log n + n(1 – clog3 + 2c/3)
≤ cn log n, for all n > 0 (if 1– c log3 + 2c/3 ≤ 0)

c log3 – 2c/3 ≥ 1
⇒ c ≥ 1 / (log3-2/3) > 0

Therefore, T(n) = T(n/3) + T(2n/3) + n ≤ cn log n for c = 1 / 
(log3-2/3) and n > 0. By definition, T(n) = O(n log n).
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More Substitution Examples [3]

Prove that T(n) = 3T(n/4) + n2 = O(n2)
Need to show that T(n) ≤ c n2 for some c, 
and sufficiently large n
Assume above is true for T(n/4), i.e.
T(n/4) ≤ c(n/4)2 = cn2/16
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T(n) = 3T(n/4) + n2

≤ 3 c n2 / 16 + n2

≤ (3c/16 + 1) n2

≤ cn2

3c/16 + 1 ≤ c implies that c ≥ 16/13
Therefore, T(n) = 3(n/4) + n2 ≤ cn2 for c = 

16/13 and all n. By definition, T(n) = 
O(n2).

?
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Avoiding Pitfalls

Guess T(n) = 2T(n/2) + n = O(n) [really O(n log n)]
Need to prove that T(n) ≤ c n
Assume T(n/2) ≤ cn/2

T(n) ≤ 2 * cn/2 + n = cn + n = O(n)

What’s wrong?

Need to prove T(n) ≤ cn, not T(n) ≤ cn + n = (c+1)n
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Subtleties

Prove that T(n) = T(n/2) + T(n/2) + 1 = O(n)
Need to prove that T(n) ≤ cn
Assume above is true for T(n/2) & T(n/2)

T(n) <= c n/2 + cn/2 + 1
≤ cn + 1

Is it a correct proof?
No! have to prove T(n) <= cn
However we can prove T(n) = O(n – 1)

may be easier to prove a stronger induction hypothesis
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Making a Good Guess

T(n) = 2T(n/2 + 17) + n

When n approaches infinity, n/2 + 17 are not too different from n/2
Therefore can guess T(n) = Θ(n log n)
Prove Ω: 
Assume T(n/2 + 17) ≥ c (n/2+17) log (n/2 + 17) 
Then we have 
T(n) = n + 2T(n/2+17) 

≥ n + 2c (n/2+17) log (n/2 + 17) 
≥ n + c n log (n/2 + 17) + 34 c log (n/2+17)
≥ c n log (n/2 + 17) + 34 c log (n/2+17)
….

Maybe can guess T(n) = Θ((n-17) log (n-17)) (trying to get rid of the +17).
Details skipped.        
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Summary: Solving Recurrences

1. Recursion tree / iteration method
- Good for guessing an answer

2. Master method
- Easy to learn, useful in limited cases only
- Some tricks may help in other cases

3. Substitution method
- Generic method, rigid, may be hard
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