CS161:
 Design and Analysis of Algorithms

Lecture 3 Leonidas Guibas

Outline

- Review of last lecture (asymptotic notations, recurrence relations)
- Key Topic: Solving Recurrences
-using recursion trees (or iteration)
* the master method
*the substitution method

Asymptotic Bounds on Algorithm Performance

- Worst-case and average-case are difficult to analyze precisely -- the details can be very complicated

It may be easier to talk about upper and lower bounds on the function $T(n)$.

Review: Asymptotic Notations

O: Big-Oh
ת: Big-Omega
Θ : Theta

- o: Small-oh
- w: Small-omega

Big O

- Informally, $\mathrm{O}(\mathrm{g}(\mathrm{n}))$ is the set of all functions with a smaller or same order of growth as $g(n)$, within a constant multiple

Intuitively, O is like \leq

an upper bound notation

- If we say $f(n)$ is in $O(g(n))$, this means that $\mathrm{g}(\mathrm{n})$ is an asymptotic upper bound on f(n)
*Formally. ヨ C (>0) \& $n_{0}, f(n) \leq C g(n)$ for $\forall n$ $>=\mathrm{n}_{0}$

$\operatorname{Big} \Omega$

- Informally, $\Omega(\mathrm{g}(\mathrm{n}))$ is the set of all functions with a larger or same order of growth as $\mathrm{g}(\mathrm{n})$, within a constant multiple
- $f(n) \in \Omega(g(n))$ means $g(n)$ is an asymptotic lower bound of $f(n)$
- Intuitively, it is like $f(n) \geq g(n)$
a lower bound notation

Theta $(\Theta): \Theta=O$ and Ω

- Informally, $\Theta(\mathrm{g}(\mathrm{n}))$ is the set of all functions with the same order of growth as $g(n)$, within a constant multiple

$$
\Theta \text { is like }=
$$

- $f(n) \in \Theta(g(n))$ means $g(n)$ is an asymptotically tight bound on $f(n)$
- Intuitively, it is like $f(n)=g(n)$

O, Ω, and Θ

The definitions imply a constant n_{0} beyond which they are satisfied. We do not care about small values of n.

Algorithm Efficiency via Recurrences

$$
\begin{aligned}
& T(n)=T(n-1)+1 \\
& T(n)=T(n-1)+n \\
& T(n)=T(n / 2)+1
\end{aligned}
$$

$$
T(n)=2 T(n / 2)+1
$$

Challenge: how to solve the recurrence to get a tight bound, e.g. $T(n)=\Theta\left(n^{2}\right)$ or $T(n)=\Theta(n$ lgn), or at least an upper bound such as $T(n)=O\left(n^{2}\right)$?

Solving Recurrences

*The running time of many algorithms can be expressed in one of the following two recursive forms

$$
T(n)=a T(n-b)+f(n)
$$

or

$$
T(n)=a T(n / b)+f(n)
$$

Both can be hard to solve. We focus on relatively easy ones, which you will encounter frequently in many real algorithms (and exams...)

Solving Recurrences

1. Recursion tree / iteration method
2. Master method
3. Substitution method

The Recursion Tree Method

Review: Back to MergeSort

Sloppiness: Should be $T(\lceil n / 2\rceil)+T(\lfloor n / 2\rfloor)$, but it turns out not to matter asymptotically.

Recurrence for MergeSort

$$
T(n)=\left\{\begin{array}{l}
\Theta(1) \text { if } n=1 \\
2 T(n / 2)+\Theta(n) \text { if } n>1
\end{array}\right.
$$

- We saw that the cost of the Merge step is $\Theta(n)$.
- We shall usually omit stating the base case when $T(n)=\Theta(1)$ for sufficiently small n, but only when it has no effect on the asymptotic solution to the recurrence.

Recursion Tree

Solve $T(n)=2 T(n / 2)+c n$, where $c>0$ is constant.

Recursion Tree

Solve $T(n)=2 T(n / 2)+c n$, where $c>0$ is constant.

$$
T(n)
$$

Recursion Tree

Solve $T(n)=2 T(n / 2)+c n$, where $c>0$ is constant.

Recursion Tree

Solve $T(n)=2 T(n / 2)+c n$, where $c>0$ is constant.

Recursion Tree

Solve $T(n)=2 T(n / 2)+c n$, where $c>0$ is constant.

Recursion Tree

Solve $T(n)=2 T(n / 2)+c n$, where $c>0$ is constant.

Recursion Tree

Solve $T(n)=2 T(n / 2)+c n$, where $c>0$ is constant.

Recursion Tree

Solve $T(n)=2 T(n / 2)+c n$, where $c>0$ is constant.

Recursion Tree

Solve $T(n)=2 T(n / 2)+c n$, where $c>0$ is constant.

Recursion Tree

Solve $T(n)=2 T(n / 2)+c n$, where $c>0$ is constant.

Recursion Tree

Solve $T(n)=2 T(n / 2)+c n$, where $c>0$ is constant.

Another Example

- How many multiplications do we need to compute 3^{16} ?

$$
\begin{array}{ll}
\hline 3^{16}=3 \times 3 \times 3 \ldots \times 3 & \text { Answer: } 15 \\
\hline 3^{16}=3^{8} \times 3^{8} & \\
3^{8}=3^{4} \times 3^{4} & \text { Answer: } 4 \\
3^{4}=3^{2} \times 3^{2} & \\
3^{2}=3 \times 3 &
\end{array}
$$

Pseudocode for Recursion

int pow (b, n) // compute b^{n}
$\mathrm{m}=\mathrm{n} \gg 1$; // divide by 2
$p=$ pow (b, m);
$\mathrm{p}=\mathrm{p}$ * p ;
if ($\mathrm{n} \% \mathrm{~F}$)
return p * b ;
else
return p ;

Pseudocode Variations

int pow (b, n) m = n >> 1;
p = pow (b, m);
$p=p$ * p;
if ($\mathrm{n} \%$ 2)
return p * b;
else
return p;
int pow (b, n)
m = n >> 1;

$$
\mathrm{p}=\operatorname{pow}(\mathrm{b}, \mathrm{~m}) * \operatorname{pow}(\mathrm{~b}, \mathrm{~m}) ;
$$

if (n \% 2)
return p * b;
else
return p;

Recurrence for Computing Power

int pow (b, n) Alg1

$$
\begin{aligned}
& m=n \gg 1 ; \\
& p=p o w(b, m) ; \\
& p=p^{*} p ; \\
& \text { if (n } \% 2) \\
& \quad \text { return } p^{*} b ; \\
& \text { else }
\end{aligned}
$$

return p ;
$T(n)=T(n / 2)+\Theta(1)$
int pow (b, n) Alg2
m = n >> 1;

$$
\mathrm{p}=\mathrm{pow}(\mathrm{~b}, \mathrm{~m}) * \mathrm{pow}(\mathrm{~b}, \mathrm{~m}) ;
$$

if (n \% 2)
return p * b;
else
return p ;

$$
T(n)=2 T(n / 2)+\Theta(1)
$$

Which algorithm is more efficient asymptotically?

Time Complexity for Alg1

Solve $T(n)=T(n / 2)+1$

- $T(n)=T(n / 2)+1$
$=T(n / 4)+1+1$
$=T(n / 8)+1+1+1$
$=T(1)+1+1+\ldots+1$
$\log (n)$
$=\Theta(\log (n))$
Iteration method

Time Complexity for Alg2

Solve $T(n)=2 T(n / 2)+1$.

Time Complexity for Alg2

Solve $T(n)=2 T(n / 2)+1$.

$T(n)$

Time Complexity for Alg2

Solve $T(n)=2 T(n / 2)+1$.

Time Complexity for Alg2

Solve $T(n)=2 T(n / 2)+1$.

Time Complexity for Alg2

Solve $T(n)=2 T(n / 2)+1$.

Time Complexity for Alg2

Solve $T(n)=2 T(n / 2)+1$.

Time Complexity for Alg2

Solve $T(n)=2 T(n / 2)+1$.

Time Complexity for Alg2

Solve $T(n)=2 T(n / 2)+1$.

Time Complexity for Alg2

Solve $T(n)=2 T(n / 2)+1$.

Time Complexity for Alg2

Solve $T(n)=2 T(n / 2)+1$.

Time Complexity for Alg2

Solve $T(n)=2 T(n / 2)+1$.

$$
1+2+4+\ldots+2^{k}=2^{k+1}-1
$$

More Iteration Method Examples

$$
\begin{aligned}
\mathrm{T}(\mathrm{n}) & =T(n-1)+1 \\
& =T(n-2)+1+1 \\
& =T(n-3)+1+1+1 \\
& =T(1)+\underbrace{1+1+\ldots+1}_{n-1} \\
& =\Theta(n)
\end{aligned}
$$

More Iteration Method Examples

$$
\begin{aligned}
T(n) & =T(n-1)+n \\
& =T(n-2)+(n-1)+n \\
& =T(n-3)+(n-2)+(n-1)+n \\
& =T(1)+2+3+\ldots+n \\
& =\Theta\left(n^{2}\right)
\end{aligned}
$$

Saw the same sum in InsertionSort

3-Way-MergeSort

3-way-merge-sort (A[1..n])

If ($n<=1$) return;
3-way-merge-sort(A[1..n/3]);
3-way-merge-sort(A[n/3+1..2n/3]);
3-way-merge-sort(A[2n/3+1.. n]);
Merge $A[1 . . n / 3]$ and $A[n / 3+1 . .2 n / 3]$;
Merge $A[1 . .2 n / 3]$ and $A[2 n / 3+1 . . n]$;

- Is this algorithm correct?
-What's the recurrence function for the running time?
- What does the recurrence function solve to?

Unbalanced-MergeSort

ub-merge-sort (A[1..n])
if ($n<=1$) return;
ub-merge-sort(A[1..n/3]);
ub-merge-sort(A[n/3+1.. n]);
Merge $A[1 . . n / 3]$ and $A[n / 3+1 . . n]$.

- Is this algorithm correct?
-What's the recurrence function for the running time?
- What does the recurrence function solve to?

More Recursion Tree Examples

* $T(n)=3 T(n / 3)+n \quad[3-W a y$ MergeSort]
* $T(n)=T(n / 3)+T(2 n / 3)+n$ [ub-MergeSort]
- $T(n)=3 T(n / 4)+n$
- $T(n)=3 T(n / 4)+n^{2}$

The Master Method

The Master Method

The master method applies to recurrences of the form
$T(n)=a T(n / b)+f(n)$,
where $a \geq 1, b>1$, and f is asymptotically positive.

1. Divide the problem into a subproblems, each of size n / b
2. Conquer the subproblems by solving them recursively.
3. Combine subproblem solutions

Divide + combine takes $f(n)$ time.

Master Theorem

$$
T(n)=a T(n / b)+f(n)
$$

Key: compare $f(n)$ with $n^{\log _{b} a}$
CASE 1: $f(n)=O\left(n^{\log _{b} a-\varepsilon}\right) \Rightarrow T(n)=\Theta\left(n^{\log _{b} a}\right)$.
CASE 2: $f(n)=\Theta\left(n^{\log _{b} a}\right) \Rightarrow T(n)=\Theta\left(n^{\log _{b} a} \log n\right)$

CASE 3: $f(n)=\Omega\left(n^{\log _{b} a+\varepsilon}\right)$ and $a f(n / b) \leq c f(n)$

$$
\Rightarrow T(n)=\Theta(f(n)) \cdot \quad n^{\log _{b} a}=a^{\log _{b} n}
$$

Case 1

$f(n)=O\left(n^{\log b a-\varepsilon}\right)$ for some constant $\varepsilon>0$.
Alternatively: $n^{\log _{b} a} / f(n)=\Omega\left(n^{\varepsilon}\right)$
Intuition: $f(n)$ grows polynomially slower than $n^{\log b} a$
Or: $n^{\log b a}$ dominates $f(n)$ by an n^{ε} factor for some $\varepsilon>0$
Solution: $T(n)=\Theta\left(n^{\log b a}\right)$
$T(n)=4 T(n / 2)+n$
$b=2, a=4, f(n)=n$
$\log _{2} 4=2$
$f(n)=n=O\left(n^{2-\varepsilon}\right)$, or
$n^{2} / n=n^{1}=\Omega\left(n^{\varepsilon}\right)$, for $\varepsilon=1$
$\therefore T(n)=\Theta\left(n^{2}\right)$

```
\(T(n)=2 T(n / 2)+n / \log n\)
\(b=2, a=2, f(n)=n / \log n\)
\(\log _{2} 2=1\)
\(f(n)=n / \operatorname{logn} \notin O\left(n^{1-\varepsilon}\right)\), or
\(n^{1 /} f(n)=\log n \notin \Omega\left(n^{\varepsilon}\right)\), for any \(\varepsilon>0\)
\(\therefore\) CASE 1 does not apply
```


Case 2

$f(n)=\Theta\left(n^{\log b a}\right)$.
Intuition: $f(n)$ and $n^{\log _{b} a}$ have the same asymptotic order.
Solution: $T(n)=\Theta\left(n^{\log b a} \log n\right)$

$$
\text { e.g. } \begin{aligned}
T(n) & =T(n / 2)+1 \\
T(n) & =2 T(n / 2)+n \\
T(n) & =4 T(n / 2)+n^{2} \\
T(n) & =8 T(n / 2)+n^{3}
\end{aligned}
$$

Case 3

$f(n)=\Omega\left(n^{\log _{b} a+\varepsilon}\right)$ for some constant $\varepsilon>0$.
Alternatively: $f(n) / n^{\text {logb } a}=\Omega\left(n^{\varepsilon}\right)$
Intuition: $f(n)$ grows polynomially faster than $n^{\log _{b} a}$
Or: $f(n)$ dominates $n^{\log _{b} a}$ by an n^{ε} factor for some $\varepsilon>0$ Solution: $T(n)=\Theta(f(n))$

$$
\begin{aligned}
& T(n)=T(n / 2)+n \\
& b=2, a=1, f(n)=n \\
& n^{\log _{2} 1}=n^{0}=1 \\
& f(n)=n=\Omega\left(n^{0+\varepsilon}\right), \text { or } \\
& n / 1=n=\Omega\left(n^{\varepsilon}\right) \\
& \therefore T(n)=\Theta(n)
\end{aligned}
$$

$$
\begin{aligned}
& T(n)=T(n / 2)+\log n \\
& b=2, a=1, f(n)=\log n \\
& n^{\log _{2} 1}=n^{0}=1 \\
& f(n)=\log ^{n} \notin \Omega\left(n^{0+\varepsilon}\right), \text { or } \\
& f(n) / n^{\log _{2} 1}=\log n \notin \Omega\left(n^{\varepsilon}\right)
\end{aligned}
$$

\therefore CASE 3 does not apply

Regularity Condition

- $a f(n / b) \leq c f(n)$ for some $c<1$ and all sufficiently large n
- This is needed for the master method to be mathematically correct.
- to deal with some non-converging functions such as sine or cosine functions
* For most $f(n)$ you'll see (e.g., polynomial, logarithm, exponential), you can safely ignore this condition, because it is implied by the first condition $f(n)=$ $\Omega\left(n^{\log _{b} a+\varepsilon}\right)$

Proof by Picture

$$
n_{i}=n / b^{i}
$$

$$
\Theta\left(n^{\log _{b} a}\right)
$$

$$
n^{\log _{b} a}=a^{\log _{b} n}
$$

$$
\text { Total: } \Theta\left(n^{\log _{b} a}\right)+\sum_{j=0}^{\left\lfloor\log _{b} n\right\rfloor-1} a^{j} f\left(n_{j}\right) 54
$$

Examples

$$
\begin{aligned}
& T(n)=4 T(n / 2)+n \\
& \quad a=4, b=2 \Rightarrow n^{\log _{b} a}=n^{2} ; f(n)=n . \\
& \quad \text { CASE 1: } f(n)=O\left(n^{2-\varepsilon}\right) \text { for } \varepsilon=1 . \\
& \therefore T(n)=\Theta\left(n^{2}\right) .
\end{aligned}
$$

$$
\begin{aligned}
& T(n)=4 T(n / 2)+n^{2} \\
& \quad a=4, b=2 \Rightarrow n^{\log _{b} a}=n^{2} ; f(n)=n^{2} . \\
& \quad \text { CASE 2: } f(n)=\Theta\left(n^{2}\right) . \\
& \therefore T(n)=\Theta\left(n^{2} \log n\right) .
\end{aligned}
$$

Examples

$$
\begin{aligned}
& T(n)=4 T(n / 2)+n^{3} \\
& a=4, b=2 \Rightarrow n^{\log _{b} a}=n^{2} ; f(n)=n^{3} . \\
& \text { CASE 3: } f(n)=\Omega\left(n^{2+\varepsilon}\right) \text { for } \varepsilon=1 \\
& \text { and } 4(n / 2)^{3} \leq c n^{3} \text { (reg. cond.) for } c=1 / 2 . \\
& \therefore T(n)=\Theta\left(n^{3}\right) .
\end{aligned}
$$

$$
\begin{aligned}
& T(n)=4 T(n / 2)+n^{2} / \log n \\
& \quad a=4, b=2 \Rightarrow n^{\log b} a=n^{2} ; f(n)=n^{2} / \log n .
\end{aligned}
$$

Master method does not apply. In particular, for every constant $\varepsilon>0$, we have $n^{\varepsilon}=\omega(\log n)$.

Examples

$$
\begin{aligned}
& T(n)=4 T(n / 2)+n^{2.5} \\
& \quad a=4, b=2 \Rightarrow n^{\log b a}=n^{2} ; f(n)=n^{2.5} . \\
& \quad \text { CASE 3: } f(n)=\Omega\left(n^{2+\varepsilon}\right) \text { for } \varepsilon=0.5 \\
& \text { and } 4(n / 2)^{2.5} \leq c n^{2.5}(\text { reg. cond.) for } c=0.75 . \\
& \therefore T(n)=\Theta\left(n^{2.5}\right) .
\end{aligned}
$$

$$
\begin{aligned}
T(n) & =4 T(n / 2)+n^{2} \log n \\
a & =4, b=2 \Rightarrow n^{\log a} a=n^{2} ; f(n)=n^{2} \log n .
\end{aligned}
$$

Master method does not apply. In particular, for every constant $\varepsilon>0$, we have $n^{\varepsilon}=\omega(\log n)$.

How do I know which case to use? Do I need to try all three cases one by one?

- Compare $f(n)$ with $n^{\log b a}$
check if $n^{\log _{b} a} / f(n) \in \Omega\left(n^{\varepsilon}\right)$
* $f(n) \in \begin{cases}O\left(n^{\log b a}\right) & \text { Possible CASE } 1 \\ \Theta\left(n^{\log b a}\right) & \text { CASE } 2 \\ \omega\left(n^{\log b a}\right) & \text { Possible CASE } 3\end{cases}$
,
check if $f(n) / n^{\log _{b} a} \in \Omega\left(n^{\varepsilon}\right)$

Examples

a. $T(n)=4 T(n / 2)+n$; $\log _{b} a=2 . n=o\left(n^{2}\right)=>$ Check case 1
b. $T(n)=9 T(n / 3)+n^{2}$;
$\log _{b} a=2 . n^{2}=\Theta\left(n^{2}\right)=>$ Check case 2
c. $T(n)=6 T(n / 4)+n$;
$\log _{\mathrm{b}} \mathrm{a}=1.3 . \mathrm{n}=\mathrm{o}\left(\mathrm{n}^{1.3}\right)=>$ Check case 1
d. $T(n)=2 T(n / 4)+n$;
$\log _{\mathrm{b}} \mathrm{a}=0.5 . \mathrm{n}=\omega\left(\mathrm{n}^{0.5}\right) \Rightarrow>$ Check case 3
e. $T(n)=T(n / 2)+n \log n ; \quad \log _{b} \mathrm{a}=0 . \mathrm{nlogn}=\omega\left(\mathrm{n}^{0}\right)=>$ Check case 3
f. $T(n)=4 T(n / 4)+n \log n . \quad \log _{\mathrm{b}} \mathrm{a}=1$. nlogn $=\omega(\mathrm{n})=>$ Check case 3

Some Tricks

-Changing variables

* Obtaining upper and lower bounds
*Make a guess based on the bounds
- Prove using the substitution method

Changing Variables

$$
\begin{aligned}
& T(n)=2 T(n-1)+1 \\
& \text { - Let } \mathrm{n}=\lg \mathrm{m} \text {, i.e., } \mathrm{m}=2^{\mathrm{n}} \\
& =>\mathrm{T}(\lg \mathrm{~m})=2 \mathrm{~T}(\lg (\mathrm{~m} / 2))+1 \\
& \text { - Let } \mathrm{S}(\mathrm{~m})=\mathrm{T}(\lg \mathrm{~m})=T(\mathrm{n}) \\
& =>S(m)=2 S(m / 2)+1 \\
& =>S(m)=\Theta(m) \\
& =>T(n)=S(m)=\Theta(m)=\Theta\left(2^{n}\right)
\end{aligned}
$$

Changing Variables

$$
T(n)=T(\sqrt{n})+1
$$

- Let $\mathrm{n}=2^{\mathrm{m}}$
$=>\operatorname{sqrt}(\mathrm{n})=2^{\mathrm{m} / 2}$
- We then have $T\left(2^{\mathrm{m}}\right)=\mathrm{T}\left(2^{\mathrm{m} / 2}\right)+1$
- Let $\mathrm{T}(\mathrm{n})=\mathrm{T}\left(2^{\mathrm{m}}\right)=\mathrm{S}(\mathrm{m})$
$=>S(m)=S(m / 2)+1$
$\Rightarrow S(m)=\Theta(\log m)=\Theta(\log \log n)$
$\Rightarrow \mathrm{T}(\mathrm{n})=\Theta(\log \log \mathrm{n})$

Changing Variables

$$
\begin{aligned}
& * T(n)=2 T(n-2)+1 \\
& \text { Let } n=\lg m, \text { i.e., } m=2^{n} \\
& =>T(\lg m)=2 T(\lg m / 4)+1 \\
& * \text { Let } S(m)=T(\lg m)=T(n) \\
& \Rightarrow>S(m)=2 S(m / 4)+1 \\
& =>S(m)=m^{1 / 2} \\
& =>T(n)=S(m)=\left(2^{n}\right)^{1 / 2}=(\operatorname{sqrt}(2))^{n} \approx 1.4^{n}
\end{aligned}
$$

Obtaining Bounds

Solve the Fibonacci variant:

$$
T(n)=T(n-1)+T(n-2)+1
$$

- $T(n)>=2 T(n-2)+1$
[1]
- $T(n)<=2 T(n-1)+1$
[2]
- Solving [1], we obtain $T(n)>=1.4^{n}$
- Solving [2], we obtain $T(n)<=2^{n}$
- Actually, $\mathrm{T}(\mathrm{n}) \approx 1.62^{\mathrm{n}}$

Obtaining Bounds

- $T(n)=T(n / 2)+\log n$
- $T(n) \in \Omega(\log n)$
- $T(n) \in O\left(T(n / 2)+n^{\varepsilon}\right)$
- Solving $T(n)=T(n / 2)+n^{\varepsilon}$,
we obtain $T(n)=O\left(n^{\varepsilon}\right)$, for any $\varepsilon>0$
-So: $T(n) \in O\left(n^{\varepsilon}\right)$ for any $\varepsilon>0$
- $T(n)$ is unlikely polynomial
- Actually, $\mathrm{T}(\mathrm{n})=\Theta\left(\log ^{2} \mathrm{n}\right)$ by extended case 2

Extended Case 2

CASE 2: $f(n)=\Theta\left(n^{\log b a}\right) \Rightarrow T(n)=\Theta\left(n^{\log b a} \log n\right)$.

Extended Case 2: (k >= 0)
$f(n)=\Theta\left(n^{\log b} a \log ^{k} n\right) \Rightarrow T(n)=\Theta\left(n^{\log b a} \log ^{k+1} n\right)$.

Solving Recurrences

1. Recursion tree / iteration method

- Good for guessing an answer
- Need to verify guess

2. Master method

- Easy to learn, useful in limited cases only
- Some tricks may help in other cases

3. Substitution method

- Generic method, rigid, may be hard

The Substitution Method

AmericKim	
For	Use
Buttermilk - 1 cup	1 TB lemon juice + enough milk to $=1$ cup
Whole Milk - 1 cup	$1 / 2$ c. evaporated milk $+1 / 2$ c. water
Unsweetened Chocolate - $1 \mathbf{o z}$	1 TB fat + 3 TB cocoa
Honey - 1 cup	$1 / 4 \mathrm{c}$. liquid $+11 / 4 \mathrm{c}$. sugar
Shortening (for baking) - 1 cup	$11 / 8 \mathrm{c}$. butter or margine less $1 / 2$ tsp of salt in recipe
Corn Syrup - 1 cup	1 c. sugar $+1 / 4 \mathrm{c}$. of liquid
Cornstarch-1 $1 / 2$ tsp	1 TB flour
1 whole egg	2 egg yolks +1 TB water
Peppermint extract - 1 TB	$1 / 4$ c. fresh mint, chopped
Cream $1 / 2$ \& $1 / 2-1$ cup	3 TB oil + milk to = 1 cup
Cream, heavy for baking \& cooking - 1 cup	3/4 c. milk $+1 / 2$ c. butter or margarine
Marshmallow Creme - 1 cup (jar $=21 / 8 \mathrm{cups}$)	$16 \lg (160 \mathrm{sm})$ marshmallows +2 TB corn syrup (melted in double broiler)
Catsup	1 c. tomato sauce, $1 / 2$ c. sugar, 2 TB vinegar

Substitution Method

The most general method to solve a recurrence (prove O and Ω separately):

1. Guess the form of the solution
(e.g. by recursion tree / iteration method)
2. Verify by induction (inductive step).
3. Solve for O / Ω-constants n_{0} and c (base cases of induction)

Substitution Method

- Recurrence: $T(n)=2 T(n / 2)+n$.
- Guess: $T(n)=O(n \log n)$. (e.g., by recursion tree method)
- To prove, have to show $T(n) \leq c n \log n$ for some $c>0$ and for all $n>n_{0}$
- Proof by induction: assume it is true for $T(n / 2)$, prove that it is also true for $T(n)$. This means:
- Given: $T(n)=2 T(n / 2)+n$
- Need to Prove: $T(n) \leq c n \log (n)$
- Assuming: $T(n / 2) \leq c n / 2 \log (n / 2)$

Proof

- Given: $T(n)=2 T(n / 2)+n$
- Need to Prove: $T(n) \leq c n \log (n)$
- Assuming: $T(n / 2) \leq c n / 2 \log (n / 2)$
- Proof:

Substituting $T(n / 2) \leq c n / 2 \log (n / 2)$ into the recurrence, we get

$$
\begin{aligned}
T(n) & =2 T(n / 2)+n \\
& \leq c n \log (n / 2)+n \\
& \leq c n \log n-c n+n \\
& \leq c n \log n-(c-1) n
\end{aligned}
$$

$$
\leq c n \log n \text { for all } n>0 \text { (if } c \geq 1 \text {). }
$$

Therefore, by definition, $T(n)=O(n \log n)$.

Substitution method - Example 2

- Recurrence: $T(n)=2 T(n / 2)+n$.
- Guess: $T(n)=\Omega(n \log n)$.
- To prove, have to show $T(n) \geq c n \log n$ for some $c>0$ and for all $n>n_{0}$
- Proof by induction: assume it is true for $T(n / 2)$, prove that it is also true for $T(n)$. This means:
- Given: $T(n)=2 T(n / 2)+n$
- Need to Prove: $T(n) \geq c n \log (n)$
- Assuming: $T(n / 2) \geq c n / 2 \log (n / 2)$

Proof

- Given: $T(n)=2 T(n / 2)+n$
- Need to Prove: $T(n) \geq c n \log (n)$
- Assuming: $T(n / 2) \geq c n / 2 \log (n / 2)$
- Proof:

Substituting $T(n / 2) \geq c n / 2 \log (n / 2)$ into the recurrence, we get

$$
\begin{aligned}
T(n) & =2 T(n / 2)+n \\
& \geq c n \log (n / 2)+n \\
& \geq c n \log n-c n+n \\
& \geq c n \log n+(1-c) n \\
& \geq c n \log n \text { for all } n>0(\text { if } c \leq 1) .
\end{aligned}
$$

Therefore, by definition, $T(n)=\Omega(n \log n)$.

More Substitution Examples [1]

- Prove that $T(n)=3 T(n / 3)+n=O(n \operatorname{logn})$
- Need to show that $T(n) \leq c n \log n$ for some c, and sufficiently large n
- Assume above is true for $T(n / 3)$, i.e.
$T(n / 3) \leq c n / 3 \log (n / 3)$

3-way Merge Sort

$$
\begin{aligned}
T(n)= & 3 T(n / 3)+n \\
& \leq 3 c n / 3 \log (n / 3)+n \\
& \leq c n \log n-c n \log 3+n \\
& \leq c n \log n-(c n \log 3-n) \\
& \leq c n \log n(i f c n \log 3-n \geq 0)
\end{aligned}
$$

$$
\begin{array}{ll}
& c n \log 3-n \geq 0 \\
\Rightarrow & c \log 3-1 \geq 0(\text { for } n>0) \\
=> & c \geq 1 / \log _{3} \\
\Rightarrow & c \geq \log _{3} 2
\end{array}
$$

Therefore, $T(n)=3 T(n / 3)+n \leq c n \log n$ for $c=\log _{3} 2$ and $n>0$. By definition, $T(n)=O(n \log n)$.

More Substitution Examples [2]

- Prove that $T(n)=T(n / 3)+T(2 n / 3)+n=$ O(n logn)
- Need to show that $T(n) \leq c n \log n$ for some c, and sufficiently large n
- Assume above is true for $T(n / 3)$ and $T(2 n / 3)$, i.e.
$T(n / 3) \leq c n / 3 \log (n / 3)$
Unbalanced Merge Sort
$T(2 n / 3) \leq 2 c n / 3 \log (2 n / 3)$
$T(n)=T(n / 3)+T(2 n / 3)+n$
$\leq c n / 3 \log (n / 3)+2 c n / 3 \log (2 n / 3)+n$
$\leq c n \log n+n-c n(\log 3-2 / 3)$
$\leq c n \log n+n(1-c l o g 3+2 c / 3)$
$\leq \mathrm{cn} \log \mathrm{n}$, for all $\mathrm{n}>0$ (if $1-\mathrm{c} \log 3+2 \mathrm{c} / 3 \leq 0$)
$c \log 3-2 c / 3 \geq 1$
$\Rightarrow c \geq 1 /(\log 3-2 / 3)>0$

Therefore, $T(n)=T(n / 3)+T(2 n / 3)+n \leq c n \log n$ for $c=1 /$ $(\log 3-2 / 3)$ and $n>0$. By definition, $T(n)=O(n \log n)$.

More Substitution Examples [3]

- Prove that $T(n)=3 T(n / 4)+n^{2}=O\left(n^{2}\right)$
- Need to show that $T(n) \leq c n^{2}$ for some c, and sufficiently large n
- Assume above is true for $T(n / 4)$, i.e.
$\mathrm{T}(\mathrm{n} / 4) \leq \mathrm{c}(\mathrm{n} / 4)^{2}=\mathrm{cn}^{2} / 16$

$$
\begin{aligned}
T(n) & =3 T(n / 4)+n^{2} \\
& \leq 3 c n^{2} / 16+n^{2} \\
& \leq(3 c / 16+1) n^{2} \\
? & \leq \mathrm{cn}^{2}
\end{aligned}
$$

$3 \mathrm{c} / 16+1 \leq \mathrm{c}$ implies that $\mathrm{c} \geq 16 / 13$
Therefore, $T(n)=3(n / 4)+n^{2} \leq c n^{2}$ for $c=$
16/13 and all n. By definition, T(n) = $O\left(n^{2}\right)$.

Avoiding Pitfalls

- Guess $T(n)=2 T(n / 2)+n=O(n)$ [really $O(n \log n)$]
- Need to prove that $T(n) \leq c n$
- Assume $T(n / 2) \leq c n / 2$
- $T(n) \leq 2 * c n / 2+n=c n+n=O(n)$
- What's wrong?
- Need to prove $T(n) \leq c n$, not $T(n) \leq c n+n=(c+1) n$

Subtleties

- Prove that $T(n)=T(\lfloor n / 2\rfloor)+T([n / 2\rceil)+1=O(n)$
- Need to prove that $T(n) \leq c n$
- Assume above is true for $T(\lfloor n / 2\rfloor) \& T(\lceil n / 2\rceil)$
$T(n)<=c\lfloor n / 2\rfloor+c\lceil n / 2\rceil+1$
$\leq \mathrm{cn}+1$
Is it a correct proof?
No! have to prove $T(n)<=c n$
However we can prove $T(n)=O(n-1)$

Making a Good Guess

$T(n)=2 T(n / 2+17)+n$
When n approaches infinity, $\mathrm{n} / 2+17$ are not too different from $\mathrm{n} / 2$
Therefore can guess $T(n)=\Theta(n \log n)$
Prove Ω :
Assume $T(n / 2+17) \geq c(n / 2+17) \log (n / 2+17)$
Then we have

```
\(\mathrm{T}(\mathrm{n})=\mathrm{n}+2 \mathrm{~T}(\mathrm{n} / 2+17)\)
\(\geq n+2 c(n / 2+17) \log (n / 2+17)\)
    \(\geq n+c n \log (n / 2+17)+34 c \log (n / 2+17)\)
    \(\geq \mathrm{c} n \log (\mathrm{n} / 2+17)+34 \mathrm{c} \log (\mathrm{n} / 2+17)\)
```

Maybe can guess $T(n)=\Theta((n-17) \log (n-17))$ (trying to get rid of the +17$)$. Details skipped.

Summary: Solving Recurrences

1. Recursion tree / iteration method

- Good for guessing an answer

2. Master method

- Easy to learn, useful in limited cases only
- Some tricks may help in other cases

3. Substitution method

- Generic method, rigid, may be hard

$$
T(n)=3 T\left(\frac{n}{2}\right)+n
$$

\#subproblews at leveli if recunsiondree

$$
3^{i}
$$

sire of subprableus

$$
\begin{aligned}
& \text { total work }=\sum_{i=0}^{\log _{2} n} 3^{i} \frac{n}{2^{i}}=n \sum_{i=0}^{\log _{2} n}\left(\frac{3}{2}\right)^{i} \\
& =n O\left(\left(\frac{3}{2}\right)^{\log _{2} n}\right)=\frac{n}{n} O\left(3^{\log _{2} n}\right) \\
& =O\left(n^{\log _{2^{3}}} \quad a^{\log _{b} n}=n^{\log _{b} a}\right.
\end{aligned}
$$

