
CS161:
Design and Analysis of 

Algorithms

Lecture 4
Leonidas Guibas

1



2

Outline

Review of last lecture

QuickSort and its analysis
Worst-case behavior
Best-case behavior
Average-case behavior
Randomized QuickSort

Slides modified from
• http://www.cs.virginia.edu/~luebke/cs332/
• http://www.cs.uml.edu/~kdaniels/courses/ALG_404_F10.html
• http://cs.txstate.edu/~rp44/cs3358

http://www.cs.virginia.edu/%7Eluebke/cs332/
http://www.cs.uml.edu/%7Ekdaniels/courses/ALG_404_F10.html
http://cs.txstate.edu/%7Erp44/cs3358
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QuickSort

Another divide and conquer sorting 
algorithm – like MergeSort
Excellent performance in practice – often 
the default sorting package
Sorts in place – like InsertionSort
Has many interesting variations
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QuickSort

1962

Sir Charles Antony Richard Hoare
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QuickSort
Quicksort on an n-element array:
1. Divide: Partition the array into two subarrays

around a pivot x so that elements in lower 
subarray ≤ x ≤ elements in upper subarray.

2. Conquer: Recursively sort the two subarrays.
3. Combine: Trivial.

≤ x x ≥ x

Key: Linear-time partitioning subroutine.
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Pseudocode for QuickSort
QUICKSORT(A, p, r)

if p < r
then q ← PARTITION(A, p, r)

QUICKSORT(A, p, q–1)
QUICKSORT(A, q+1, r)

Initial call: QUICKSORT(A, 1, n)
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Partition

All the action takes place in the 
partition() function

Rearranges the subarray in place
End result: two subarrays

All values in first subarray ≤ all values in second
Returns the index of the “pivot” element 
separating the two subarrays

≤ x x ≥ x
p rq
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Idea of Partition

If we are allowed to use a second array, it 
would be easy

6 10 5 8 13 3 2 11

6 5 3 2 11 13 8 10

2 5 3 6 11 13 8 10
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Another Idea: Pairing

Keep two iterators: one from head, one 
from tail

6 10 5 8 13 3 2 11

6 2 5 3 13 8 10 11

3 2 5 6 13 8 10 11
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In-Place Partition

6 10 5 8 13 3 2 112 3 8 103 6

Pivot element
The “partitioner”
Originally the leftmost
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Partition in English

Partition(A, p, r):
Select an element to act as the “pivot” (which?)
Grow two regions, A[p..i] and A[j..r]

All elements in A[p..i] <= pivot
All elements in A[j..r] >= pivot

Increment i until A[i] > pivot
Decrement j until A[j] < pivot
Swap A[i] and A[j]
Repeat until i >= j 
Swap A[j] and A[p]
Return j

Note: different from book’s 
partition(), which uses two 
iterators that both move forward.
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Partition in Code

Partition(A, p, r)
x = A[p]; // pivot is the leftmost element
i = p;
j = r + 1;
while (TRUE) {

repeat 
i++;

until A[i] > x or i >= j;
repeat 

j--;
until A[j] < x or j < i;
if (i < j)

Swap (A[i], A[j]);
else

break;
}
swap (A[p], A[j]);
return j;

What is the running time of 
partition()?

partition() runs in Θ(n) time



The QuickSort Algorithm
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Correctness is quite clear
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i j
6 10 5 8 13 3 2 11Pivot

x = 6

p r

i j
6 10 5 8 13 3 2 11

i j
6 2 5 8 13 3 10 11

i j
6 2 5 8 13 3 10 11

i j
6 2 5 3 13 8 10 11

ij
6 2 5 3 13 8 10 11

3 2 5 6 13 8 10 11
qp r

scan

scan

scan

swap

swap

final swap

Partition 
example
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6 10 5 8 11 3 2 13

3 2 5 6 11 8 10 13

2 3 5 6 8 10 11 13

2 3 5 6 10 8 11 13

2 3 5 6 8 10 11 13

QuickSort
example
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Analysis of QuickSort

• Assume all input elements are distinct.
• In practice, there are better partitioning 

algorithms for when duplicate input 
elements may exist.

• Let T(n) = worst-case running time on 
an array of n elements.
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Worst-Case of Quicksort

• Input sorted or reverse sorted.
• Partition around min or max element.
• One side of partition always has no elements.

)(
)()1(

)()1()1(
)()1()0()(

2n
nnT

nnT
nnTTnT

Θ=

Θ+−=
Θ+−+Θ=
Θ+−+=

(arithmetic series)
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Worst-Case Recursion Tree
T(n) = T(0) + T(n–1) + n
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Worst-Case Recursion Tree
T(n) = T(0) + T(n–1) + n

T(n)
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n
T(0) T(n–1)

Worst-Case Recursion Tree
T(n) = T(0) + T(n–1) + n



21

n
T(0) (n–1)

Worst-Case Recursion Tree
T(n) = T(0) + T(n–1) + n

T(0) T(n–2)
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n
T(0) (n–1)

Worst-Case Recursion Tree
T(n) = T(0) + T(n–1) + n

T(0) (n–2)

T(0)

T(0)


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n
T(0) (n–1)

Worst-Case Recursion Tree
T(n) = T(0) + T(n–1) + n

T(0) (n–2)

T(0)

T(0)


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height = n
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n
T(0) (n–1)

Worst-Case Recursion Tree
T(n) = T(0) + T(n–1) + n

T(0) (n–2)
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nk
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n
(n–1)

Worst-Case Recursion Tree
T(n) = T(0) + T(n–1) + n

(n–2)
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Θ(1)
Θ(1)

Θ(1)
T(n) = Θ(n) + Θ(n2)

= Θ(n2)
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Best-Case Analysis
(For intuition only!)

If we’re lucky, PARTITION splits the array evenly:
T(n) = 2T(n/2) + Θ(n)

= Θ(n log n) (same as MergeSort)

What if the split is always 10
9

10
1 : ?

( ) ( ) )()( 10
9

10
1 nnTnTnT Θ++=

What is the solution to this recurrence?
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Analysis of “Almost-Best” Case

)(nT
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Analysis of “Almost-Best” Case

( )nT 10
1 ( )nT 10

9

n
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Analysis of “Almost-Best” Case

n10
1 n10

9

( )nT 100
1 ( )nT 100

9 ( )nT 100
9 ( )nT 100

81

n
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Analysis of “Almost-Best” Case

n100
1

Θ(1)

Θ(1)

log10/9n

n

n

n

…

O(n) leaves

n10
1 n10

9

n100
9 n100

9 n100
81

n
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log10n

Analysis of “Almost-Best” Case

n

Θ(1)

Θ(1)

log10/9n

n

n

n

T(n) ≤ n log10/9n + Ο(n)

…

n log10n ≤

O(n) leaves

Θ(n log n)

n100
1

n10
1 n10

9

n100
9 n100

9 n100
81



The Almost-Best Case is 
Common
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6 10 5 8 13 3 2 112 3 8 103 6

Many more “middle” elements than “extreme” elements

( ) ( )1 999
1000 1000( ) ( )T n T n T n n= + + Θ
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QuickSort Runtimes
• Best-case runtime Tbest(n) ∈ Θ(n log n)
• Worst-case runtime Tworst(n) ∈ Θ(n2)

• Worse than MergeSort? Why is it called 
quicksort then?

• Its average runtime Tavg(n) ∈ Θ(n log n )
• Better even, the expected runtime of 

randomized QuickSort is Θ(n log n)
• Great in practice
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Randomized QuickSort
Randomly choose an element as pivot

Every time need to do a partition, throw a die to 
decide which element to use as the pivot
Each element has 1/n probability to be selected

Rand-Partition(A, p, r)
d = random(); // a random number between 0 and 1
index = p + floor((r-p+1) * d); // p <= index <= r
swap(A[p], A[index]);
Partition(A, p, r);  // now do partition using A[p] as pivot
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Running Time of Randomized 
QuickSort

The expected running time is an average 
over all cases

T(n) = 

T(0) + T(n–1) + dn if 0 : n–1 split,
T(1) + T(n–2) + dn if 1 : n–2 split,



T(n–1) + T(0) + dn if n–1 : 0 split,

( )
1

0

1( ) ( ) ( 1)
n

k
T n T k T n k dn

n

−

=

= + − − +∑In expectation
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Solving the Recurrence

1. Recursion tree (iteration) method
- Good for guessing an answer

2. Substitution method
- Generic method, rigid, but may be hard

3. Master method
- Easy to learn, useful in limited cases only
- Some tricks may help in other cases
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Substitution Method

1. Guess the form of the solution:
(e.g. using recursion trees, or expansion)

2. Verify by induction (inductive step).

The most general method to solve a recurrence 
(prove O and Ω separately):
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Expected Running Time of 
QuickSort (Method 1)

Guess
We have to prove                                for 
some c and sufficiently large n
Use T(n) instead of           for convenience

nkT
n

nT
n

k
+= ∑

−

=
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0
)(2)(

)log()( nnOnT =
ncnnT log)( ≤

)(nT
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Fact: 

Need to Prove: T(n) ≤ c n log (n)
Assumption: T(k) ≤ ck log (k) for 0 ≤ k ≤ n-1
Prove using substitution method
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+= ∑
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What are we doing here?

What are we doing here?

What are we doing here?

The lg k in the second term 
is bounded by lg n

Tightly Bounding 
The Key Summation
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Move the lg n outside the 
summation

Split the summation for a 
tighter bound
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The summation bound so far

Tightly Bounding
The Key Summation
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What are we doing here?The lg k in the first term is 
bounded by lg n/2

What are we doing here?lg n/2 = lg n - 1

What are we doing here?Move (lg n - 1) outside the 
summation
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The summation bound so far

Tightly Bounding
The Key Summation
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What are we doing here?

Distribute the (lg n - 1)

What are we doing here?The summations overlap in  
range; combine them
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The summation bound so far

Tightly Bounding 
The Key Summation
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∑ What are we doing here?Rearrange first term, place 
upper bound on second

What are we doing?Multiply it 
all out



45

Tightly Bounding 
The Key Summation
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Expected Running Time of 
QuickSort (Method 2)

If X denotes the number of comparisons performed in the  
PARTITION subroutine over the entire execution of 
QUICKSORT on an n-element array, then the running time 
of QUICKSORT is O(n + X).

We need to find X, the total number of comparisons 
performed over all calls to PARTITION.

46
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Partition in English

Partition(A, p, r):
Select an element to act as the “pivot” (which?)
Grow two regions, A[p..i] and A[j..r]

All elements in A[p..i] <= pivot
All elements in A[j..r] >= pivot

Increment i until A[i] > pivot
Decrement j until A[j] < pivot
Swap A[i] and A[j]
Repeat until i >= j 
Swap A[j] and A[p]
Return j

Note: different from book’s 
partition(), which uses two 
iterators that both move forward.



A Probabilistic Formulation
QUICKSORT: Performance – Expected RunTime

1. Rename the elements of A as z1, z2, …, zn, so that zi is
the ith smallest element of A (sorted order).

2. Define the set Zij = {zi, zi+1,…, zj}.
3. Question: how often does the algorithm compare zi and

zj?
4. Answer: at most once – notice that all elements in every

(sub)array are compared to the pivot once, and will
never be compared to the pivot again (since the pivot is
removed from the recursion).

5. Define Xij = I{zi is compared to zj}, the indicator variable
of this event. Comparisons are over the full run of the
algorithm.

48



Calculating with Expectations

6. Since each pair is compared at most once, we can write

7. Taking expectations of both sides:

8. We need to compute Pr{zi is compared to zj}.
9. We will assume all zi and zj are distinct.
10.For any pair zi, zj, once a pivot x is chosen so that zi < x

< zj, zi and zj will never be compared again (why?).

49
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The Key Probability

11.If zi is chosen as a pivot before any other item in Zij,
then zi will be compared to every other item in Zij.

12.Same for zj.
13. zi and zj are compared if and only if the first element to

be chosen as a pivot from Zij is either zi or zj.
14.What is that probability? Until a point of Zij is chosen as

a pivot, the whole of Zij is in the same partition, so every
element of Zij is equally likely to be the first one chosen
as a pivot.

50

zi zj



The Key Probability

15.Because Zij has j – i + 1 elements, and because pivots
are chosen randomly and independently, the probability
that any given element is the first one chosen as a pivot
is 1/(j-i+1). It follows that:

16. Pr{zi is compared to zj}
= Pr{zi or zj is first pivot chosen from Zij}

= Pr{zi is first pivot chosen from Zij}+
Pr{ zj is first pivot chosen from Zij}

= 1/(j-i+1) + 1/(j-i+1) = 2/(j-i+1).
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Harmonic Numbers to the Rescue

17.Replacing the right-hand-side in 7, and grinding
through some algebra:

And the result follows.
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Expected Running Time of 
QuickSort (Method 3)
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Picking the Pivot
Use the first element as pivot

if the input is random, OK
if the input is presorted (or in reverse order)

all the elements go into only one of the subfiles
this happens consistently throughout the recursive calls
Results in O(n2) behavior

Choose the pivot randomly
generally safe
random number generation can be expensive
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Picking the Pivot
Use the median of the array

Partitioning always cuts the array into roughly half
However, hard to find the exact median

e.g., sort an array to pick the value in the middle
Possible in Θ(n) time, as we will later in the course [but 
complicated]
An optimal quicksort (O(N log N))
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Pivot: Median of Three
We will use median of three

Compare just three elements: the leftmost, rightmost and center
Swap these elements if necessary so that 

A[left] = Smallest
A[right] = Largest
A[center]    = Median of three

Pick A[center] as the pivot
Swap A[center] and A[right – 1] so that pivot is at second last position 
(why?)

median3
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Stability of Sorting

Stable sorting algorithms maintain the relative order of 
records with equal keys (i.e. values).

That is, a sorting algorithm is stable if whenever there are two 
records R and S with the same key and with R appearing 
before S in the original list, R will appear before S in the sorted 
list.

MergeSort and InsertionSort can be implemented to be 
stable. QuickSort in a normal implementation is not.
However, any comparative sorting algorithm can be 
made stable. [How?]
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Randomized Algorithms

59

Why does flipping coins
help with algorithm
effciency?
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