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Qutline

# Review of last lecture

¢ QuickSort and its analysis
+\Worst-case behavior
+Best-case behavior
+ Average-case behavior
+ Randomized QuickSort
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QuickSort

+ Another divide and conquer sorting
algorithm — like MergeSort

+ Excellent performance In practice — often
the default sorting package

+ Sorts In place — like InsertionSort
+ Has many interesting variations



QuickSort

Sir Charles Antony Richard Hoare

Quicksort

By C. A. R. Hoare

A description is given of a new method of sorting in the random-access store of a computer. The
method compares very favourably with other known methods in speed, in economy of storage, and
in ease of programming. Certain refinements of the method, which may be useful in the optimiz-
ation of inner loops, are described in the second part of the paper.

Part One: Theory

The sorting method described in this paper is based on
the principle of resolving a problem into two simpler
subproblems. Each of these subproblems may be
resolved to produce vet simpler problems. The process
is repeated until all the resulting problems are found to
be trivial. These trivial problems may then be solved
by known methods, thus obtaining a solution of the
original more complex problem.

Partition

The problem of sorting a mass of items, occupying
consecutive locations in the store of a computer, may be
C ] (] ] () (] i I A AT TTRE T () (1115

highest address and moves downward. The lower
pointer starts first. If the item to which it refers has a
key which is equal to or less than the bound. it moves
up to point to the item in the next higher group of
locations. It continues to move up until it finds an
item with key value greater than the bound. In this
case the lower pointer stops, and the upper pointer
starts its scan. If the item to which it refers has a key
which is equal to or greater than the bound. it moves
down to point to the item in the next lower locations.
It continues to move down until it finds an item with
key value less than the bound. Now the two items to
which the pointers refer are obviously in the wrong
PNOSitio ind they must be exchanced.  After the
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QuickSort

Quicksort on an n-element array:

1. Divide: Partition the array into two subarrays
around a pivot x so that elements in lower
subarray < x < elements in upper subarray.

< X X = X
2. Conguer: Recursively sort the two subarrays.
3. Combine: Trivial.

Key: Linear-time partitioning subroutine.



Pseudocode for QuickSort

QUICKSORT(A, p, I
Ifp<r
then g < PARTITION(A, P, I)
QUICKSORT(A, p, g-1)
QUICKSORT(A, g+1, 1)

Initial call: QuicksorT(A, 1, n)



Partition

+ All the action takes place in the
partition() function

¢+ Rearranges the subarray in place

+ End result: two subarrays
+All values in first subarray < all values in second

¢ Returns the index of the “pivot” element
separating the two subarrays
P q r
<X X > X




|dea of Partition

+|f we are allowed to use a second array, It

would be easy
S D 2 T R B

6110 5|8 13| 3 | 2 |11

=

6 5| 3|2 11,13| 8 |10

2| 5|3 611 13| 8 |10



Another Idea: Pairing

+ Keep two Iiterators: one from head, one
from tall

— 2

S N b

!
(6/10]5]8[13/3 |2 |11]

513 1(13| 8 |10|11

3|2 |5 13| 8 10| 11



!

In-Place Partition

S TN T TR

3

2 |9 13| 8 |10 | 11

|

Pivot element
The “partitioner”
Originally the leftmost
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Partition in English

¢ Partition(A, p, r):
+ Select an element to act as the “pivot” (which?)

+ Grow two regions, A[p..i] and A[j..r]
+ All elements in A[p..i] <= pivot
+ All elements in Afj..r] >= pivot

—> 4 Increment i until A[i] > pivot

+ Decrement j until A[j] < pivot

+ Swap AJi] and AJj]

__ ¢ Repeat until i >= | Note: different from book’s

: partition(), which uses two
+ Swap A[j] and A[p] iterators that both move forward.
¢+ Return |
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Partition in Code

Partition(A, p, r)
X
1 = p;
J=r+1;
while (TRUE) {

repeat
1++;

until A[i] > x or i >= j;

repeat

J--;
until A[J] < x or j < i;
it (1 <))

Swap (A[i]l, ALJD):
else

break;

}
swap (Alpl. ADD:

return j;

Alprl; // pivot i1s the leftmost element

What is the running time of
partition()?

partition() runsin ®(n) time
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The QuickSort Algorithm

QUICKSORT(A. p, )
if p<vr
then g <— PARTITION(A, p, )
QUICKSORT(A. p, g—1)
QUICKSORT(A, g+ 1, 7)

Correctness is quite clear

13



P r
10| 5| 8 13| 3 | 2 |11

| J
101 5| 8 |13 3 | 2 | 11 | scan

' J
-2 5|8 (13| 3 |10 11Iswap

! J

Efétrif&l - ‘ 518 13| 3 ‘10 11 I scan

' J

-2‘5 3 |13 8‘10 11Iswap

| J

-2‘5 3 | 13 8‘10 11Iscan

j |

P q r
3 7 5 13 8 | 10 | 11 | fina swa1|cz1

Pivot
X=6




c |10 5|8 11| 3 | 2 |13

\ |- 11 8\10\13|




Analysis of QuickSort

» Assume all input elements are distinct.

* In practice, there are better partitioning
algorithms for when duplicate input
elements may exist.

 Let T(n) = worst-case running time on
an array of n elements.
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Worst-Case of Quicksort

e Input sorted or reverse sorted.
e Partition around min or max element.
* One side of partition always has no elements.

T(nN)=TO0)+T(n-1)+6(n)
=O@)+T(n-1)+06(n)
=T(n—-1) +®(n)
=0®(n2) (arithmetic series)
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Worst-Case Recursion Tree

T(n)=T(0) + T(n-1) + n
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Worst-Case Recursion Tree

T(n)=T(0) + T(n-1) + n
T(n)
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Worst-Case Recursion Tree
T(n)=T(0) + T(n-1) + n

e n\
T T-1)
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Worst-Case Recursion Tree
T(n)=T(0) + T(n-1) + n

N
YR
T(0) (n-1)
TN
T T(h-2)
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Worst-Case Recursion Tree
T(n)=T(0) + T(n-1) + n

N
N
T(0) (n-1)
AR
T(0) (n-2)

S
) -

T(0)
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Worst-Case Recursion Tree
T(n)=T(0) + T(n-1) + n

“ L @(hmgtj:@ :
i wy A

TO/\Z
height = n ©) (n;)\
T0) -

T(0)
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Worst-Case Recursion Tree
T(n)=T(0) + T(n-1) + n

“ L @(n kj:@) 2
' wy A i
N

T (n-2)

height = n S~
T0) -

T(0)
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Worst-Case Recursion Tree
T(n)=T(0) + T(n-1) + n

1) (n-1)

L k=1
| 6o(1) (n-2)
height = n P T(n) = O(n) + O(n?)
o) - = e(n?)

~
O(1)
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Best-Case Analysis
(For intuition only!)

If we’re lucky, PARTITION splits the array evenly:

T(n) =2T(n/2) + G(n)
=®(nlogn) (same as MergeSort)

9
10 10

T(N)=T(in)+T(2n)+O(n)
What iIs the solution to this recurrence?

What if the split is always
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Analysis of “Almost-Best” Case

T(n)
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Analysis of “Almost-Best” Case

28



Analysis of “Almost-Best” Case
\i
T(en)
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Analysis of “Almost-Best” Case

10
/ \9 9/ \Ioglo,gn
1
mn mn mn 1%—%)” ———————— N
% 7\ 7\
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Analysis of “Almost-Best” Case

/ A BN
O(1) O(n) leaves | ‘-\ 5

®(nlogn) o)

nlogyn < T(n) < nlogpen + ON)
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The Almost-Best Case Is
Common

T(N)=T (1 N)+T (s n)+0O(N)

312 |5 F6713 8 10|11

Many more “middle” elements than “extreme” elements
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QuickSort Runtimes

 Best-case runtime T,..(n) € ®(n log n)
 Worst-case runtime T,,,.(n) € ©(n?)

» Worse than MergeSort? Why is it called
quicksort then?

* Its average runtime T, ,(n) € ®(nlogn )

o Better even, the expected runtime of
randomized QuickSort is ®(n log n)

 Great In practice

33



Randomized QuickSort

¢+ Randomly choose an element as pivot

+ Every time need to do a partition, throw a die to
decide which element to use as the pivot

+ Each element has 1/n probabillity to be selected

Rand-Partition(A, p, r)
d = random(); // a random number between O and 1
index = p + floor((r-p+1) * d); // p <= index <= r
swap(A[pl, A[index]);
Partition(A, p, r); // now do partition using A[p] as pivot

34



Run

T(n) =<

ning Time of Randomized
QuickSort

"T(0) + T(n-1) +dn  if 0: n-1 split,
T(1) + T(n-2) +dn  if 1:n-2 split,

_T(n-1) +T(0) +dn if n-1:0 split,

¢+ The expected running time is an average
over all cases

1n—1 _

In expectation =—> -F(n) — HZ(T (k) +-|_-(n —K —1)) +dn

k=0
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T(n)

:ik”zz(T(k)+T(n—k—1))+n

2 n-1—

= E5T(K)+n
N k=0

Say d=1
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Solving the Recurrence

1. Recursion tree (iteration) method
- Good for guessing an answer

2. Substitution method
- Generic method, rigid, but may be hard

3. Master method
- Easy to learn, useful in limited cases only
- Some tricks may help in other cases

37



Substitution Method

The most general method to solve a recurrence
(prove O and Q separately):

1. Guess the form of the solution:

(e.g. using recursion trees, or expansion)
2. Verify by induction (inductive step).

38



Expected Running Time of
QuickSort (Method 1)

_ ) nt
T(N)=23T(K)+n
N k=0
¢Guess T(n)=0(nlogn)
+We have to prove T(n)<cnlogn for
some c and sufficiently large n

+Use T(n) instead of T(n) for convenience

39



eFact 1) = i ST (k) +n
k=0

¢#Need to Prove: T(n) <c nlog (n)

¢ Assumption: T(k) < ck log (k) for 0 <k =n-1
+ Prove using substitution method
T(n)=%:Z_;T(k)+n

n-1
< EZk logk + n
n o
ZC n-1 2 n2

2 2 n
< — n—Iogn—n— +N using the fact that Zklogkﬁ—logn——
n 8 k=0 2 8

cn
scnlogn—7+n

<cnlogn ifc =4 log here means Ig
40



Tightly Bounding
The Key Summation

H

n—

klgk = Zklgk
k=0
fn/Z] 1
~Skigk+ S klgk
k=1 k= n/2 |
n/2 -1
< > klgk + Zklgn
k=1 k= n/2 |
n/2 -1

Zklgk+|gn Zk

k=| /2]

Split the summation for a
tighter bound

The Ig k in the second term
Is bounded by Ig n

Move the Ig n outside the
summation

41



Tightly Bounding
The Key Summation

k (H/Zf\:—lk |g k N |g N Z k The summation bound so far
k=[n/2]

Wﬂ_l The Ig k in the first term is

Zklg n/2)+Ign Zk pounded by Ig /2
k=n/2]

3
H

7\_
Il
|

|_n/2—\—1

Zk(gn 1+Ign Zk lgn/2=Ign-1
k=[n/2]
n/2]-1 Move (Ig n - 1) outside the
gn 1 Zk-l—lgn ’_Zl_<| summation
k=| n/2
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n-1

Tightly Bounding
The Key Summation

|_n/2_|—1 n—1

Zklgkg(lgn—l) Z kK+Ign Z K The summation bound so far

k=1

k=1 k=[n/2]
n21-1 2] n-1
Ign Z K — Z k+|gn Z K Distribute the (Ign - 1)

k=1 k=1 k=n/2]

n-1 [n/2]-1 The summations overlap in

Ig nz K — K range; combine them
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Tightly Bounding
The Key Summation

n-1 ( n— 1) N [n/2]-1 |
klgk < lgn — k The summation bound so far
3y E o3

yed Rearrange first term, place
|: n—1 ]Ig n— Z K upper bound on second

< %[n(n ~1) |ign —%(gj(g—lj

1/, 1 , n
<—(n‘lgn—-nlgn)—=n°+— Multiply it
2( J J ) 8 4 allqut)yl
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Tightly Bounding
The Key Summation

— 1 1 n
klgk <=(n°lgn—nlgn)—=n°+—
.; gk <—(n*lgn—nlgn)-=n®+-
1, 1, ,n n
=—n“lgn——n° +(———=Ign
2 : 8 (4 2 gm
sinzlgn—in2 when n > 2
2 8

Done!
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Expected Running Time of
QuickSort (Method 2)

If X denotes the number of comparisons performed in the
PARTITION subroutine over the entire execution of
QUICKSORT on an n-element array, then the running time
of QUICKSORT IS O(n + X).

We need to find X, the total number of comparisons
performed over all calls to PARTITION.

46



Partition in English

¢ Partition(A, p, r):
+ Select an element to act as the “pivot” (which?)

+ Grow two regions, A[p..i] and A[j..r]
+ All elements in A[p..i] <= pivot
+ All elements in Afj..r] >= pivot

—> 4 Increment i until Afi] > pivot

+ Decrement j until A[j] < pivot

+ Swap AJi] and AJj]

___ + Repeat until i >=j Note: different from book’s

: partition(), which uses two
+ Swap A[j] and A[p] iterators that both move forward.
¢+ Return |

47



A Probabilistic Formulation

QUICKSORT: Performance — Expected RunTime

. Rename the elements of A as z,, z,, ..., Z,, SO that z; IS
the it" smallest element of A (sorted order).

. Define the set Z; = {z, z;,4,..., Z;}-

. Question: how often does the algorithm compare z; and
7.7

¢

. Answer: at most once — notice that all elements in every
(sub)array are compared to the pivot once, and will
never be compared to the pivot again (since the pivot is
removed from the recursion).

. Define X;; = I{z; Is compared to z}, the indicator variable
of this event. Comparisons are over the full run of the
algorithm.



Calculating with Expectations

6. Since each pair is compared at most once, we can write

n-1 n
X=2 DX

/. Taking expectations of both sides:

E[X]= E\‘ni anxijJ:ni Zn:E[Xij]:ni Zn:Pr{zi is compared to zj}

i=1 j=i+l i=1 j=i+l i=1 j=i+l

8. We need to compute Pr{z; is compared t0 z;}.
9. We will assume all z; and z; are distinct.

10.For any pair z;, z;, once a pivot x Is chosen so that z; < x
<z, z; and z; will never be compared again (why?).



The Key Probabillity

11.1f z; is chosen as a pivot before any other item in Z;,
then z; will be compared to every other item in Z;.

12.Same for Z.

13. z; and z; are compared if and only if the first element to
be chosen as a pivot from Z; is either z; or z;.

14.What is that probability? Until a point of Z; is chosen as
a pivot, the whole of Z; is in the same partition, so every
element of Z; is equally likely to be the first one chosen
as a pivot.




The Key Probability

15.Because Z; has j — 1 + 1 elements, and because pivots
are chosen randomly and independently, the probability
that any given element is the first one chosen as a pivot
Is 1/(j-1+1). It follows that:

16. Pr{z; is compared to z;}
= Pr{z; or z; Is first pivot chosen from Z; }
= Pr{z; is first pivot chosen from Zij}+
Pr{ 4 IS first pivot chosen from Zij}
= 1/(-i+1) + 1/(-i+1) = 2/(j-i+1).



Harmonic Numbers to the Rescue

_ E\‘ni Zn:xijJ :ni Zn:E [xij]zni Zn:Pr{zi is compared to z, } (7)

i=1 j=i+l i=1 j=i+l i=1 j=i+l

17.Replacing the right-hand-side in 7, and grinding
through some algebra'

n-1 n n-1n-i n-1 n

=X Y =332 <3y ZZH —ZO(Ign) O(nlgn).

Iljl+1J |+1 i=1 k=1 i=1 k=1

And the result follows.

Hn:1+£+1+...+1
2 3 n
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Expected Running Time of
QuickSort (Method 3)

(n-)T(n-1) = ZHZ_Z:T(k) +(n-1)?

nT(n)-(n-YT(n-1)=2T(n-1)+2n-1
nT(n)=(n+1)T(n-1)+2n-1

T(n) T(n-1) s 2n-1
n+l  n (n+D)n

T(n)=%niT(k)+n

_T()
2(n= n+1
2n-1 2
S(n) = S(n—l)+ (n+1)n ~ S(n—l)‘l‘m

no1
S(nN)=2 —~H =0(logn
(n) kZ:;,kH » =0O(logn)

T(n)=0(nlogn)
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Picking the Pivot

+ Use the first element as pivot
+ if the input is random, OK

+ if the input is presorted (or in reverse order)
+ all the elements go into only one of the subfiles
+ this happens consistently throughout the recursive calls
¢ Results in O(n?) behavior

¢+ Choose the pivot randomly
+ generally safe
+ random number generation can be expensive

55



Picking the Pivot

+ Use the median of the array
+ Partitioning always cuts the array into roughly half

+ However, hard to find the exact median
# e.g., sort an array to pick the value in the middle

+ Possible in ©(n) time, as we will later in the course [but
complicated]

+ An optimal quicksort (O(N log N))

56



Pivot: Median of Three

+ We will use median of three
+ Compare just three elements: the leftmost, rightmost and center
+ Swap these elements if necessary so that
+ Alleft] Smallest
+ Alright] Largest
+ Alcenter] Median of three
+ Pick A[center] as the pivot

+ Swap A[center] and Afright — 1] so that pivot is at second last position
(why?)

int center = ( left + right ) / 2;
if( a[ center ] < a[ left ] )

swap( a[ left ], a[ center ] );
if( a[ right ] < a[ left ] )

swap( a[ left ], a[ right ] );
if( a[ right ] < a[ center ] )

swap{ a[ center ], a[ right ] );

median3

// Place pivot at position right - 1
swap( a[ center ], a[ right - 1 ] }; 57



Stability of Sorting

+ Stable sorting algorithms maintain the relative order of
records with equal keys (i.e. values).

+ That is, a sorting algorithm is stable if whenever there are two
records R and S with the same key and with R appearing
before S in the original list, R will appear before S in the sorted
list.

¢+ MergeSort and InsertionSort can be implemented to be
stable. QuickSort in a normal implementation is not.

+ However, any comparative sorting algorithm can be
made stable. [How?]
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Randomized Algorithms

\ Why does flipping coins
ot help with algorithm
effciency?

C
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