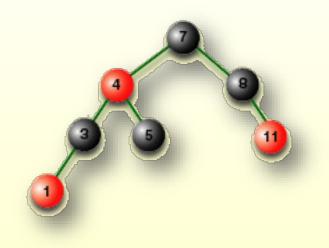
# CS161: Design and Analysis of Algorithms



### Lecture 5 Leonidas Guibas

### Outline

 Review of last lecture: QuickSort and its analysis

Today: Medians and order statistics
Minimum, maximum, median, ...
A randomized O(n) median algorithm
A worst-case O(n) median algorithm

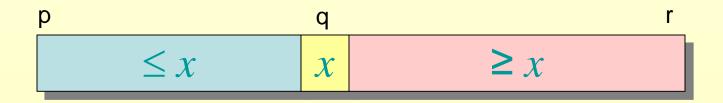
Slides modified from

- http://www.cs.virginia.edu/~luebke/cs332/
- <u>http://www.cs.unc.edu/~plaisted/</u>

# Review: Pseudocode for QuickSort

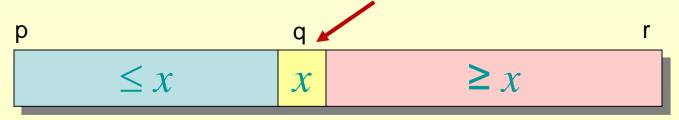
QUICKSORT(A, p, r) **if** p < r **then**  $q \leftarrow \text{PARTITION}(A, p, r)$ QUICKSORT(A, p, q-1) QUICKSORT(A, q+1, r)

**Initial call:** QUICKSORT(A, 1, n)



# **Key: The Partition Subroutine**

- All the action takes place in the partition() function
  - Rearranges the subarray in place
  - End result: two subarrays
    - ◆All values in first subarray ≤ all values in second
  - Returns the index of the "pivot" element separating the two subarrays



# **QuickSort Runtime**

- Best-case runtime  $T_{\text{best}}(n) \in \Theta(n \log n)$
- Worst-case runtime  $T_{worst}(n) \in \Theta(n^2)$
- Average runtime  $T_{avg}(n) \in \Theta(n \log n)$

- Better even, the expected runtime of randomized QuickSort is ⊖(n log n)
- Great in practice

### **Randomized Algorithms**



### Randomized QuickSort

- Randomly choose an element as pivot
  - Every time need to do a partition, throw a die to decide which element to use as the pivot
  - Each of the n elements has 1/n probability to be selected

```
Rand-Partition(A, p, r)
d = random(); // a random number between 0 and 1
index = p + floor((r-p+1) * d); // p<=index<=r
swap(A[p], A[index]);
Partition(A, p, r); // now do partition using A[p] as pivot</pre>
```

# **Randomized Analysis**

Assume each of the pivot is equally likely and hence probability is 1/N.

$$T(N) = \frac{1}{N} \sum_{i=0}^{N-1} (T(i) + T(N-i-1) + cN)$$

$$(N-1)T(N-1) = 2\sum_{i=0}^{N-2} T(i) + c(N-1)^2 \dots (2)$$

Subtract (2) from (1)

NT(N) - (N-1)T(N-1) = 2T(N-1) + 2cN - cNT(N) = (N+1)T(N-1) + 2cN

 Divide both sides by N(N+1)  $\frac{T(N)}{N+1} = \frac{T(N-1)}{N} + \frac{2c}{N+1}$ 

Now we can iterate

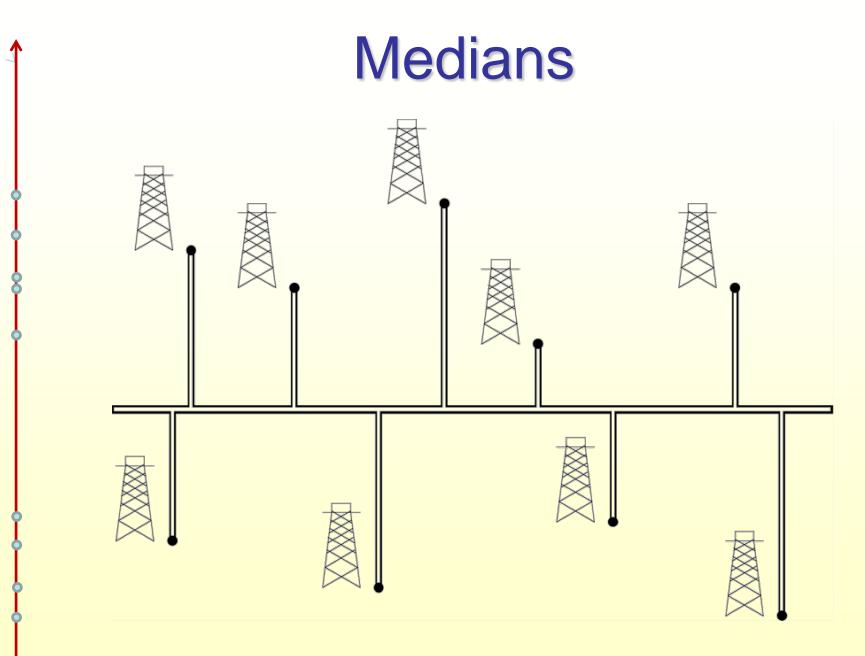
$$\frac{T(N)}{N+1} = \frac{T(N-1)}{N} + \frac{2c}{N+1}$$
$$\frac{T(N-1)}{N} = \frac{T(N-2)}{N-1} + \frac{2c}{N}$$
$$\frac{T(N-2)}{N-1} = \frac{T(N-3)}{N-2} + \frac{2c}{N-1}$$
$$\vdots$$
$$\frac{T(2)}{3} = \frac{T(1)}{2} + \frac{2c}{3}$$

2

 adding all equations  $\frac{T(N)}{N+1} = \frac{T(1)}{2} + 2c\sum_{i=2}^{N+1} \frac{1}{i}$  $\frac{T(N)}{N+1} = \frac{T(1)}{2} + 2c(\log_e(N+1) + \gamma - \frac{3}{2})$  $T(N) = O(N \log N)$ 

# **Today: Order Statistics**

- *i*<sup>th</sup> order statistic: *i*<sup>th</sup> smallest element of a set of *n* elements.
- Minimum: 1<sup>st</sup> order statistic.
- Maximum: n<sup>th</sup> order statistic.
- Median: (n/2)<sup>th</sup> order statistic -- "half-way point" of the set.
  - Unique, when *n* is odd occurs at i = (n+1)/2.
  - •Two medians when *n* is even.
    - •Lower median, at i = n/2.
    - Upper median, at i = n/2+1.
    - For consistency, "median" will refer to the lower median.



Medians vs. means: robust statistics

# **Selection Problem**

#### The selection problem:

- Input: A set A of n distinct numbers and an index i, with  $1 \le i \le n$ .
- Output: the element  $x \in A$  that is larger than exactly i 1 other elements of A.

# Minimum (Maximum)

#### Minimum (A)

- 1.  $min \leftarrow A[1]$
- 2. for  $i \leftarrow 2$  to length[A]
- 3. **do if** *min* > *A*[*i*]
- 4. **then**  $min \leftarrow A[i]$
- 5. return min

*Maximum* can be determined similarly.

- $T(n) = \Theta(n)$ .
- No. of comparisons: n-1.
- Can we do better? <u>Why not?</u>
- Minimum(*A*) has *worst-case optimal* # of comparisons. 12

# Problem

#### Average for random input: How many times do we expect line 4 to be executed?

$$\frac{Minimum (A)}{1. min \leftarrow A[1]}$$

$$2. \text{ for } i \leftarrow 2 \text{ to } length$$

$$3. \text{ do if } min > A[i]$$

4. **then**  $min \leftarrow A[i]$ 

[A]

5. return min

- $\bullet X = RV$  for # of executions of line 4.
- $X_i$  = Indicator RV for the event that line 4 is executed on the *i*<sup>th</sup> iteration.

$$\bullet X = \sum_{i=2..n} X_i$$

•  $E[X_i] = 1/i$ . Why?

• Hence,  $E(X) = \sum_{i=2}^{n} \frac{1}{i} = H_n - 1 = \Theta(\ln n) = \Theta(\log n)$ 

# Simultaneous Min and Max

- Some applications need to determine both the maximum and minimum of a set of elements.
  - Example: Graphics program trying to fit a set of points onto a rectangular display.
- Independent determination of maximum and minimum requires 2n – 2 comparisons.
- Can we reduce this number?



# Simultaneous Min and Max

- Maintain *minimum* and *maximum* elements seen so far.
- Process elements in pairs.
  - Compare the smaller to the current minimum and the larger to the current maximum.
  - Update current minimum and maximum based on the outcomes.
- No. of comparisons per pair = 3. <u>How?</u>
- No. of pairs  $\leq \lfloor n/2 \rfloor$ .
  - For odd *n*: initialize min and max to *A*[1]. Pair the remaining elements. So, no. of pairs =  $\lfloor n/2 \rfloor$ .
  - For even *n*: initialize min to the smaller of the first pair and max to the larger. So, remaining no. of pairs = (*n* – 2)/2 < ∠n/2.</li>

# Simultaneous Min and Max

Total no. of comparisons, C ≤ 3 [n/2].
For odd n: C = 3 [n/2].
For even n: C = 3(n-2)/2 + 1 (For the initial comparison).

$$= 3n/2 - 2 < 3\lfloor n/2 \rfloor.$$

# **Order Statistics**

- The *i*<sup>th</sup> order statistic in a set of *n* elements is the *i*<sup>th</sup> smallest element
- The minimum is thus the 1<sup>st</sup> order statistic
- The maximum is the *n*<sup>th</sup> order statistic
- The median is the n/2 order statistic
  - If *n* is even, there are 2 medians
- How can we calculate general order statistics?
- What is the running time?

# **The General Selection Problem**

Select the i<sup>th</sup> smallest of n elements

Naive algorithm: Sort.

• Worst-case running time  $\Theta(n \log n)$ 

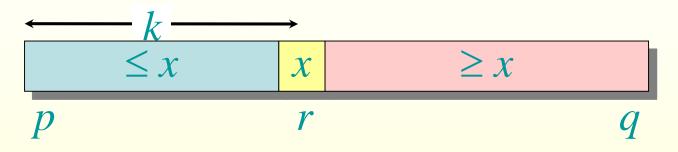
using MergeSort (*not* InsertionSort or QuickSort).

# **General Selection Problem**

- Seems more difficult than Minimum or Maximum.
  - •Yet, has solutions with same asymptotic complexity as Minimum and Maximum.
- We will study two algorithms for the general problem.
  - One with expected linear-time complexity.
  - A second, whose worst-case complexity is linear.

# Recall: QuickSort

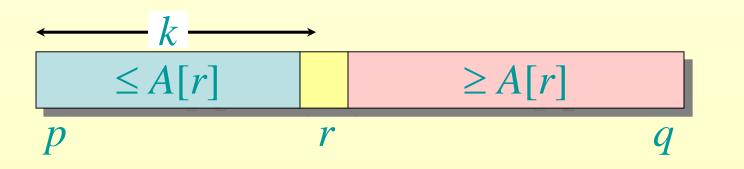
The function Partition gives us the rank of the pivot



- If we are lucky, k = i. *done*!
- If not, at least get a smaller subarray to work with
  - k > i:  $i^{th}$  smallest is on the left subarray
  - $k < i : i^{th}$  smallest is on the right subarray
- Divide and conquer
  - If we are lucky, k close to n/2, or desired # is in smaller subarray
  - If unlucky, desired # is in larger subarray (possible size n-1)

RAND-SELECT(A, p, q, i)  $\triangleright$  *i*th smallest of A[p ...q] **if** p = q & i > 1 **then** error!  $r \leftarrow \text{RAND-PARTITION}(A, p, q)$   $k \leftarrow r - p + 1$   $\triangleright k = \text{rank}(A[r])$  **if** i = k **then return** A[r]**if** i < k

then return RAND-SELECT(A, p, r - 1, i) else return RAND-SELECT(A, r + 1, q, i - k)



### **Randomized Partition**

Randomly choose an element as pivot

 Every time need to do a partition, throw a die to decide which element to use as the pivot

Each element has 1/n probability to be selected

```
Rand-Partition(A, p, q){
    d = random(); // draw a random number between 0 and 1
    index = p + floor((q-p+1) * d); // p<=index<=q
    swap(A[p], A[index]);
    Partition(A, p, q); // now use A[p] as pivot
}</pre>
```

#### Example

Select the i = 6-th smallest:

Partition: k = 43 2 5 7 11 8 10 13 Select the 6 – 4 = 2-nd smallest recursively. Complete example: select the 6<sup>th</sup> smallest element.

8 2 13 10 5 *i* = 6 3 2 8 10 13 3 5 *k* = 4 i = 6 - 4 = 2*k* = *3* 10 8 i = 2 < kNote: here we always use first element as the pivot to do the partition (instead of *k* = 2 8 rand-partition). i = 2 = k

RandomizedSelect(A, p, r, i)
if (p == r) then return A[p];
q = RandomizedPartition(A, p, r)
k = q - p + 1;
if (i == k) then return A[q]; // not in book
if (i < k) then
return RandomizedSelect(A, p, q-1, i);
else</pre>

р

return RandomizedSelect(A, q+1, r, i-k);  $k = \sum_{k \in A[q]} \geq A[q]$ 

q

25

r

# **Intuition for Analysis**

(Our analyses assume that all elements are distinct.) Like QuickSort – but now only ONE recursive call.

# Lucky: $T(n) = T(9n/10) + \Theta(n) \qquad n^{\log_{10}/9^{1}} = n^{0} = 1$ $= \Theta(n) \qquad \text{CASE 3}$ Unlucky: $T(n) = T(n-1) + \Theta(n) \qquad \text{arithmetic series}$ $= \Theta(n^{2})$

Worse than sorting!

$$T(n) \leq \begin{cases} T(\max(0, n-1)) + n & \text{if } 0: n-1 \text{ split,} \\ T(\max(1, n-2)) + n & \text{if } 1: n-2 \text{ split,} \\ \vdots \\ T(\max(n-1, 0)) + n & \text{if } n-1: 0 \text{ split,} \end{cases}$$

- For upper bound, assume *i<sup>th</sup>* element always falls in larger side of partition
- The expected running time is an average of all cases

Expectation 
$$\overline{T}(n) \leq \frac{1}{n} \sum_{k=0}^{n-1} \overline{T}(\max(k, n-k-1)) + n$$

27

#### Analyzing RandomizedSelect() Worst case: partition always 0:n-1 T(n) = T(n-1) + O(n) = ??? $= O(n^2)$ (arithmetic series) No better than sorting! "Best" case: suppose a 9:1 partition T(n) = T(9n/10) + O(n) = ???= O(n) (Master Theorem, case 3) Better than sorting! What if this had been a 99:1 split?

#### Average case

 For upper bound, assume *i*-th element always falls in larger side of partition:

$$T(n) \leq \frac{1}{n} \sum_{k=0}^{n-1} T(\max(k, n-k-1)) + \Theta(n)$$

$$\leq \frac{2}{n} \sum_{k=n/2}^{n-1} T(k) + \Theta(n)$$
 What happened here?

• Let's show that T(n) = O(n) by substitution

• Assume  $T(n) \le cn$  for sufficiently large c:  $T(n) \leq \frac{2}{n} \sum_{k=n/2}^{n-1} T(k) + \Theta(n)$ The recurrence we started with  $\leq \frac{2}{n} \sum_{k=n/2}^{n-1} ck + \Theta(n)$ Substitute  $T(n) \leq cn$  for T(k) $= \frac{2c}{n} \left( \sum_{k=1}^{n-1} k - \sum_{k=1}^{n/2-1} k \right) + \Theta(n)$ "Split" the recurrence  $= \frac{2c}{n} \left( \frac{1}{2} (n-1)n - \frac{1}{2} \left( \frac{n}{2} - 1 \right) \frac{n}{2} \right) + \Theta(n)$  Expand arithmetic series  $= c(n-1) - \frac{c}{2}\left(\frac{n}{2} - 1\right) + \Theta(n)$ Multiply it out 30

#### • Assume $T(n) \le cn$ for sufficiently large *c*:

$$T(n) \leq c(n-1) - \frac{c}{2}\left(\frac{n}{2} - 1\right) + \Theta(n)$$

The recurrence so far

$$= cn - c - \frac{cn}{4} + \frac{c}{2} + \Theta(n)$$

2

$$= cn - \frac{cn}{4} - \frac{c}{2} + \Theta(n)$$

$$= cn - \left(\frac{cn}{4} + \frac{c}{2} - \Theta(n)\right)$$

 $\leq$  cn (if c is big enough)

Subtract c/2

Multiply it out

*Rearrange the arithmetic* 

What we set out to prove

# **Different Probabilistic Analysis**

- Assume each of n! permutations is equally likely
- Modify earlier indicator variable analysis of quicksort (method 2) to handle this k-selection problem
- What is probability i-th smallest item is compared to j-th smallest item (assume i<j)?</li>
  - If k is contained in (i..j)?
  - If k ≤ i?
  - If k ≥ j?

Now the Probabilities of Comparison Get Smaller

$$E[X] = E\left[\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij}\right] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E[X_{ij}] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \Pr\{z_i \text{ is compared to } z_j\}.$$

• Before  $\Pr\{z_i \text{ is compared to } z_j\} = \frac{2}{j-i+1}$ Selection, say i<j<k  $\downarrow$  $z_i$  $z_j$  $z_j$  $z_k$ • So now  $\Pr\{z_i \text{ is compared to } z_j\} = \frac{2}{k-i+1}$  **Case:** (i...j) **Does Not Contain** k  $E[X] = E\left[\sum_{i=1}^{n-1}\sum_{j=i+1}^{n}X_{ij}\right] = \sum_{i=1}^{n-1}\sum_{j=i+1}^{n}E[X_{ij}] = \sum_{i=1}^{n-1}\sum_{j=i+1}^{n}\Pr\left\{z_i \text{ is compared to } z_j\right\}.$ 

- Case k ≥ j:
   Σ<sub>(i=1 to k-1)</sub> Σ<sub>j = i+1 to k</sub> 2/(k-i+1) = Σ<sub>i=1 to k-1</sub> (k-i) 2/(k-i+1) = Σ<sub>i=1 to k-1</sub> 2i/(i+1) [replace k-i with i] = 2 Σ<sub>i=1 to k-1</sub> i/(i+1) ≤ 2(k-1)
- Case k ≤ i: •  $\Sigma_{(j=k+1 \text{ to } n)} \Sigma_{i=k \text{ to } j-1} 2/(j-k+1) = \Sigma_{j=k+1 \text{ to } n} (j-k) 2/(j-k+1)$ =  $\Sigma_{j=1 \text{ to } n-k} 2j/(j+1)$ [replace j-k with j and change bounds] =  $2 \Sigma_{j=1 \text{ to } n-k} j/(j+1)$ ≥ 2(n-k)
- Total for both cases is  $\leq 2n-2$

**Case:** (i.j) contains k  $E[X] = E\left[\sum_{i=1}^{n-1}\sum_{j=i+1}^{n}X_{ij}\right] = \sum_{i=1}^{n-1}\sum_{j=i+1}^{n}E[X_{ij}] = \sum_{i=1}^{n-1}\sum_{j=i+1}^{n}\Pr\left\{z_i \text{ is compared to } z_j\right\}.$ 

At most 1 interval of size 3 contains k

♦ i=k-1, j=k+1

- At most 2 intervals of size 4 contain k
  - i=k-1, j=k+2 and i=k-2, j= k+1
- In general, at most q-2 intervals of size q contain k
- Thus we get  $\Sigma_{(q=3 \text{ to } n)}$   $(q-2)2/q \leq \Sigma_{(q=3 \text{ to } n)}$  2 = 2(n-2)
- Summing together all cases we see the expected number of comparisons is less than 4n

#### Summary of Randomized Selection

- Works fast: linear expected time.
- Excellent algorithm in practice.
- But, the worst case is *very* bad:  $\Theta(n^2)$ .
- *Q*. Is there an algorithm that runs in linear time in the worst case?
- *A.* Yes, due to Blum, Floyd, Pratt, Rivest, and Tarjan [1973].

**IDEA:** Generate a good pivot recursively.

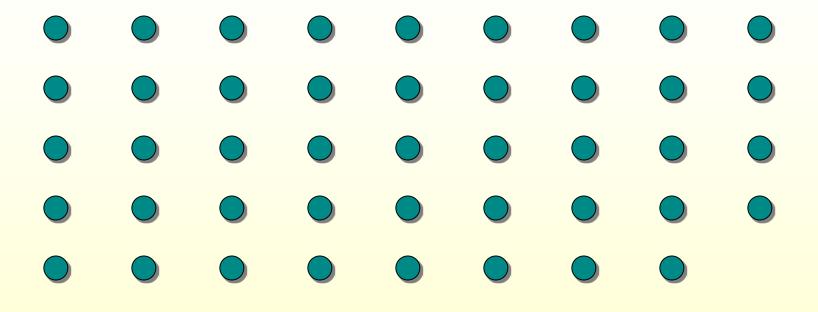
### Worst-Case Linear-Time Selection

Select(i, n)

- 1. Divide the *n* elements into groups of 5. Find the median of each 5-element group by brute force.
- 2. Recursively SELECT the median x of the  $\lfloor n/5 \rfloor$  group medians to be the pivot.
- 3. Partition around the pivot *x*. Let  $k = \operatorname{rank}(x)$ .
- 4. if i = k then return x
  - elseif i < k

then recursively SELECT the *i*-th smallest element in the lower part else recursively SELECT the (i-k)-th smallest element in the upper part Same as RAND-SELECT

#### **Choosing the Pivot**



## **Choosing the Pivot**

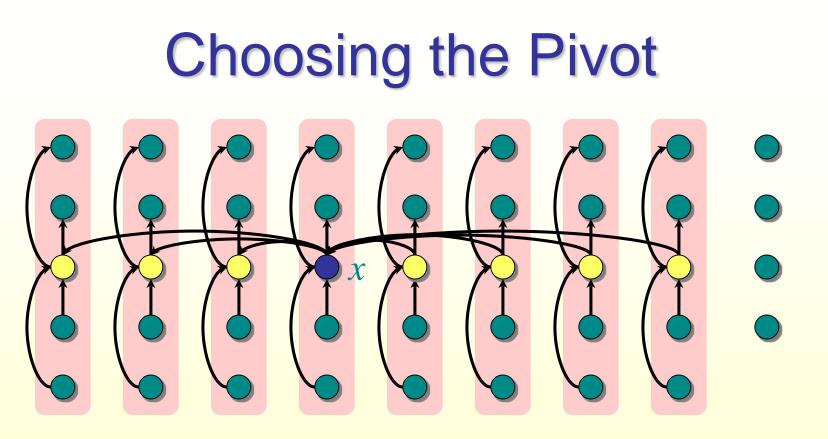
1. Divide the *n* elements into groups of 5.

# Choosing the Pivot

1. Divide the *n* elements into groups of 5. Find *lesser* the median of each 5-element group by rote.

40

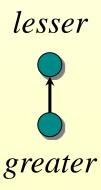
greater

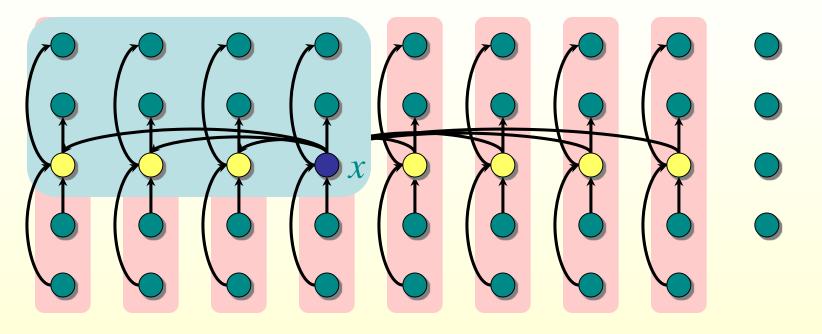


- 1. Divide the *n* elements into groups of 5. Find *lesser* the median of each 5-element group by rote.
- 2. Recursively SELECT the median x of the  $\lfloor n/5 \rfloor$  group medians to be the pivot.

greater

At least half the group medians are  $\leq x$ , which is at least  $\lfloor \frac{n}{5} \rfloor / 2 \rfloor = \lfloor \frac{n}{10} \rfloor$  group medians.



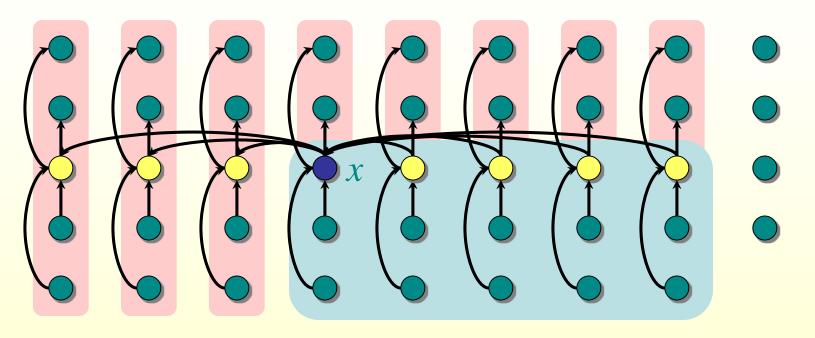


At least half the group medians are  $\leq x$ , which is at least  $\lfloor n/5 \rfloor / 2 \rfloor = \lfloor n/10 \rfloor$  group medians. • Therefore, at least  $3 \lfloor n/10 \rfloor$  elements are  $\leq x$ .

(Assume all elements are distinct.)

lesser

greater



At least half the group medians are  $\leq x$ , which is at least  $\lfloor n/5 \rfloor / 2 \rfloor = \lfloor n/10 \rfloor$  group medians.

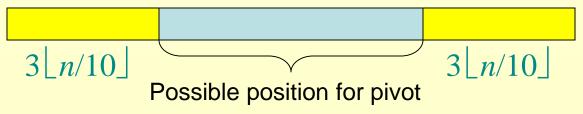
- Therefore, at least  $3 \lfloor n/10 \rfloor$  elements are  $\leq x$ .
- Similarly, at least  $3\lfloor n/10 \rfloor$  elements are  $\geq x$ .



lesser

Need "at most" for worst-case runtime

- At least  $3 \lfloor n/10 \rfloor$  elements are  $\leq x$  $\Rightarrow$  at most  $n-3 \lfloor n/10 \rfloor$  elements are  $\geq x$
- At least  $3 \lfloor n/10 \rfloor$  elements are  $\geq x$  $\Rightarrow$  at most  $n-3 \lfloor n/10 \rfloor$  elements are  $\leq x$
- The recursive call to SELECT in Step 4 is executed recursively on at most  $n-3\lfloor n/10 \rfloor$  elements.



- Use fact that  $\lfloor a/b \rfloor > a/b-1$
- $n-3\lfloor n/10 \rfloor < n-3(n/10-1) \le 7n/10 + 3$

 $[ \le 3n/4 \ if \ n \ge 60 ]$ 

• The recursive call to SELECT in Step 4 is executed recursively on at most 7n/10+3 elements.

#### **Developing the Recurrence**

#### T(n) Select(i, n) $\Theta(n) \left\{ \begin{array}{l} 1. \text{ Divide the } n \text{ elements into groups of 5. Find} \\ \text{the median of each 5-element group by rote.} \end{array} \right.$ $T(n/5) \begin{cases} 2. \text{ Recursively SELECT the median } x \text{ of the } \lfloor n/5 \rfloor \\ \text{group medians to be the pivot.} \end{cases}$ $\Theta(n)$ 3. Partition around the pivot *x*. Let $k = \operatorname{rank}(x)$ . 4. if i = k then return xelseif i < kT(7n/10+3) elself i < k then recursively SELECT the *i*-th smallest element in the lower p else recursively SELECT the (*i*-*k*)-th smallest element in the lower part smallest element in the upper part

Solving the Recurrence  $T(n) = T\left(\frac{1}{5}n\right) + T\left(\frac{7}{10}n + 3\right) + n$ 

**Assumption:**  $T(k) \le ck$  for all k < n

 $T(n) \le c(n/5) + c(7n/10+3) + n$  $\le cn/5 + 3cn/4 + n \quad \text{if } n \ge 60$ = 19cn/20 + n $\le cn - (cn/20 - n)$  $\le cn \quad \text{if } c \ge 20 \text{ and } n \ge 60$ 

#### Worst-Case Linear-Time Selection

#### Intuitively:

- Work at each level is a constant fraction (19/20) smaller as we go down the tree
  Geometric progression!
- Thus the O(n) work at the root dominates

#### **Linear-Time Median Selection**

- Given a "black box" O(n) median algorithm, what can we do?
  - *i*-th order statistic:
    - Find median x
    - Partition input around x
    - if (*i* ≤ (n+1)/2) recursively find *i*th element of first half
    - else find (i (n+1)/2)th element in second half
    - •T(n) = T(n/2) + O(n) = O(n)
  - Can you think of an application to sorting?

#### **Linear-Time Median Selection**

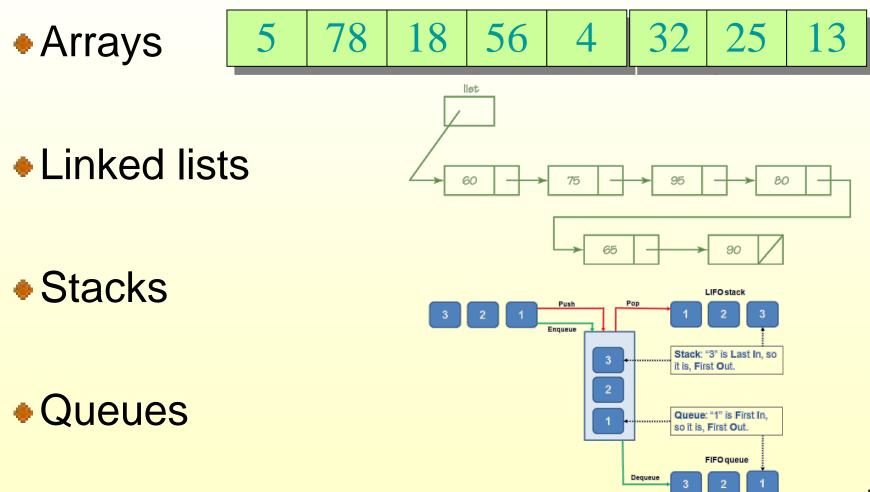
Worst-case O(n Ig n) QuickSort
Find median x and partition around it
Recursively quicksort two halves
T(n) = 2T(n/2) + O(n) = O(n Ig n)

#### Conclusion

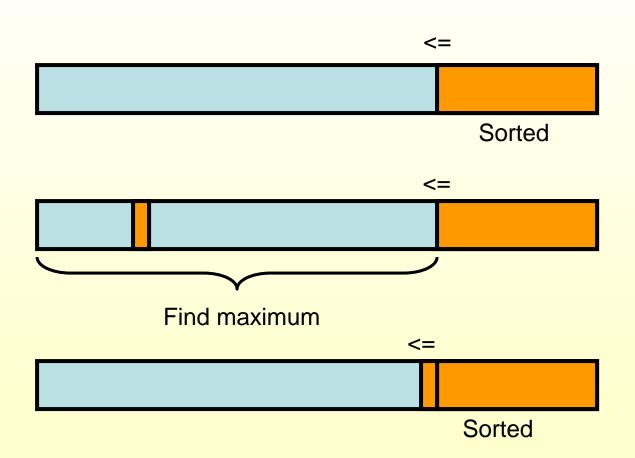
- In practice, the \Overline(n) median algorithm runs very slowly, because the constant in front of *n* is large.
- The randomized algorithm is far more practical.

#### **Exercise:** *Try to divide into groups of 3 or 7.*

#### **Basic Data Structures**



#### **SelectionSort**



#### SelectionSort

SelectionSort(A[1..n]) for (i = n; i > 0; i--) $index = max_element(A[1..i])$ swap(A[i], A[index]); end What's the time complexity? If max element takes  $\Theta(n)$ , selection sort takes  $\sum_{i=1}^{n} i = \Theta(n^2)$ 

#### HeapSort

Another Θ(n log n) sorting algorithm
In practice QuickSort wins
However, the heap data structure and its variants are very useful for many algorithms