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Outline

Review of last lecture: QuickSort and its 
analysis

Today: Medians and order statistics
Minimum, maximum, median, …
A randomized O(n) median algorithm
A worst-case O(n) median algorithm

Slides modified from
• http://www.cs.virginia.edu/~luebke/cs332/
• http://www.cs.unc.edu/~plaisted/

http://www.cs.virginia.edu/%7Eluebke/cs332/
http://www.cs.unc.edu/%7Eplaisted/
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Review: Pseudocode for 
QuickSort

QUICKSORT(A, p, r)
if p < r

then q ← PARTITION(A, p, r)
QUICKSORT(A, p, q–1)
QUICKSORT(A, q+1, r)

Initial call: QUICKSORT(A, 1, n)

≤ x x ≥ x
p rq



4

Key: The Partition Subroutine

All the action takes place in the 
partition() function

Rearranges the subarray in place
End result: two subarrays

All values in first subarray ≤ all values in second
Returns the index of the “pivot” element 
separating the two subarrays

≤ x x ≥ x
p rq
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QuickSort Runtime
• Best-case runtime Tbest(n) ∈ Θ(n log n)
• Worst-case runtime Tworst(n) ∈ Θ(n2)
• Average runtime Tavg(n) ∈ Θ(n log n )

• Better even, the expected runtime of 
randomized QuickSort is Θ(n log n)

• Great in practice



Randomized Algorithms
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Randomized QuickSort
Randomly choose an element as pivot

Every time need to do a partition, throw a die to 
decide which element to use as the pivot
Each of the n elements has 1/n probability to be 
selected

Rand-Partition(A, p, r)
d = random(); // a random number between 0 and 1
index = p + floor((r-p+1) * d); // p<=index<=r
swap(A[p], A[index]);
Partition(A, p, r);  // now do partition using A[p] as pivot



Randomized Analysis
Assume each of the pivot is 
equally likely and hence 
probability is 1/N.

Subtract (2) from (1)

Divide both sides by N(N+1)
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Today: Order Statistics
ith order statistic: ith smallest element of a set 
of n elements.
Minimum: 1st order statistic.
Maximum: nth order statistic.
Median: (n/2)th order statistic -- “half-way 
point” of the set.

Unique, when n is odd – occurs at i = (n+1)/2.
Two medians when n is even.

Lower median, at i = n/2.
Upper median, at i = n/2+1.
For consistency, “median” will refer to the lower 
median.

9



Medians

10Medians vs. means: robust statistics



Selection Problem

The selection problem:
Input: A set A of n distinct numbers and an 
index i, with 1≤ i ≤ n.
Output: the element x ∈ A that is larger than 
exactly i – 1 other elements of  A.

11



Minimum (Maximum)
Minimum (A)
1.  min ← A[1] 
2.  for i ← 2 to length[A]
3.       do if min > A[i] 
4.               then min ← A[i] 
5.  return min

Maximum can be determined similarly.

• T(n) = Θ(n).
• No. of comparisons:  n – 1.
• Can we do better?  Why not?
• Minimum(A) has worst-case optimal # of comparisons. 12



Problem
Average for random input: 
How many times 
do we expect line 4 
to be executed?

X = RV for # of executions of line 4.
Xi = Indicator RV for the event that line 4 is 
executed on the ith iteration.
X = Σi=2..n Xi

E[Xi] = 1/i. Why?
Hence, 𝐸𝐸 𝑋𝑋 = ∑𝑖𝑖=2𝑛𝑛 1

𝑖𝑖
= 𝐻𝐻𝑛𝑛 −1 = Θ(ln𝑛𝑛) =Θ(log𝑛𝑛)

Minimum (A)
1.  min ← A[1] 
2.  for i ← 2 to length[A]
3.       do if min > A[i] 
4.               then min ← A[i] 
5.  return min
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Simultaneous Min and Max
Some applications need to determine both 
the maximum and minimum of a set of 
elements.

Example: Graphics program trying to fit a set of 
points onto a rectangular display.

Independent determination of maximum and 
minimum requires 2n – 2 comparisons.
Can we reduce this number? 

Yes.
14



Simultaneous Min and Max
Maintain minimum and maximum elements seen 
so far.
Process elements in pairs.

Compare the smaller to the current minimum and the 
larger to the current maximum.
Update current minimum and maximum based on the 
outcomes.

No. of comparisons per pair = 3. How?
No. of pairs ≤ n/2.

For odd n: initialize min and max to A[1]. Pair the 
remaining elements. So, no. of pairs = n/2.
For even n: initialize min to the smaller of the first pair 
and max to the larger. So, remaining no. of pairs = (n –
2)/2 < n/2.
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Simultaneous Min and Max

Total no. of comparisons, C ≤ 3n/2.
For odd n: C = 3n/2.
For even n: C = 3(n – 2)/2 + 1 (For the initial 
comparison).

= 3n/2 – 2 < 3n/2.
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Order Statistics
The ith order statistic in a set of n
elements is the ith smallest element
The minimum is thus the 1st order statistic 
The maximum is the nth order statistic
The median is the n/2 order statistic

If n is even, there are 2 medians
How can we calculate general order 
statistics?
What is the running time?

17



The General Selection Problem
Select the ith smallest of n elements
Naive algorithm: Sort.

Worst-case running time Θ(n log n)
using MergeSort (not InsertionSort or 
QuickSort).

18



General Selection Problem

Seems more difficult than Minimum or 
Maximum.

Yet, has solutions with same asymptotic 
complexity as Minimum and Maximum.

We will study two algorithms for the 
general problem.

One with expected linear-time complexity.
A second, whose worst-case complexity is 
linear. 19



Recall: QuickSort
The function Partition gives us the rank of the pivot

If we are lucky, k = i. done!
If not, at least get a smaller subarray to work with

k > i: ith smallest is on the left subarray
k < i : ith smallest is on the right subarray

Divide and conquer
If we are lucky, k close to n/2, or desired # is in smaller subarray
If unlucky, desired # is in larger subarray (possible size n-1)

≤ x x ≥ x
rp q

k
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Randomized D&C Selection
RAND-SELECT(A, p, q, i) ⊳ ith smallest of A[p . . q] 

if p = q  & i > 1 then error!
r ← RAND-PARTITION(A, p, q)
k ← r – p + 1 ⊳ k = rank(A[r])
if  i = k  then return A[r]
if  i < k  

then return RAND-SELECT(A, p, r – 1, i )
else return RAND-SELECT(A, r + 1, q, i – k )

≤ A[r] ≥ A[r]
rp q

k
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Randomized Partition
Randomly choose an element as pivot

Every time need to do a partition, throw a die to 
decide which element to use as the pivot
Each element has 1/n probability to be selected

Rand-Partition(A, p, q){
d = random();   // draw a random number between 0 and 1
index = p + floor((q-p+1) * d);  // p<=index<=q
swap(A[p], A[index]);  
Partition(A, p, q);  // now use A[p] as pivot

}

22



Example

pivot
i = 67 10 5 8 11 3 2 13

k = 4

Select the 6 – 4 = 2-nd smallest recursively.

Select the i = 6-th smallest:

3 2 5 7 11 8 10 13
Partition:

23



7 10 5 8 11 3 2 13

3 2 5 7 11 8 10 13

10

10 8 11 13

8 10

Complete example: select the 6th smallest element.

i = 6

k = 4

i = 6 – 4 = 2

k = 3

i = 2 < k

k = 2

i = 2 = k

Note: here we always 
use first element as 
the pivot to do the 
partition (instead of 
rand-partition). 

24



Randomized Selection

RandomizedSelect(A, p, r, i)
if (p == r) then return A[p];
q = RandomizedPartition(A, p, r)
k = q - p + 1;
if (i == k) then return A[q];   // not in book
if (i < k) then

return RandomizedSelect(A, p, q-1, i);
else

return RandomizedSelect(A, q+1, r, i-k);

≤ A[q] ≥ A[q]

k

qp r
25



Intuition for Analysis

Lucky:
101log 9/10 == nn

CASE 3
T(n) = T(9n/10) + Θ(n)

= Θ(n)
Unlucky:

T(n) = T(n – 1) + Θ(n)
= Θ(n2)

arithmetic series

Worse than sorting!

(Our analyses assume that all elements are 
distinct.) Like QuickSort – but now only ONE 
recursive call.

26



Running Time of Randomized 
Selection

For upper bound, assume ith element always falls in 
larger side of partition
The expected running time is an average of all cases

T(n) ≤

T(max(0, n–1)) + n if 0 : n–1 split,
T(max(1, n–2)) + n if 1 : n–2 split,



T(max(n–1, 0)) + n if n–1 : 0 split,

( ) nknkT
n
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n

k
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−

=

1

0
)1,max(1)(

Expectation
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Randomized Selection

Analyzing RandomizedSelect()
Worst case: partition always 0:n-1

T(n) = T(n-1) + O(n) = ???
= O(n2) (arithmetic series)

No better than sorting!
“Best” case: suppose a 9:1 partition

T(n) = T(9n/10) + O(n) = ???
= O(n) (Master Theorem, case 3)

Better than sorting!
What if this had been a 99:1 split?

28



Randomized Selection
Average case

For upper bound, assume i-th element 
always falls in larger side of partition:

Let’s show that T(n) = O(n) by substitution
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What happened here?“Split” the recurrence

What happened here?

What happened here?

What happened here?

Randomized Selection

Assume T(n) ≤ cn for sufficiently large c:
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The recurrence we started with

Substitute T(n) ≤ cn for T(k) 

Expand arithmetic series

Multiply it out
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What happened here?Subtract c/2

What happened here?

What happened here?

What happened here?

Randomized Selection

Assume T(n) ≤ cn for sufficiently large c:
The recurrence so far

Multiply it out

Rearrange the arithmetic

What we set out to prove
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Different Probabilistic Analysis

Assume each of n! permutations is equally 
likely
Modify earlier indicator variable analysis of 
quicksort (method 2) to handle this k-selection 
problem
What is probability i-th smallest item is 
compared to j-th smallest item (assume i<j)?

If k is contained in (i..j)?
If k ≤ i?
If k ≥ j?

32



Now the Probabilities of 
Comparison Get Smaller

Before

So now  
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Case: (i..j) Does Not Contain k

Case k ≥ j:
Σ(i=1 to k-1) Σj = i+1 to k 2/(k-i+1) = Σi=1 to k-1 (k-i) 2/(k-i+1)

= Σi=1 to k-1 2i/(i+1)  [replace k-i with i]
= 2 Σi=1 to k-1 i/(i+1) 
≤ 2(k-1)

Case k ≤ i:
Σ(j=k+1 to n) Σi = k to j-1 2/(j-k+1) = Σj=k+1 to n (j-k) 2/(j-k+1)

= Σj = 1 to n-k 2j/(j+1) 
[replace j-k with j and change bounds]

= 2 Σj=1 to n-k j/(j+1) 
≥ 2(n-k)

Total for both cases is ≤ 2n-2
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Case: (i..j) contains k

At most 1 interval of size 3 contains k
i=k-1, j=k+1

At most 2 intervals of size 4 contain k
i=k-1, j=k+2 and i=k-2, j= k+1

In general, at most q-2 intervals of size q contain k
Thus we get Σ(q=3 to n) (q-2)2/q ≤ Σ(q=3 to n) 2 = 2(n-2)
Summing together all cases we see the expected 
number of comparisons is less than 4n
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Summary of Randomized Selection

• Works fast: linear expected time.
• Excellent algorithm in practice.
• But, the worst case is very bad: Θ(n2).

Q. Is there an algorithm that runs in linear 
time in the worst case?

IDEA: Generate a good pivot recursively.

A. Yes, due to Blum, Floyd, Pratt, Rivest, 
and Tarjan [1973].
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Worst-Case Linear-Time 
Selection

if  i = k then return x
elseif i < k 

then recursively SELECT the i-th
smallest element in the lower part

else recursively SELECT the (i–k)-th
smallest element in the upper part

SELECT(i, n)
1. Divide the n elements into groups of 5.  Find the 

median of each 5-element group by brute force.
2. Recursively SELECT the median x of the n/5

group medians to be the pivot.
3. Partition around the pivot x.  Let k = rank(x).
4.

Same as 
RAND-
SELECT

37



Choosing the Pivot

38



Choosing the Pivot

1. Divide the n elements into groups of 5.

39



Choosing the Pivot

lesser

greater

1. Divide the n elements into groups of 5.  Find 
the median of each 5-element group by rote.

40



Choosing the Pivot

lesser

greater

1. Divide the n elements into groups of 5.  Find 
the median of each 5-element group by rote.

2. Recursively SELECT the median x of the n/5
group medians to be the pivot.

x

41



Analysis

lesser

greater

x

At least half the group medians are ≤ x, which 
is at least  n/5 /2 = n/10 group medians. 

42



Analysis

lesser

greater

x

At least half the group medians are ≤ x, which 
is at least  n/5 /2 = n/10 group medians.
• Therefore, at least 3 n/10 elements are ≤ x.

(Assume all elements are distinct.) 43



Analysis

lesser

greater

x

At least half the group medians are ≤ x, which 
is at least  n/5 /2 = n/10 group medians.
• Therefore, at least 3 n/10 elements are ≤ x.
• Similarly, at least 3 n/10 elements are ≥ x.

44



• At least 3 n/10  elements are ≤ x
⇒ at most n-3 n/10  elements are ≥ x

• At least 3 n/10  elements are ≥ x
⇒ at most n-3 n/10  elements are ≤ x

• The recursive call to SELECT in Step 4 is 
executed recursively on at most n-3 n/10 
elements.

Analysis
Need “at most” for worst-case runtime

3 n/10 3 n/10
Possible position for pivot 45



• Use fact that a/b > a/b-1
• n-3 n/10 < n-3(n/10-1) ≤ 7n/10 + 3 

[ ≤ 3n/4 if n ≥ 60 ]
• The recursive call to SELECT in Step 4 is 

executed recursively on at most 7n/10+3
elements.

Analysis

46



Developing the Recurrence

if  i = k then return x
elseif i < k 

then recursively SELECT the i-th
smallest element in the lower part

else recursively SELECT the (i–k)-th
smallest element in the upper part

SELECT(i, n)
1. Divide the n elements into groups of 5.  Find 

the median of each 5-element group by rote.
2. Recursively SELECT the median x of the n/5

group medians to be the pivot.
3. Partition around the pivot x.  Let k = rank(x).
4.

T(n)

Θ(n)

T(n/5)
Θ(n)

T(7n/10
+3)

47
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Worst-Case Linear-Time 
Selection

Intuitively:
Work at each level is a constant fraction 
(19/20) smaller as we go down the tree

Geometric progression!
Thus the O(n) work at the root dominates

49



Linear-Time Median Selection

Given a “black box” O(n) median 
algorithm, what can we do?

i-th order statistic: 
Find median x
Partition input around x
if (i ≤ (n+1)/2) recursively find ith element of first 
half
else find (i - (n+1)/2)th element in second half
T(n) = T(n/2) + O(n) = O(n)

Can you think of an application to sorting? 50



Linear-Time Median Selection

Worst-case O(n lg n) QuickSort
Find median x and partition around it
Recursively quicksort two halves
T(n) = 2T(n/2) + O(n) = O(n lg n)

51



Conclusion
• In practice, the Θ(n) median algorithm runs 

very slowly, because the constant in front of 
n is large.

• The randomized algorithm is far more 
practical.

Exercise: Try to divide into groups of 3 or 7.
52



Basic Data Structures

Arrays

Linked lists

Stacks

Queues

53
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SelectionSort

Sorted

Find maximum

Sorted

<=

<=

<=
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SelectionSort

SelectionSort(A[1..n])
for (i = n; i > 0; i--)

index = max_element(A[1..i])
swap(A[i], A[index]);

end

If max_element takes Θ(n), 
selection sort takes ∑i=1

n i = Θ(n2)

What’s the time complexity?
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HeapSort

Another Θ(n log n) sorting algorithm
In practice QuickSort wins
However, the heap data structure and its 
variants are very useful for many 
algorithms
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