CS161:
 Design and Analysis of Algorithms

Outline

*Review of last lecture: QuickSort and its analysis

*Today: Medians and order statistics

- Minimum, maximum, median, ...
- A randomized $O(n)$ median algorithm
- A worst-case $\mathrm{O}(\mathrm{n})$ median algorithm

Slides modified from

- http://www.cs.virginia.edu/~luebke/cs332/
- http://www.cs.unc.edu/~plaisted/

Review: Pseudocode for QuickSort

Quicksort (A, p, r)

if $p<r$

then $q \leftarrow \operatorname{Partition}(A, p, r)$
Quicksort ($A, p, q-1$)
Quicksort($A, q+1, r)$
Initial call: QuICKSORT(A, 1, n)

Key: The Partition Subroutine

- All the action takes place in the partition() function
- Rearranges the subarray in place
- End result: two subarrays
* All values in first subarray \leq all values in second
- Returns the index of the "pivot" element separating the two subarrays

QuickSort Runtime

- Best-case runtime $T_{\text {best }}(n) \in \Theta(n \log n)$
- Worst-case runtime $T_{\text {worst }}(n) \in \Theta\left(n^{2}\right)$
- Average runtime $\mathrm{T}_{\mathrm{avg}}(n) \in \Theta(n \log n)$
- Better even, the expected runtime of randomized QuickSort is $\Theta(n \log n)$
- Great in practice

Randomized Algorithms

Randomized QuickSort

- Randomly choose an element as pivot
- Every time need to do a partition, throw a die to decide which element to use as the pivot
- Each of the n elements has $1 / \mathrm{n}$ probability to be selected

```
Rand-Partition(A, p, r)
    d = random(); // a random number between 0 and 1
    index = p + floor((r-p+1) * d); // p<=index<=r
    swap(A[p], A[index]);
    Partition(A, p, r); // now do partition using A[p] as pivot
```


Randomized Analysis

- Assume each of the pivot is equally likely and hence probability is $1 / \mathrm{N}$.

$$
\begin{align*}
& T(N)=\frac{1}{N} \sum_{i=0}^{N-1}(T(i)+T(N-i-1)+c N) \\
& N T(N)=2 \sum_{i=0}^{N-1}(T(i))+c N^{2} \ldots \ldots \ldots \ldots . . \tag{1}
\end{align*}
$$

$(N-1) T(N-1)=2 \sum_{i=0}^{N-2} T(i)+c(N-1)^{2} \ldots$

- Subtract (2) from (1)
$N T(N)-(N-1) T(N-1)=2 T(N-1)+2 c N-c$
$N T(N)=(N+1) T(N-1)+2 c N$
- Divide both sides by $\mathrm{N}(\mathrm{N}+1)$
$\frac{T(N)}{N+1}=\frac{T(N-1)}{N}+\frac{2 c}{N+1}$
- Now we can iterate

$$
\begin{aligned}
& \frac{T(N)}{N+1}=\frac{T(N-1)}{N}+\frac{2 c}{N+1} \\
& \frac{T(N-1)}{N}=\frac{T(N-2)}{N-1}+\frac{2 c}{N} \\
& \frac{T(N-2)}{N-1}=\frac{T(N-3)}{N-2}+\frac{2 c}{N-1} \\
& \vdots \\
& \frac{T(2)}{3}=\frac{T(1)}{2}+\frac{2 c}{3}
\end{aligned}
$$

- adding all equations
$\frac{T(N)}{N+1}=\frac{T(1)}{2}+2 c \sum_{i=3}^{N+1} \frac{1}{i}$
$\frac{T(N)}{N+1}=\frac{T(1)}{2}+2 c\left(\log _{e}(N+1)+\gamma-3 / 2\right)$
$T(N)=O(N \log N)$

Today: Order Statistics

* $i^{\text {th }}$ order statistic: $i^{\text {th }}$ smallest element of a set of n elements.
- Minimum: $1^{\text {st }}$ order statistic.
- Maximum: $n^{\text {th }}$ order statistic.
- Median: $(n / 2)^{\text {th }}$ order statistic -- "half-way point" of the set.
- Unique, when n is odd - occurs at $i=(n+1) / 2$.
-Two medians when n is even.
-Lower median, at $i=n / 2$.
- Upper median, at $i=n / 2+1$.
*For consistency, "median" will refer to the lower median.

Medians

Medians vs. means: robust statistics

Selection Problem

-The selection problem:

- Input: A set A of n distinct numbers and an index i, with $1 \leq i \leq n$.
- Output: the element $x \in A$ that is larger than exactly $i-1$ other elements of A.

Minimum (Maximum)

```
Minimum (A)
1. }\operatorname{min}\leftarrowA[1
2. for i\leftarrow2 to length[A]
3. do if min > A[I]
4. then min }\leftarrowA[I
```

5. return min

Maximum can be determined similarly.

- $T(n)=\Theta(n)$.
- No. of comparisons: $n-1$.
- Can we do better? Why not?
- Minimum (A) has worst-case optimal \# of comparisons.

Problem

Minimum (A)

1. $\min \leftarrow A[1]$

- Average for random input: How many times
do we expect line 4

2. for $i \leftarrow 2$ to length $[A]$
3. do if $\min >A[i]$
4. then $\min \leftarrow A[i]$
5. return \min to be executed?

- $X=$ RV for \# of executions of line 4.
- $X_{i}=$ Indicator RV for the event that line 4 is executed on the i it iteration.
- $X=\Sigma_{i=2 . . n} X_{i}$
- $\mathrm{E}\left[\mathrm{X}_{\mathrm{i}}\right]=1 / i$. Why?
- Hence, $E(X)=\sum_{i=2}^{n} \frac{1}{i}=H_{n}-1=\Theta(\ln n)=\Theta(\log n)$

Simultaneous Min and Max

* Some applications need to determine both the maximum and minimum of a set of elements.
- Example: Graphics program trying to fit a set of points onto a rectangular display.
- Independent determination of maximum and minimum requires $2 n-2$ comparisons.
-Can we reduce this number?
- Yes.

Simultaneous Min and Max

* Maintain minimum and maximum elements seen so far.
- Process elements in pairs.
- Compare the smaller to the current minimum and the larger to the current maximum.
- Update current minimum and maximum based on the outcomes.
- No. of comparisons per pair $=3$. How?
- No. of pairs $\leq\lfloor n / 2\rfloor$.
- For odd n : initialize min and max to $A[1]$. Pair the remaining elements. So, no. of pairs $=\lfloor n / 2\rfloor$.
- For even n : initialize min to the smaller of the first pair and max to the larger. So, remaining no. of pairs = $(n-$ $2) / 2<\lfloor n / 2\rfloor$.

Simultaneous Min and Max

- Total no. of comparisons, $C \leq 3\lfloor n / 2\rfloor$.
-For odd n : C = 3\n/2」.
-For even n : $C=3(n-2) / 2+1$ (For the initial comparison).

$$
=3 n / 2-2<3\lfloor n / 2\rfloor .
$$

Order Statistics

*The $i^{t h}$ order statistic in a set of n elements is the $i^{\text {th }}$ smallest element

- The minimum is thus the $1^{\text {st }}$ order statistic
- The maximum is the $n^{\text {th }}$ order statistic
*The median is the $n / 2$ order statistic - If n is even, there are 2 medians
- How can we calculate general order statistics?
-What is the running time?

The General Selection Problem

- Select the $i^{\text {th }}$ smallest of n elements
*Naive algorithm: Sort.
-Worst-case running time $\Theta(n \log n)$
using MergeSort (not InsertionSort or QuickSort).

General Selection Problem

- Seems more difficult than Minimum or Maximum.
- Yet, has solutions with same asymptotic complexity as Minimum and Maximum.
- We will study two algorithms for the general problem.
- One with expected linear-time complexity.
*A second, whose worst-case complexity is linear.

Recall: QuickSort

- The function Partition gives us the rank of the pivot

- If we are lucky, $k=i$. done!
- If not, at least get a smaller subarray to work with
- $k>i: i^{\text {th }}$ smallest is on the left subarray
- $k<i: i^{\text {th }}$ smallest is on the right subarray
- Divide and conquer
- If we are lucky, k close to $n / 2$, or desired \# is in smaller subarray
- If unlucky, desired \# is in larger subarray (possible size $n-1$)

Randomized D\&C Selection

$\operatorname{Rand}-\operatorname{Select}(A, p, q, i) \triangleright i$ th smallest of $A[p \ldots q]$ if $p=q \& i>1$ then error!
$r \leftarrow$ Rand-Partition (A, p, q)
$k \leftarrow r-p+1 \quad \triangleright k=\operatorname{rank}(A[r])$
if $i=k$ then return $A[r]$
if $i<k$
then return $\operatorname{Rand}-\operatorname{Select}(A, p, r-1, i)$ else return RAND-SELECT $(A, r+1, q, i-k)$

Randomized Partition

- Randomly choose an element as pivot
- Every time need to do a partition, throw a die to decide which element to use as the pivot
- Each element has $1 / n$ probability to be selected

```
Rand-Partition(A, p, q){
    d = random(); // draw a random number between 0 and 1
    index = p + floor((q-p+1) * d); // p<=index<=q
    swap(A[p], A[index]);
    Partition(A, p, q); // now use A[p] as pivot
}
```


Example

Select the $i=6$-th smallest:

Partition: $\quad k=4$

Select the 6-4 = 2-nd smallest recursively.

Complete example: select the $6^{\text {th }}$ smallest element.

Randomized Selection

RandomizedSelect(A, $p, r, i)$

```
    if (p == r) then return A[p];
    q = RandomizedPartition(A, p, r)
    k = q - p + 1;
    if (i == k) then return A[q]; // not in book
    if (i < k) then
    return RandomizedSelect(A, p, q-1, i);
    else
```

 return RandomizedSelect(A, q+1, r, i-k);
 | | k | |
| :--- | :--- | :--- |
| $\leq \mathrm{A}[\mathrm{q}]$ | | $\geq \mathrm{A}[\mathrm{q}]$ |
| p | | q |

Intuition for Analysis

(Our analyses assume that all elements are distinct.) Like QuickSort - but now only ONE recursive call.

Lucky:

$$
\begin{aligned}
T(n) & =T(9 n / 10)+\Theta(n) & & n^{\log _{10 / 9} 1}=n^{0}=1 \\
& =\Theta(n) & & \text { CASE } 3
\end{aligned}
$$

Unlucky:

$$
\begin{aligned}
T(n) & =T(n-1)+\Theta(n) \\
& =\Theta\left(n^{2}\right)
\end{aligned}
$$

arithmetic series

Worse than sorting!

Running Time of Randomized Selection

$$
T(n) \leq\left\{\begin{array}{cl}
T(\max (0, n-1))+n & \text { if } 0: n-1 \text { split, } \\
T(\max (1, n-2))+n & \text { if } 1: n-2 \text { split }, \\
\vdots & \\
T(\max (n-1,0))+n & \text { if } n-1: 0 \text { split, }
\end{array}\right.
$$

- For upper bound, assume $i^{\text {th }}$ element always falls in larger side of partition
- The expected running time is an average of all cases

$$
\text { Expectation } \bar{T}(n) \leq \frac{1}{n} \sum_{k=0}^{n-1} \bar{T}(\max (k, n-k-1))+n
$$

Randomized Selection

- Analyzing RandomizedSelect ()

-Worst case: partition always 0:n-1
$T(n)=T(n-1)+O(n)=$???

$$
=\mathrm{O}\left(\mathrm{n}^{2}\right) \quad \text { (arithmetic series) }
$$

- No better than sorting!
- "Best" case: suppose a 9:1 partition
$\mathrm{T}(\mathrm{n})=\mathrm{T}(9 n / 10)+\mathrm{O}(\mathrm{n})=$???

$$
=O(n) \quad(\text { Master Theorem, case } 3)
$$

-Better than sorting!
-What if this had been a 99:1 split?

Randomized Selection

* Average case

*For upper bound, assume i-th element always falls in larger side of partition:

$$
\begin{aligned}
T(n) & \leq \frac{1}{n} \sum_{k=0}^{n-1} T(\max (k, n-k-1))+\Theta(n) \\
& \leq \frac{2}{n} \sum_{k=n / 2}^{n-1} T(k)+\Theta(n) \quad \text { What happened here? }
\end{aligned}
$$

-Let's show that $\mathrm{T}(n)=\mathrm{O}(n)$ by substitution

Randomized Selection

- Assume $\mathrm{T}(n) \leq c n$ for sufficiently large c :

$$
T(n) \leq \frac{2}{n} \sum_{k=n / 2}^{n-1} T(k)+\Theta(n)
$$

The recurrence we started with

$$
\leq \frac{2}{n} \sum_{k=n / 2}^{n-1} c k+\Theta(n)
$$

Substitute $T(n) \leq c n$ for $T(k)$

$$
=\frac{2 c}{n}\left(\sum_{k=1}^{n-1} k-\sum_{k=1}^{n / 2-1} k\right)+\Theta(n)
$$

"Split" the recurrence
$=\frac{2 c}{n}\left(\frac{1}{2}(n-1) n-\frac{1}{2}\left(\frac{n}{2}-1\right) \frac{n}{2}\right)+\Theta(n)$ Expand arithmetic series
$=c(n-1)-\frac{c}{2}\left(\frac{n}{2}-1\right)+\Theta(n) \quad$ Multiply it out

Randomized Selection

- Assume $T(n) \leq c n$ for sufficiently large c :

$$
\begin{aligned}
T(n) & \leq c(n-1)-\frac{c}{2}\left(\frac{n}{2}-1\right)+\Theta(n) & & \text { The recurrence so far } \\
& =c n-c-\frac{c n}{4}+\frac{c}{2}+\Theta(n) & & \text { Multiply it out } \\
& =c n-\frac{c n}{4}-\frac{c}{2}+\Theta(n) & & \text { Subtract c/2 } \\
& =c n-\left(\frac{c n}{4}+\frac{c}{2}-\Theta(n)\right) & & \text { Rearrange the arithmetic } \\
& \leq c n \quad \text { (if c is big enough) } & & \text { What we set out to prove }
\end{aligned}
$$

Different Probabilistic Analysis

- Assume each of n ! permutations is equally likely
- Modify earlier indicator variable analysis of quicksort (method 2) to handle this k-selection problem
- What is probability i-th smallest item is compared to j-th smallest item (assume $\mathrm{i}<\mathrm{j})$?
- If k is contained in (i..j)?
- If $\mathrm{k} \leq \mathrm{i}$?
- If $\mathrm{k} \geq \mathrm{j}$?

Now the Probabilities of Comparison Get Smaller

$$
E[X]=E\left[\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{i j}\right]=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E\left[X_{i j}\right]=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \operatorname{Pr}\left\{z_{i} \text { is compared to } z_{j}\right\} .
$$

* Before $\operatorname{Pr}\left\{z_{i}\right.$ is compared to $\left.z_{j}\right\}=\frac{2}{j-i+1}$

Selection, say $\mathrm{i}<\mathrm{j}<\mathrm{k}$

- So now $\quad \operatorname{Pr}\left\{z_{i}\right.$ is compared to $\left.z_{j}\right\}=\frac{2}{k-i+1}$

Case: (i..j) Does Not Contain k

- Case $\mathrm{k} \geq \mathrm{j}$:
- $\Sigma_{(i=1 \text { to } k-1)} \Sigma_{j=i+1 \text { to } k} 2 /(k-i+1)=\Sigma_{i=1 \text { to } k-1}(k-i) 2 /(k-i+1)$

$$
\begin{aligned}
& \left.=\sum_{i=1 \text { to } k-1} 2 i /(i+1) \quad \text { [replace } k \text {-i with } \mathrm{i}\right] \\
& =2 \sum_{i=1 \text { to } k-1} \mathrm{i} /(\mathrm{i}+1) \\
& \leq 2(\mathrm{k}-1)
\end{aligned}
$$

- Case $\mathrm{k} \leq \mathrm{i}$:
- $\Sigma_{(j=k+1 \text { to })} \Sigma_{i=k \text { to }-1} 2 /(j-k+1)=\Sigma_{j=k+1 \text { to } n}(j-k) 2 /(j-k+1)$

$$
=\Sigma_{\mathrm{j}=1 \text { to } n-\mathrm{k}} 2 \mathrm{j} /(\mathrm{j}+1)
$$

[replace j -k with j and change bounds]

$$
\begin{aligned}
& =2 \sum_{j=1} \text { to } n-k j /(j+1) \\
& \geq 2(n-k)
\end{aligned}
$$

- Total for both cases is $\leq 2 n-2$

$$
\begin{aligned}
& \text { Case: (i..j) contains k }
\end{aligned}
$$

- At most 1 interval of size 3 contains k
- $i=k-1, j=k+1$
- At most 2 intervals of size 4 contain k
- $i=k-1, j=k+2$ and $i=k-2, j=k+1$
- In general, at most q-2 intervals of size q contain k
- Thus we get $\Sigma_{(q=3 \text { to } n)}(q-2) 2 / q \leq \Sigma_{(q=3 \text { to n) }} 2=2(n-2)$
- Summing together all cases we see the expected number of comparisons is less than $4 n$

Summary of Randomized Selection

- Works fast: linear expected time.
- Excellent algorithm in practice.
- But, the worst case is very bad: $\Theta\left(n^{2}\right)$.
Q. Is there an algorithm that runs in linear time in the worst case?
A. Yes, due to Blum, Floyd, Pratt, Rivest, and Tarjan [1973].

Idea: Generate a good pivot recursively.

Worst-Case Linear-Time Selection

Select(i, n)

1. Divide the n elements into groups of 5 . Find the median of each 5 -element group by brute force.
2. Recursively Select the median x of the $\lfloor n / 5\rfloor$ group medians to be the pivot.
3. Partition around the pivot x. Let $k=\operatorname{rank}(x)$.
4. if $i=k$ then return x
elseif $i<k$
then recursively Select the i-th smallest element in the lower part

Same as
Rand-
Select
else recursively Select the ($i-k$)-th smallest element in the upper part

Choosing the Pivot

0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	

Choosing the Pivot

1. Divide the n elements into groups of 5 .

Choosing the Pivot

1. Divide the n elements into groups of 5 . Find lesser the median of each 5-element group by rote.

Choosing the Pivot

1. Divide the n elements into groups of 5. Find lesser the median of each 5-element group by rote.
2. Recursively Select the median x of the $\lfloor n / 5\rfloor$ group medians to be the pivot.

Analysis

At least half the group medians are $\leq x$, which is at least $\lfloor\lfloor n / 5\rfloor / 2\rfloor=\lfloor n / 10\rfloor$ group medians.

greater

Analysis

At least half the group medians are $\leq x$, which is at least $\lfloor\lfloor n / 5\rfloor / 2\rfloor=\lfloor n / 10\rfloor$ group medians.

- Therefore, at least $3\lfloor n / 10\rfloor$ elements are $\leq x$.
(Assume all elements are distinct.)
lesser

Analysis

lesser

- Similarly, at least $3\lfloor n / 10\rfloor$ elements are $\geq x$. greater

Analysis

Need "at most" for worst-case runtime

- At least 3Ln/10」 elements are $\leq x$ \Rightarrow at most $n-3\lfloor n / 10\rfloor$ elements are $\geq x$
- At least $3\lfloor n / 10 」$ elements are $\geq x$ \Rightarrow at most $n-3\lfloor n / 10\rfloor$ elements are $\leq x$
- The recursive call to Select in Step 4 is executed recursively on at most $n-3\lfloor n / 10\rfloor$ elements.

Analysis

- Use fact that $\lfloor a / b\rfloor>a / b-1$
- $n-3\lfloor n / 10\rfloor<n-3(n / 10-1) \leq 7 n / 10+3$

$$
[\leq 3 n / 4 \text { if } n \geq 60]
$$

- The recursive call to Select in Step 4 is executed recursively on at most $7 n / 10+3$ elements.

Developing the Recurrence

$T(n) \quad \operatorname{Select}(i, n)$
$\Theta(n)\{$ 1. Divide the n elements into groups of 5 . Find the median of each 5 -element group by rote.
$T(n / 5)\left\{\begin{array}{l}\text { 2. Recursively Select the median } x \text { of the }\lfloor n / 5\rfloor\end{array}\right.$ group medians to be the pivot.
$\Theta(n)$ 3. Partition around the pivot x. Let $k=\operatorname{rank}(x)$.
$T\left(7 n / 10\left\{\begin{array}{l}\text { 4. if } i=k \text { then return } x \\ \text { elseif } i<k \\ \text { then recursively SELECT the } i \text {-th } \\ \text { smallest element in the lower part } \\ \text { else recursively SELECT the }(i-k) \text {-th } \\ \text { smallest element in the upper part }\end{array}\right.\right.$

Solving the Recurrence

$$
T(n)=T\left(\frac{1}{5} n\right)+T\left(\frac{7}{10} n+3\right)+n
$$

Assumption: $T(k) \leq c k$ for all $k<n$

$$
\begin{aligned}
T(n) & \leq c(n / 5)+c(7 n / 10+3)+n \\
& \leq c n / 5+3 c n / 4+n \quad \text { if } n \geq 60 \\
& =19 c n / 20+n \\
& \leq c n-(c n / 20-n) \\
& \leq c n \quad \text { if } c \geq 20 \text { and } n \geq 60
\end{aligned}
$$

Worst-Case Linear-Time Selection

- Intuitively:
* Work at each level is a constant fraction
(19/20) smaller as we go down the tree
-Geometric progression!
*Thus the $\mathrm{O}(\mathrm{n})$ work at the root dominates

Linear-Time Median Selection

Given a "black box" O(n) median algorithm, what can we do?

* i-th order statistic:
-Find median x
-Partition input around x
*if $(i \leq(n+1) / 2)$ recursively find i th element of first half
*else find $(i-(n+1) / 2)$ th element in second half
- $T(n)=T(n / 2)+O(n)=O(n)$

Linear-Time Median Selection

*Worst-case O(n Ig n) QuickSort
-Find median x and partition around it

- Recursively quicksort two halves
* $T(n)=2 T(n / 2)+O(n)=O(n \lg n)$

Conclusion

- In practice, the $\Theta(n)$ median algorithm runs very slowly, because the constant in front of n is large.
- The randomized algorithm is far more practical.

Exercise: Try to divide into groups of 3 or 7.

Basic Data Structures

- Arrays
- Linked lists
- Stacks
- Queues

SelectionSort

Find maximum

SelectionSort

SelectionSort(A[1..n])
for (i = n; i > 0; i--)
index = max_element(A[1..i]) swap(A[i], A[index]);
end
What's the time complexity?
If max_element takes $\Theta(n)$,
selection sort takes $\sum_{i=1}{ }^{n} i=\Theta\left(n^{2}\right)$

HeapSort

- Another Θ ($\mathrm{n} \log \mathrm{n}$) sorting algorithm
- In practice QuickSort wins
- However, the heap data structure and its variants are very useful for many algorithms

