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Outline

Review of last lecture: Order statistics 
and (randomized/deterministic) selection

Heaps and HeapSort
The heap data structure
The HeapSort algorithm
Priority queues

Slides modified from
• http://www.cs.virginia.edu/~luebke/cs332/

http://www.cs.virginia.edu/%7Eluebke/cs332/
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HeapSort

Another Θ(n log n) sorting algorithm
In practice, QuickSort wins
However, the heap data structure and its 
variants are very useful for many other 
algorithms (beyond sorting)
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SelectionSort

Sorted

Find maximum

Sorted

<=

<=

<=

k largest

k+1 largest
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SelectionSort

SelectionSort(A[1..n])
for (i = n; i > 0; i--)

index = max_element(A[1..i])
swap(A[i], A[index]);

end

If max_element takes Θ(n), 
selection sort takes ∑i=1

n i = Θ(n2)

What’s the time complexity?
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Heap

A heap is a data structure that allows us to 
quickly retrieve the largest (or smallest) 
element from a set

It takes time Θ(n) to build the heap

If we need to retrieve largest element, second 
largest, third largest…, in the long run the time 
taken for building heaps will be rewarded
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Idea of HeapSort

HeapSort(A[1..n])
Build a “heap” from A
For i = n down to 1

Retrieve largest element from heap
Put element at end of A
Reduce heap size by one

end
Key: 

1. Build a heap in linear time

2. Retrieve largest element (and make it ready for next retrieval) in O(log n) time
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A heap can be seen as a complete binary tree:

A complete binary tree is a binary tree in which every 
level, except possibly the last, is completely filled and, 
in that level, all nodes are as far to the left as possible.

Heaps

16

14 10

8 7 9 3

2 4 1

Perfect binary tree
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A heap can be seen as a complete binary tree

A tree in which every node holds a key larger 
than or equal to those of its children 

Key Heap Property

16

14 10

8 7 9 3

2 4 1
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Heaps

In practice, heaps are usually realized / 
implemented as arrays:

16

14 10

8 7 9 3

2 4 1

16 14 10 8 7 9 3 2 4 1
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Heaps
To represent a complete binary tree as an array: 

The root node is A[1]
Node i is A[i]
The parent of node i is A[i/2] (note: integer divide, or 
floor)
The left child of node i is A[2i]
The right child of node i is A[2i + 1]

16

14 10

8 7 9 3

2 4 1

16 14 10 8 7 9 3 2 4 1A = =
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Referencing Heap Elements

So…
Parent(i) 
{return i/2;}

Left(i) 
{return 2*i;}

right(i) 
{return 2*i + 1;}
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Heap Height
Definitions:

The height of a node in the tree = the number of 
edges on the longest downward path to a leaf 
The height of a tree = the height of its root

What is the height of an n-element heap? Why?
log2(n). Basic heap operations take at most time 
proportional to the height of the heap

16

14 10

8 7 9 3

2 4 1 h=0

h=0

h=1

h=3

h=2

h=1



14

The Heap Property

Heaps satisfy the heap property:
A[Parent(i)] ≥ A[i] for all nodes i > 1

In other words, the value of a node is at most the 
value of its parent

The value of a node should be greater than or equal 
to both its left and right children

and, inductively, to that all of its descendants

Where is the largest element in a heap stored?
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Are They Heaps?
16

4 10

14 7 9 3

2 8 1

16 4 10 14 7 9 3 2 8 1 =

16

10 14

7 8 9 3

2 4 1

16 10 14 7 8 9 3 2 4 1 =

Violation to heap property: a node has value less than one of its children
How to find that?
How to resolve that?
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Heap Operations: Heapify()

Heapify(): maintain the heap property
Given: a node i in the heap with children l and r
Given: two subtrees rooted at l and r, assumed to be 
heaps
Problem: The subtree rooted at i may violate the 
heap property
Action: let the value of the parent node “sift down” so 
subtree at i satisfies the heap property 

Fix up the relationship between i, l, and r recursively
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Heap Operations: Heapify()
Heapify(A, i)
{ // precondition: subtrees rooted at l and r are heaps

l = Left(i); r = Right(i);
if (l <= heap_size(A) && A[l] > A[i]) 

largest = l;
else

largest = i;
if (r <= heap_size(A) && A[r] > A[largest])

largest = r;
if (largest != i) {

Swap(A, i, largest);
Heapify(A, largest);

}
} // postcondition: subtree rooted at i is a heap

Among A[l], A[i], A[r],
which one is largest?

If violation, fix it.
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Heapify() Example

16

4 10

14 7 9 3

2 8 1

16 4 10 14 7 9 3 2 8 1A =
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Heapify() Example

16

4 10

14 7 9 3

2 8 1

16 10 14 7 9 3 2 8 1A = 4



20

Heapify() Example

16

4 10

14 7 9 3

2 8 1

16 10 7 9 3 2 8 1A = 4 14
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Heapify() Example

16

14 10

4 7 9 3

2 8 1

16 14 10 7 9 3 2 8 1A = 4
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Heapify() Example

16

14 10

4 7 9 3

2 8 1

16 14 10 7 9 3 2 1A = 4 8
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Heapify() Example

16

14 10

8 7 9 3

2 4 1

16 14 10 8 7 9 3 2 1A = 4
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Heapify() Example

16

14 10

8 7 9 3

2 4 1

16 14 10 8 7 9 3 2 4 1A =
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Analyzing Heapify(): Informal

Aside from the recursive call, what is the 
running time of Heapify()?
How many times can Heapify()
recursively call itself?
What is the worst-case running time of 
Heapify() on a heap of size n?
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Analyzing Heapify(): Formal

Fixing up relationships between i, l, and r
takes Θ(1) time
If the heap at i has n elements, how many 
elements can the subtrees at l or r have?
Answer: 2n/3 (worst case: bottom row 1/2 
full)
So time taken by Heapify() is given by
T(n) ≤ T(2n/3) + Θ(1) 
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Analyzing Heapify(): Formal

So we have 
T(n) ≤ T(2n/3) + Θ(1) 

By case 2 of the Master Theorem,
T(n) = O(lg n)

Thus, Heapify() takes logarithmic time
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Heap Operations: BuildHeap()

We can build a heap in a bottom-up manner by 
running Heapify() on successive subarrays

Fact: for array of length n, all elements in range 
A[n/2 + 1 .. n] are heaps (Why?)
So: 

Walk backwards through the array from n/2 to 1, calling 
Heapify() on each node.
Order of processing guarantees that the children of node i
are heaps when i is processed
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Fact: for array of length n, all elements in 
range A[n/2 + 1 .. n] are heaps (Why?)

011
# internal nodes# leavesHeap size

112

235

123
224

0 <= # leaves - # internal nodes <= 1
# of internal nodes = n/2
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BuildHeap()

// given an unsorted array A, make A a heap
BuildHeap(A)
{
heap_size(A) = length(A);
for (i = length[A]/2 downto 1)

Heapify(A, i);
}
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BuildHeap() Example

Work through example
A = {4, 1, 3, 2, 16, 9, 10, 14, 8, 7}

4

1 3

2 16 9 10

14 8 7

4 1 3 2 16 9 10 14 8 7A =



32

4

1 3

2 16 9 10

14 8 7

4 1 3 2 16 9 10 14 8 7A =
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4

1 3

2 16 9 10

14 8 7

4 1 3 2 16 9 10 14 8 7A =
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4

1 3

14 16 9 10

2 8 7

4 1 3 14 16 9 10 2 8 7A =
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4

1 3

14 16 9 10

2 8 7

4 1 3 14 16 9 10 2 8 7A =
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4

1 10

14 16 9 3

2 8 7

4 1 10 14 16 9 3 2 8 7A =
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4

1 10

14 16 9 3

2 8 7

4 1 10 14 16 9 3 2 8 7A =
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4

16 10

14 1 9 3

2 8 7

4 16 10 14 1 9 3 2 8 7A =
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4

16 10

14 7 9 3

2 8 1

4 16 10 14 7 9 3 2 8 1A =
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4

16 10

14 7 9 3

2 8 1

4 16 10 14 7 9 3 2 8 1A =
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16

4 10

14 7 9 3

2 8 1

16 4 10 14 7 9 3 2 8 1A =
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16

14 10

4 7 9 3

2 8 1

16 14 10 4 7 9 3 2 8 1A =
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16

14 10

8 7 9 3

2 4 1

16 14 10 8 7 9 3 2 4 1A =
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Analyzing BuildHeap()

Each call to Heapify() takes O(lg n) time
There are O(n) such calls (specifically, n/2)
Thus the running time is O(n lg n)

Is this a correct asymptotic upper bound?
Is this an asymptotically tight bound?

A tighter bound is O(n) 
How can this be?  Is there a flaw in the above 
reasoning?
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Analyzing BuildHeap(): Tight

To Heapify() a subtree takes O(h) time 
where h is the height of the subtree

h = O(lg m), m = # nodes in subtree
The height of most subtrees is small

Fact: an n-element heap has at most 
n/2h+1 nodes of height h (why?)

Therefore T(n) = O(n)
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Fact: an n-element heap has at most 
n/2h+1 nodes of height h (why?)
n/2 leaf nodes (h = 0): f(0) = n/2
f(1) ≤ (n/2 +1)/2 = n/4
The above fact can be proved using 
induction
Assume f(h) ≤ n/2h+1
f(h+1) ≤ (f(h)+1)/2 ≤ n/2h+2
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Heapsort
Given BuildHeap(),  an in-place sorting 
algorithm is easily constructed:

Maximum element is at A[1]
Discard by swapping with element at A[n]

Decrement heap_size[A]
A[n] now contains correct value

Restore heap property at A[1] by calling 
Heapify()

Repeat, always swapping A[1] for 
A[heap_size(A)]
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Heapsort

Heapsort(A)
{

BuildHeap(A);
for (i = length(A) downto 2)
{

Swap(A[1], A[i]);
heap_size(A) -= 1;
Heapify(A, 1);

}
}
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Heapsort Example

Work through example
A = {4, 1, 3, 2, 16, 9, 10, 14, 8, 7}

4

1 3

2 16 9 10

14 8 7

4 1 3 2 16 9 10 14 8 7A =
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Heapsort Example

First: build a heap
16

14 10

8 7 9 3

2 4 1

16 14 10 8 7 9 3 2 4 1A =
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Heapsort Example

Swap last and first
1

14 10

8 7 9 3

2 4 16

1 14 10 8 7 9 3 2 4 16A =
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Heapsort Example

Last element sorted
1

14 10

8 7 9 3

2 4 16

1 14 10 8 7 9 3 2 4 16A =
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Heapsort Example
Restore heap on remaining unsorted 
elements

14

8 10

4 7 9 3

2 1 16 Heapify

14 8 10 4 7 9 3 2 1 16A =
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Heapsort Example

Repeat: swap new last and first
1

8 10

4 7 9 3

2 14 16

1 8 10 4 7 9 3 2 14 16A =
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Heapsort Example

Restore heap
10

8 9

4 7 1 3

2 14 16

10 8 9 4 7 1 3 2 14 16A =
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Heapsort Example

Repeat
9

8 3

4 7 1 2

10 14 16

9 8 3 4 7 1 2 10 14 16A =
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Heapsort Example

Repeat
8

7 3

4 2 1 9

10 14 16

8 7 3 4 2 1 9 10 14 16A =
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Heapsort Example

Repeat
1

2 3

4 7 8 9

10 14 16

1 2 3 4 7 8 9 10 14 16A =
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Analyzing Heapsort

The call to BuildHeap() takes O(n) 
time 
Each of the n - 1 calls to Heapify()
takes O(lg n) time
Thus the total time taken by HeapSort()
= O(n) + (n - 1) O(lg n)
= O(n) + O(n lg n)
= O(n lg n)
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Comparison
Time 
complexity

Stable? In-place?

MergeSort

QuickSort

HeapSort
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Comparison
Time 
complexity

Stable? In-place?

MergeSort Θ (n log n) Yes No

QuickSort Θ(n log n) 
expected.
Θ(n^2) 
worst case

No Yes

HeapSort Θ (n log n) No Yes
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Priority Queues

HeapSort is a nice algorithm, but in practice 
QuickSort usually wins
The heap data structure, however, is incredibly 
useful for implementing priority queues

A data structure for maintaining a set S of elements, 
each with an associated value or key
Supports the operations Insert(), Maximum(), 
ExtractMax(), ChangeKey()

What might a priority queue be useful for?
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Personal Travel Destination List
You have a list of places that you want to visit, 
each with a preference score
Always visit the place with highest score
Remove a place after visiting it
You frequently add more destinations
You may change score for a place when you 
have more information
What’s the best data structure?
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Priority Queue Operations

Insert(S, x) inserts the element x into set 
S
Maximum(S) returns the element of S 
with the maximum key
ExtractMax(S) removes and returns the 
element of S with the maximum key
ChangeKey(S, i, key) changes the key for 
element i to something else
How could we implement these 
operations using a heap?
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Implementing Priority Queues

HeapMaximum(A)
{

return A[1];
}
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Implementing Priority Queues

HeapExtractMax(A)
{

if (heap_size[A] < 1) { error; }
max = A[1];
A[1] = A[heap_size[A]]
heap_size[A] --;
Heapify(A, 1);
return max;

}
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Heap ExtractMax Example

16

14 10

8 7 9 3

2 4 1

16 14 10 8 7 9 3 2 4 1A =
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Heap ExtractMax Example

Swap first and last, then remove last
1

14 10

8 7 9 3

2 4 16

14 10 8 7 9 3 2 4 16A = 1



70

Heap ExtractMax Example

Heapify
14

8 10

4 7 9 3

2 1

10 7 9 3 2 16A =

16

14 8 4 1
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Implementing Priority Queues

HeapChangeKey(A, i, key){
if (key <= A[i]){ // decrease key

A[i] = key;
heapify(A, i);

} else { // increase key
A[i] = key;
while (i>1 & 

A[parent(i)]<A[i])
swap(A[i], A[parent(i)];

}
}

Sift down

Bubble up
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Heap ChangeKey Example

HeapChangeKey(A, 4, 15)

16

14 10

8 7 9 3

2 4 1

16 14 10 8 7 9 3 2 4 1A =

4th element

Change key value to 15
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Heap ChangeKey Example

HeapChangeKey(A, 4, 15)
16

14 10

15 7 9 3

2 4 1

16 14 10 7 9 3 2 4 1A = 15
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HeapChangeKey Example

HeapChangeKey(A, 4, 15)
16

15 10

14 7 9 3

2 4 1

16 10 7 9 3 2 4 1A = 1415
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Implementing Priority Queues
HeapInsert(A, key) {

heap_size[A] ++;
i = heap_size[A];
A[i] = -∞;
HeapChangeKey(A, i, key);

}
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Heap Insert Example

HeapInsert(A, 17)
16

14 10

8 7 9 3

2 4 1

16 14 10 8 7 9 3 2 4 1A =
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Heap Insert Example

HeapInsert(A, 17)
16

14 10

8 7 9 3

2 4 1

16 14 10 8 7 9 3 2 4 1A =

-∞

-∞

-∞ makes it a valid heap
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Heap Insert Example

HeapInsert(A, 17)
16

14 10

8 7 9 3

2 4 1

16 10 8 9 3 2 4 1A =

17

1714 7

Now call HeapChangeKey



79

Heap Insert Example

HeapInsert(A, 17)
17

16 10

8 14 9 3

2 4 1

17 10 8 9 3 2 4 1A =

7

716 14
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Heapify: Θ(log n)
BuildHeap: Θ(n)
HeapSort: Θ(n log n)

HeapMaximum: Θ(1)
HeapExtractMax: Θ(log n)
HeapChangeKey: Θ(log n)
HeapInsert: Θ(log n)
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Compare: Sorted Array / Linked List

Sort: Θ(n log n)
Afterwards:

arrayMaximum: Θ(1)
arrayExtractMax: Θ(n) or Θ(1)
arrayChangeKey: Θ(n)
arrayInsert: Θ(n)
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