## CS161: Design and Analysis of Algorithms



### Lecture 6 Leonidas Guibas

### Outline

 Review of last lecture: Order statistics and (randomized/deterministic) selection

Heaps and HeapSort
The heap data structure
The HeapSort algorithm
Priority queues

Slides modified from

<u>http://www.cs.virginia.edu/~luebke/cs332/</u>

## HeapSort

Another Θ(n log n) sorting algorithm
In practice, QuickSort wins
However, the heap data structure and its

variants are very useful for many other algorithms (beyond sorting)

### **SelectionSort**



### SelectionSort

SelectionSort(A[1..n]) for (i = n; i > 0; i--) $index = max_element(A[1..i])$ swap(A[i], A[index]); end What's the time complexity? If max element takes  $\Theta(n)$ , selection sort takes  $\sum_{i=1}^{n} i = \Theta(n^2)$ 

### Heap

- A heap is a data structure that allows us to quickly retrieve the largest (or smallest) element from a set
- It takes time  $\Theta(n)$  to build the heap
- If we need to retrieve largest element, second largest, third largest..., in the long run the time taken for building heaps will be rewarded

## Idea of HeapSort

HeapSort(A[1..n]) Build a "heap" from A For i = n down to 1 Retrieve largest element from heap Put element at end of A Reduce heap size by one end

Key:

1. Build a heap in linear time

2. Retrieve largest element (and make it ready for next retrieval) in O(log n) time

Heaps

A heap can be seen as a complete binary tree:



A **complete binary tree** is a binary tree in which every level, except possibly the last, is completely filled and, in that level, all nodes are as far to the left as possible.

## **Key Heap Property**

• A *heap* can be seen as a complete binary tree



 A tree in which every node holds a key larger than or equal to those of its children

Heaps

 In practice, heaps are usually realized / implemented as arrays:



### Heaps

• To represent a complete binary tree as an array:

- The root node is A[1]
- Node i is A[i]
- The parent of node *i* is A[*i*/2] (note: integer divide, or floor)
- The left child of node i is A[2i]
- The right child of node i is A[2i + 1]

3

10

16

14

### **Referencing Heap Elements**

```
• So...
  Parent(i)
    {return \lfloor i/2 \rfloor;}
  Left(i)
    {return 2*i;}
  right(i)
    {return 2*i + 1;}
```

## Heap Height

#### Definitions:

- The height of a node in the tree = the number of edges on the longest downward path to a leaf
- The height of a tree = the height of its root



What is the height of an n-element heap? Why?

 Llog<sub>2</sub>(n). Basic heap operations take at most time proportional to the height of the heap

### **The Heap Property**

- Heaps satisfy the *heap property*:
   A[*Parent*(*i*)] ≥ A[*i*] for all nodes *i* > 1
  - In other words, the value of a node is at most the value of its parent
  - The value of a node should be greater than or equal to both its left and right children
     and, inductively, to that all of its descendants
  - Where is the largest element in a heap stored?



Violation to heap property: a node has value less than one of its children How to find that? How to resolve that?

## Heap Operations: Heapify()

Heapify(): maintain the heap property

- Given: a node *i* in the heap with children *l* and *r*
- Given: two subtrees rooted at I and r, assumed to be heaps
- Problem: The subtree rooted at *i* may violate the heap property
- Action: let the value of the parent node "sift down" so subtree at *i* satisfies the heap property

• Fix up the relationship between *i*, *l*, and *r* recursively

## Heap Operations: Heapify()



















## Analyzing Heapify(): Informal

- Aside from the recursive call, what is the running time of Heapify()?
- How many times can Heapify() recursively call itself?
- What is the worst-case running time of Heapify() on a heap of size n?

# Analyzing Heapify(): Formal

- Fixing up relationships between *i*, *I*, and *r* takes Θ(1) time
- If the heap at i has n elements, how many elements can the subtrees at I or r have?
- Answer: 2n/3 (worst case: bottom row 1/2 full)
- So time taken by Heapify() is given by  $T(n) \le T(2n/3) + \Theta(1)$

## Analyzing Heapify(): Formal

So we have T(n) ≤ T(2n/3) + Θ(1)
By case 2 of the Master Theorem, T(n) = O(lg n)
Thus, Heapify() takes logarithmic time

## Heap Operations: BuildHeap()

 We can build a heap in a bottom-up manner by running Heapify() on successive subarrays

- Fact: for array of length n, all elements in range A[\_n/2] + 1 .. n] are heaps (Why?)
- So:
  - Walk backwards through the array from n/2 to 1, calling Heapify() on each node.
  - Order of processing guarantees that the children of node i are heaps when i is processed

### Fact: for array of length n, all elements in range A[[n/2] + 1 .. n] are heaps (Why?)

| Heap size | # leaves | # internal nodes |
|-----------|----------|------------------|
| 1         | 1        | 0                |
| 2         | 1        | 1                |
| 3         | 2        | 1                |
| 4         | 2        | 2                |
| 5         | 3        | 2                |

 $0 \le \#$  leaves - # internal nodes  $\le 1$ # of internal nodes =  $\lfloor n/2 \rfloor$ 

### BuildHeap()

```
// given an unsorted array A, make A a heap
BuildHeap(A)
{
    heap_size(A) = length(A);
    for (i = [length[A]/2] downto 1)
        Heapify(A, i);
}
```

## BuildHeap() Example


























# Analyzing BuildHeap()

- Each call to Heapify() takes O(lg n) time
- There are O(*n*) such calls (specifically,  $\lfloor n/2 \rfloor$ )
- Thus the running time is O(n lg n)
  - Is this a correct asymptotic upper bound?
  - Is this an asymptotically tight bound?
- A tighter bound is O(n)
  - How can this be? Is there a flaw in the above reasoning?

# Analyzing BuildHeap(): Tight

To Heapify() a subtree takes O(h) time where h is the height of the subtree
h = O(lg m), m = # nodes in subtree
The height of most subtrees is small
Fact: an n-element heap has at most [n/2<sup>h+1</sup>] nodes of height h (why?)

$$T(n) \le \sum_{h=1}^{\log_2 n} \left[ \frac{n}{2^{h+1}} \right] h \le \sum_{h=1}^{\log_2 n} \frac{nh}{2^h} = n \sum_{h=1}^{\log_2 n} \frac{h}{2^h} \le 2n$$
  
• Therefore  $T(n) = O(n)$ 

- Fact: an *n*-element heap has at most [n/2<sup>h+1</sup>] nodes of height *h* (why?)
  [n/2] leaf nodes (h = 0): f(0) = [n/2]
  f(1) ≤ ([n/2]+1)/2 = [n/4]
  The above fact can be proved using induction
- Assume  $f(h) \leq \lceil n/2^{h+1} \rceil$
- $f(h+1) \leq (f(h)+1)/2 \leq \lceil n/2^{h+2} \rceil$

$$T(n) \le \sum_{h=1}^{\log_2 n} \left[ \frac{n}{2^{h+1}} \right] h \le \sum_{h=1}^{\log_2 n} \frac{nh}{2^h} = n \sum_{h=1}^{\log_2 n} \frac{h}{2^h} \le 2n$$

$$\sum_{h=1}^{\log_2 n} \frac{h}{2^h} \le \sum_{h=1}^{\infty} \frac{h}{2^h} = 2$$

Appendix A.8

 $T(n) \leq 2n$ 

#### Heapsort

- Given BuildHeap(), an in-place sorting algorithm is easily constructed:
  - Maximum element is at A[1]
  - Discard by swapping with element at A[n]
    - Decrement heap\_size[A]
    - •A[n] now contains correct value
  - Restore heap property at A[1] by calling
     Heapify()
  - Repeat, always swapping A[1] for A[heap\_size(A)]

#### Heapsort

```
Heapsort(A)
{
     BuildHeap(A);
     for (i = length(A) downto 2)
     {
          Swap(A[1], A[i]);
          heap_size(A) -= 1;
          Heapify(A, 1);
```

}



#### First: build a heap A =

#### Swap last and first





 Restore heap on remaining unsorted elements



#### Repeat: swap new last and first











# **Analyzing Heapsort**

- The call to BuildHeap() takes O(n) time
- Each of the n 1 calls to Heapify() takes O(lg n) time
- Thus the total time taken by HeapSort() =  $O(n) + (n - 1) O(\lg n)$ =  $O(n) + O(n \lg n)$ =  $O(n \lg n)$

#### Comparison

|           | Time<br>complexity | Stable? | In-place? |
|-----------|--------------------|---------|-----------|
| MergeSort |                    |         |           |
| QuickSort |                    |         |           |
| HeapSort  |                    |         |           |

# Comparison

|           | Time<br>complexity                                                                    | Stable? | In-place? |
|-----------|---------------------------------------------------------------------------------------|---------|-----------|
| MergeSort | Θ (n log n)                                                                           | Yes     | No        |
| QuickSort | <ul> <li>Θ(n log n)</li> <li>expected.</li> <li>Θ(n^2)</li> <li>worst case</li> </ul> | No      | Yes       |
| HeapSort  | Θ (n log n)                                                                           | No      | Yes       |

# **Priority Queues**

- HeapSort is a nice algorithm, but in practice QuickSort usually wins
- The heap data structure, however, is incredibly useful for implementing priority queues
  - A data structure for maintaining a set S of elements, each with an associated value or key
  - Supports the operations Insert(), Maximum(), ExtractMax(), ChangeKey()
- What might a priority queue be useful for?

#### **Personal Travel Destination List**

- You have a list of places that you want to visit, each with a preference score
- Always visit the place with highest score
- Remove a place after visiting it
- You frequently add more destinations
- You may change score for a place when you have more information
- What's the best data structure?

















# **Priority Queue Operations**

- Insert(S, x) inserts the element x into set
   S
- Maximum(S) returns the element of S with the maximum key
- ExtractMax(S) removes and returns the element of S with the maximum key
- ChangeKey(S, i, key) changes the key for element i to something else
- How could we implement these operations using a heap?

# **Implementing Priority Queues**

```
HeapMaximum(A)
{
    return A[1];
}
```

## **Implementing Priority Queues**

```
HeapExtractMax(A)
{
    if (heap_size[A] < 1) { error; }
    max = A[1];
    A[1] = A[heap_size[A]]
    heap_size[A] --;
    Heapify(A, 1);
    return max;</pre>
```

}

## Heap ExtractMax Example



#### Heap ExtractMax Example

Swap first and last, then remove last



16

#### Heap ExtractMax Example



# **Implementing Priority Queues**








#### 

## **Implementing Priority Queues**

```
HeapInsert(A, key) {
    heap_size[A] ++;
    i = heap_size[A];
    A[i] = -∞;
    HeapChangeKey(A, i, key);
}
```

### Heap Insert Example

#### HeapInsert(A, 17) A =

### Heap Insert Example

# HeapInsert(A, 17) 10 10 10 3 2 4 1 $-\infty$

 $-\infty$  makes it a valid heap





### Heap Insert Example

#### HeapInsert(A, 17)



Heapify: Θ(log n)
BuildHeap: Θ(n)
HeapSort: Θ(n log n)

HeapMaximum: Θ(1)
HeapExtractMax: Θ(log n)
HeapChangeKey: Θ(log n)
HeapInsert: Θ(log n)

## Compare: Sorted Array / Linked List

Sort: Θ(n log n)
Afterwards:

- arrayMaximum: Θ(1)
  arrayExtractMax: Θ(n) or Θ(1)
  arrayChangeKey: Θ(n)
- arrayInsert: Θ(n)