
CS161:
Design and Analysis of

Algorithms

Lecture 7
Leonidas Guibas

A4907A

1

Outline

Review of last lecture: Heaps and
HeapSort
All sorts we saw take Ω(𝑛𝑛 log 𝑛𝑛) time
Sorting in linear time

Lower bounds for sorting
CountingSort
RadixSort
BucketSort

Slides modified from
• http://www.cs.unc.edu/~plaisted/comp122/00-intro.ppt
• http://school.eecs.wsu.edu/undergraduate/cpts/courses/223 2

http://www.cs.unc.edu/%7Eplaisted/comp122/00-intro.ppt
http://school.eecs.wsu.edu/undergraduate/cpts/courses/223

3

A heap can be seen as a complete binary tree

A tree in which every node holds a key larger
than or equal to those of its children

Heaps

16

14 10

8 7 9 3

2 4 1

4

Heap Operations: Heapify()

Heapify(): maintain the heap property
Given: a node i in the heap with children l and r
Given: two subtrees rooted at l and r, assumed to be
heaps
Problem: The subtree rooted at i may violate the
heap property
Action: let the value of the parent node “sift down” so
subtree at i satisfies the heap property

Fix up the relationship between i, l, and r recursively

5

Heap Operations: BuildHeap()

We can build a heap in a bottom-up manner by
running Heapify() on successive subarrays

Fact: for array of length n, all elements in range
A[n/2 + 1 .. n] are heaps (Why?)
So:

Walk backwards through the array from n/2 to 1, calling
Heapify() on each node.
Order of processing guarantees that the children of node i
are heaps when i is processed

6

Heapsort
Given BuildHeap(), an in-place sorting
algorithm is easily constructed:

Maximum element is at A[1]
Discard by swapping with element at A[n]

Decrement heap_size[A]
A[n] now contains correct value

Restore heap property at A[1] by calling
Heapify()

Repeat, always swapping A[1] for
A[heap_size(A)]

7

Abstract Data Structure:
Priority Queue

Insert(S, x) inserts the element x into set S
Maximum(S) returns the element of S with
the maximum key
ExtractMax(S) removes and returns the
element of S with the maximum key
ChangeKey(S, i, key) changes the key for
element i to something else

All these operations can be implemented
in O(lg n) time using a heap

Comparison Sorting

Sort Worst
Case

Average
Case

Best
Case

Comments

InsertionSort Θ(N2) Θ(N2) Θ(N) Fast for
small N

MergeSort Θ(N log N) Θ(N log N) Θ(N log N) Requires
memory

HeapSort Θ(N log N) Θ(N log N) Θ(N log N) Large
constants

QuickSort Θ(N2) Θ(N log N) Θ(N log N) Small
constants

8

Lower Bound on Sorting

What is the best we can do on comparison based sorting?
Best worst-case sorting algorithm (so far) is O(N log N)

Can we do better?

Can we prove a lower bound on the sorting problem,
independent of the algorithm?

For comparison sorting, no, we cannot do better than O(N log N)
Can show lower bound of Ω(N log N)

A lower bound is something that applies to a whole
class of algorithms, not just a single algorithm

9

Decision Tree Approach
For InsertionSort operating on three elements.

1:2

2:3 1:3

1:3 2:3〈1,2,3〉

〈1,3,2〉 〈3,1,2〉

〈2,1,3〉

〈2,3,1〉 〈3,2,1〉

≤

≤

≤

≤

≤

>

>

>>

Contains 3! = 6 leaves.

Simply unroll all loops for all
possible inputs.

Node i:j means compare
A[i] to A[j].

Leaves show outputs;

No two paths go to same
leaf!

10

Comparison-Based Decision
Trees for Sorting

A comparative decision tree is a binary tree where:
Each internal node is a comparison

It implicitly holds all remaining undecided possibilities (for
future decisions)

The path to each node
represents an already determined sorted prefix of elements
(partial sort info)

Each branch
represents an outcome of a particular comparison

Each leaf
represents a particular final ordering of the original array
elements (everything is decided)

11

A decision tree to sort
three elements {a,b,c}
(assuming no
duplicates)

possible

If a<b:
Root = all open
possibilities

all remaining
open
possibilities If a<c:

possible

Worst-case
evaluation path
for any algorithm

n! leaves
in this tree

Height =
Ω(lg n!)

12

Decision Tree
Execution of sorting algorithm corresponds to tracing
a path from root to leaf.
The tree models all possible execution traces.
At each internal node, a comparison ai ≤ aj is made.

If ai ≤ aj, follow left subtree, else follow right subtree.
When we come to a leaf, a full ordering aπ(1) ≤ a π(2) ≤
… ≤ a π(n) is established.
A correct sorting algorithm must be able to produce
any permutation of its input.

Hence, each of the n! permutations must appear at one or
more of the leaves of the decision tree.

13

Decision Trees for Sorting
The logic of any sorting algorithm that uses
comparisons can be represented by a decision tree

In the worst case, the number of comparisons used by
the algorithm equals the height of the decision tree

In the average case, the number of comparisons is the
mean depth of all leaves

There are N! different orderings of N elements

14

A Lower Bound for Worst Case
Worst case no. of comparisons for a sorting
algorithm is the

length of the longest path from root to any of the
leaves in the decision tree for the algorithm.

which is the height of its decision tree.

A lower bound on the running time of any
comparison sort is given by

a lower bound on the height of all decision trees
in which each permutation appears as a
reachable leaf.

15

Optimal Sort of Three Elements
Any sort of six elements has 5 internal nodes.

1:2

2:3 1:3

1:3 2:3〈1,2,3〉

〈1,3,2〉 〈3,1,2〉

〈2,1,3〉

〈2,3,1〉 〈3,2,1〉

≤

≤

≤

≤

≤

>

>

>>

There must be a worst-case path of length ≥ 3.

16

Lower Bound for
Comparison Sorting

Lemma: A binary tree with L leaves must
have depth at least lg 𝐿𝐿

Any sorting decision tree has N! leaves

Theorem: Any comparison sort must
require at least lg𝑁𝑁! = Θ(𝑁𝑁 lg𝑁𝑁)
comparisons in the worst case

17

Lower Bound for
Comparison Sorting

Theorem: Any comparison sort requires
Ω(N log N) comparisons
Proof (using Stirling’s approximation)

! 2 (/) (1 (1/))
! (/)

log(!) log log (log)
log(!) (log)

N

N

N N N e N
N N e

N N N N e N N
N N N

π= +Θ

>
> − = Θ

∴ = Ω
18

Implications of Lower Bound

Comparison-based sorting cannot be achieved
in less than Ω(n lg n) steps

=> MergeSort, HeapSort are optimal worst-
case asymptotically optimal

=> QuickSort is not optimal, but very efficient in
practice

=> InsertionSort, is sub-optimal, even in practice
19

Non-Comparative Sorts

• Counting sort
• Radix sort
• Bucket sort

20

Integer Sorting

Some input properties allow to eliminate the need for
comparison

Because we can decide the order of the keys some other way
E.g., sorting an employee database by age of employees

Counting Sort (for small integer data)
Given array A[1..N], where 1 ≤ A[i] ≤ M
Create array C of size M, where C[i] is the number of i’s in A
Use C to place elements into new sorted array B
Running time Θ(N+M) = Θ(N) if M = Θ(N)

Non-comparison based

21

Counting Sort: Example

0 3 2 1 3 2 1 2 2 3Input A:

1 2 3 4 5 6 7 8 9 10

(all elements in input between 0 and 3)
Count array C:

1
2
4
3

0

1

2

3

3332222110
10987654321

Output sorted array B:

N=10
M=4

Time = O(N + M)

If (M < N), Time = O(N)

22

Stable vs. Nonstable Sorting

A stable sorting method is one which
preserves the original input order
among duplicates in the output

0 3 2 1 3 2 1 2 2 3

3332222110Output:

Input:

Useful when each data is a struct of form {key, value} and we care
to preserve the ordering of the values

23

Making Counting Sort Stable

0 3 2 1 3 2 1 2 2 3Input A:

1 2 3 4 5 6 7 8 9 10

(all elements in input between 0 and 3)
Count array C:

1
2
4
3

0

1

2

3

N=10
M=4

0

1 1

2 2 2 2

3 3 3
10987654321

3332222110

Output sorted array:

But this algorithm has too much overhead
24

Example

25

Stable Counting Sort

1 CountingSort(A, B, k)
2 for i=1 to k
3 C[i]= 0;
4 for j=1 to n
5 C[A[j]] += 1;
6 for i=2 to k
7 C[i] = C[i] + C[i-1];
8 for j=n downto 1
9 B[C[A[j]]] = A[j];
10 C[A[j]] -= 1;

26

Stable Counting Sort Summary
Counting sort:

Assumption: input is n numbers in the range
1..k
Basic idea:

Count number of elements k ≤ each element i
Use that number to place i in position k of sorted
array

No comparisons! Runs in time O(n + k)
Stable sort
Does not sort in place:

O(n) array to hold sorted output
O(k) array for scratch storage (the counts) 27

From A Different Era

28

Radix Sort

How did IBM made its money originally?
Answer: punched card readers for census
tabulation in early 1900’s.

In particular, a card sorter that could sort
cards into different bins

A card has 72 columns
Each column can be punched in 12 places
Decimal digits use 10 places

Problem: only one column can be sorted on
at a time 29

Radix Sort
Same problem in sorting ordinary decimal
numbers
Intuitively, you might sort on the most
significant digit, then the second msd, etc.
Problem: lots of intermediate piles of cards
(read: scratch arrays) to keep track of
Key idea: sort on the least significant digit
first, use a stable sort

RadixSort(A, d)
for i=1 to d

StableSort(A) on digit I
30

Example

Radix sort is the algorithm used by card-sorting machines

that today may be found only in museums.

input output
329
457
657
839
436
720
355

31

[image: image1.wmf]

Radix sort

is the algorithm used by card

-

sorting machines

that today may be found only in museums.

input

output

32

9

45

7

65

7

83

9

43

6

72

0

35

5

_1459447191.doc

Radix sort is the algorithm used by card-sorting machines that today may be found only in museums.

			input

			

			

			output

			329

			

			

			

			457

			

			

			

			657

			

			

			

			839

			

			

			

			436

			

			

			

			720

			

			

			

			355

			

			

			

Example

Radix sort is the algorithm used by card-sorting machines

that today may be found only in museums.

input output
329 720
457 355
657 436
839 457
436 657
720 329
355 839

32

[image: image1.wmf]

Radix sort

is the algorithm used by card

-

sorting machines

that today may be found only in museums.

input

output

32

9

7

2

0

45

7

3

5

5

65

7

4

3

6

83

9

4

5

7

43

6

6

5

7

72

0

3

2

9

35

5

8

3

9

_1459447159.doc

Radix sort is the algorithm used by card-sorting machines that today may be found only in museums.

			input

			

			

			output

			329

			720

			

			

			457

			355

			

			

			657

			436

			

			

			839

			457

			

			

			436

			657

			

			

			720

			329

			

			

			355

			839

			

			

Example

Radix sort is the algorithm used by card-sorting machines

that today may be found only in museums.

input output
329 720 720
457 355 329
657 436 436
839 457 839
436 657 355
720 329 457
355 839 657

33

[image: image1.wmf]

Radix sort

is the algorithm used by card

-

sorting machines

that today may be found only in museums.

input

output

32

9

7

2

0

7

20

45

7

3

5

5

3

29

65

7

4

3

6

4

36

83

9

4

5

7

8

39

43

6

6

5

7

3

55

72

0

3

2

9

4

57

35

5

8

3

9

6

57

_1459447104.doc

Radix sort is the algorithm used by card-sorting machines that today may be found only in museums.

			input

			

			

			output

			329

			720

			720

			

			457

			355

			329

			

			657

			436

			436

			

			839

			457

			839

			

			436

			657

			355

			

			720

			329

			457

			

			355

			839

			657

			

Example

Radix sort is the algorithm used by card-sorting machines

that today may be found only in museums.

input output
329 720 720 329
457 355 329 355
657 436 436 436
839 457 839 457
436 657 355 657
720 329 457 720
355 839 657 839

34

[image: image1.wmf]

Radix sort

is the algorithm used by card

-

sorting machines

that today may be found only in museums.

input

output

32

9

7

2

0

7

20

329

45

7

3

5

5

3

29

355

65

7

4

3

6

4

36

436

83

9

4

5

7

8

39

457

43

6

6

5

7

3

55

657

72

0

3

2

9

4

57

720

35

5

8

3

9

6

57

839

_1459446622.doc

Radix sort is the algorithm used by card-sorting machines that today may be found only in museums.

			input

			

			

			output

			329

			720

			720

			329

			457

			355

			329

			355

			657

			436

			436

			436

			839

			457

			839

			457

			436

			657

			355

			657

			720

			329

			457

			720

			355

			839

			657

			839

Radix Sort
Can we prove it will work?
Sketch of an inductive argument (induction
on the number of passes):

Assume lower-order digits 1…i-1 are sorted
Show that sorting next digit i leaves array
correctly sorted for digits 1…i

If two digits at position i are different, ordering
numbers by that digit is correct (lower-order digits
irrelevant)
If they are the same, numbers are already sorted on
the lower-order digits. Since we use a stable sort, the
numbers stay in the right order

35

Radix Sort
What sort will we use to sort on digits?
Counting sort is the obvious choice:

Sort n numbers on digits that range from 1..k
Time: O(n + k)

Each pass over n numbers with d digits
takes time O(n+k), so total time O(dn+dk)

When d is constant and k=O(n), this takes
O(n) time

36

Radix Sort

Sort N numbers, each with k bits
E.g, input {4, 1, 0, 10, 5, 6, 1, 8}, 4 bits

4 0100
1 0001
0 0000
10 1010
5 0101
6 0110
1 0001
8 1000

0100
0000
1010
0110
1000
0001
0101
0001

0100
0000
1000
0001
0101
0001
1010
0110

0000
1000
0001
0001
1010
0100
0101
0110

0000 0
0001 1
0001 1
0100 4
0101 5
0110 6
1000 8
1010 10

• Radix sort achieves stable sorting
• To sort each column, use counting sort (O(n))

=> To sort d columns, O(dn) time

lsb msb

37

Radix Sort
Problem: sort 1 million 64-bit numbers

Treat as four-digit radix 216 numbers
Can sort in just four passes with radix sort!

Compares well with typical O(n lg n)
comparison sort

Requires approx lg n = 20 operations per
number being sorted

So why would we ever use anything but
radix sort?

38

Radix Sort Summary

Radix sort:
Assumption: input has n numbers with d digits
ranging from 0 to k
Basic idea:

Sort elements by digit starting with the least significant
first
Use a stable sort (like counting sort) for each stage

Each pass over n numbers with d digits takes
time O(n+k), so total time O(dn+dk)

When d is constant and k=O(n), takes O(n) time
Fast, stable, and simple
Doesn’t sort in place

39

Bucket Sort

Assume N elements of A uniformly distributed over
the range [0,1]
Create M equal-sized buckets over [0,1], s.t., M≤N
Add each element of A into appropriate bucket
Sort each bucket internally

Can use recursion here, or
Can use something like InsertionSort

Return concatentation of buckets
Average case running time Θ(N)

assuming each bucket will contain Θ(1) elements
40

Bucket Example

41

BucketSort (A)

BucketSort(A)
1. n ← length[A]
2. for i ← 1 to n
3. do insert A[i] into list B[nA[i]]
4. for i ← 0 to n – 1
5. do sort list B[i] with insertion sort
6. concatenate the lists B[i]s together in

order
7. return the concatenated lists

Input: A[1..n], where 0 ≤ A[i] < 1 for all i.
Auxiliary array: B[0..n – 1] of linked lists, each list initially empty.

buckets = # elements
42

Why does it work?

Left as an exercise.

(Prove that any two elements land up in the right order
regardless of all the others).

BucketSort: Correctness

43

[image: image1.wmf]

Why does it work?

Left as an exercise

.

(Prove that any two

elements land up in the right order

regardless of all the others).

_1459448168.doc

Why does it work?

Left as an exercise.

(Prove that any two elements land up in the right order regardless of all the others).

Analysis

Relies on no bucket getting too many values.
All lines except insertion sorting in line 5 take
O(n) altogether.
Intuitively, if each bucket gets a constant [O(1)]
number of elements, it takes O(1) time to sort
each bucket ⇒ O(n) sort time for all buckets.
We “expect” each bucket to have few elements,
if elements are evenly distributed.
But we need to do a careful analysis.

44

Analysis – Contd.
RV ni = no. of elements placed in bucket
B[i].
Insertion sort runs in quadratic time. Hence, time
for bucket sort is:

∑

∑

∑

∑

−

=

−

=

−

=

−

=

=+Θ=

+Θ=









+Θ=

+Θ=

1

0

2

1

0

2

1

0

2

1

0

2

)][][(])[()(

n)expectatio oflinearity (by)]([)(

)()()]([

have wen,expectatio
oflinearity using and sidesboth of nsexpectatio Taking

)()()(

n

i
i

n

i
i

n

i
i

n

i
i

XaEaXEnEOn

nOEn

nOnEnTE

nOnnT

(8.1)

45

Analysis – Contd.

Claim: E[ni
2] = 2 – 1/n.

Proof:
Define indicator random variables.

Xij = I{A[j] falls in bucket i}
Pr{A[j] falls in bucket i} = 1/n.

ni = ∑
=

n

j
ijX

1

(8.2)

46

Analysis – Contd.

∑ ∑∑

∑ ∑ ∑

∑∑

∑

≤≤
≠
≤≤=

= ≤≤
≠
≤≤

= =

=

+=














+=









=




















=

nj
kj

nk
ikij

n

j
ij

n

j nj
kj

nk
ikijij

ik

n

j

n

k
ij

n

j
iji

XXEXE

XXX

XXE

XEnE

1 11

2

1 1 1

2

1 1

2

1

2

n.expectatio oflinearity by ,][][

E

][

(8.3)

47

Analysis – Contd.

2

2

22

1 11

][][][
variables.

 randomt independen are and , Since
:for][

1

11110

}bucket in falls][Pr{1

}bucket in fallt doesn'][Pr{0][

nnn

XEXEXXE

XXkj
kjXXE

n

nn

ijA

ijAXE

ikijikij

ikij

ikij

ij

=⋅=

=⇒

≠

≠

=

⋅+





 −⋅=

⋅

+⋅=

48

Analysis – Contd.

)(
)()(

)/12()()]([

.12

11

1)1(1

11][

1

0

2

1 1 1
2

2

n
nOn

nOnnTE

n

n
n

n
nn

n
n

nn
nE

n

i

n

j nj
jk

nk
i

Θ=
+Θ=

−+Θ=

−=

−
+=

⋅−+⋅=

+=

∑

∑ ∑ ∑

−

=

= ≤≤
≠
≤≤

Substituting (8.2) in (8.1), we have,

(8.3) is hence,

49

Non-Comparative Sorts:
Summary

It is possible to sort without comparisons by
“looking inside” the keys and exploiting that
structure
Sometimes that’s the only way: sorting
strings
Numbers also have digit representations

CountingSort
RadixSort

Or we use digits to sort numbers into
buckets

BucketSort
50

	CS161:�Design and Analysis of Algorithms�����Lecture 7�Leonidas Guibas
	Outline
	Heaps
	Heap Operations: Heapify()
	Heap Operations: BuildHeap()
	Heapsort
	Abstract Data Structure:�Priority Queue
	Comparison Sorting
	Lower Bound on Sorting
	Decision Tree Approach
	Comparison-Based Decision Trees for Sorting
	Slide Number 12
	Decision Tree
	Decision Trees for Sorting
	A Lower Bound for Worst Case
	Optimal Sort of Three Elements
	Lower Bound for�Comparison Sorting
	Lower Bound for�Comparison Sorting
	Implications of Lower Bound
	Non-Comparative Sorts
	Integer Sorting
	Counting Sort: Example
	Stable vs. Nonstable Sorting
	Making Counting Sort Stable
	Example
	Stable Counting Sort
	Stable Counting Sort Summary
	From A Different Era
	Radix Sort
	Radix Sort
	Example
	Example
	Example
	Example
	Radix Sort
	Radix Sort
	Radix Sort
	Radix Sort
	Radix Sort Summary
	Bucket Sort
	Bucket Example
	BucketSort (A)
	BucketSort: Correctness
	Analysis
	Analysis – Contd.
	Analysis – Contd.
	Analysis – Contd.
	Analysis – Contd.
	Analysis – Contd.
	Non-Comparative Sorts: Summary

