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Outline

Review of last lecture: Heaps and 
HeapSort
All sorts we saw take Ω(𝑛𝑛 log 𝑛𝑛) time
Sorting in linear time

Lower bounds for sorting
CountingSort
RadixSort
BucketSort

Slides modified from
• http://www.cs.unc.edu/~plaisted/comp122/00-intro.ppt
• http://school.eecs.wsu.edu/undergraduate/cpts/courses/223 2
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A heap can be seen as a complete binary tree

A tree in which every node holds a key larger 
than or equal to those of its children 

Heaps
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Heap Operations: Heapify()

Heapify(): maintain the heap property
Given: a node i in the heap with children l and r
Given: two subtrees rooted at l and r, assumed to be 
heaps
Problem: The subtree rooted at i may violate the 
heap property
Action: let the value of the parent node “sift down” so 
subtree at i satisfies the heap property 

Fix up the relationship between i, l, and r recursively
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Heap Operations: BuildHeap()

We can build a heap in a bottom-up manner by 
running Heapify() on successive subarrays

Fact: for array of length n, all elements in range 
A[n/2 + 1 .. n] are heaps (Why?)
So: 

Walk backwards through the array from n/2 to 1, calling 
Heapify() on each node.
Order of processing guarantees that the children of node i
are heaps when i is processed
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Heapsort
Given BuildHeap(),  an in-place sorting 
algorithm is easily constructed:

Maximum element is at A[1]
Discard by swapping with element at A[n]

Decrement heap_size[A]
A[n] now contains correct value

Restore heap property at A[1] by calling 
Heapify()

Repeat, always swapping A[1] for 
A[heap_size(A)]
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Abstract Data Structure:
Priority Queue

Insert(S, x) inserts the element x into set S
Maximum(S) returns the element of S with 
the maximum key
ExtractMax(S) removes and returns the 
element of S with the maximum key
ChangeKey(S, i, key) changes the key for 
element i to something else

All these operations can be implemented 
in O(lg n) time using a heap



Comparison Sorting

Sort Worst
Case

Average
Case

Best
Case

Comments

InsertionSort Θ(N2) Θ(N2) Θ(N) Fast for
small N

MergeSort Θ(N log N) Θ(N log N) Θ(N log N) Requires 
memory

HeapSort Θ(N log N) Θ(N log N) Θ(N log N) Large 
constants

QuickSort Θ(N2) Θ(N log N) Θ(N log N) Small 
constants
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Lower Bound on Sorting

What is the best we can do on comparison based sorting?
Best worst-case sorting algorithm (so far) is O(N log N)

Can we do better?

Can we prove a lower bound on the sorting problem, 
independent of the algorithm?

For comparison sorting, no, we cannot do better than O(N log N)
Can show lower bound of Ω(N log N)

A lower bound is something that applies to a whole
class of algorithms, not just a single algorithm
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Decision Tree Approach
For InsertionSort operating on three elements.

1:2

2:3 1:3

1:3 2:3〈1,2,3〉

〈1,3,2〉 〈3,1,2〉

〈2,1,3〉

〈2,3,1〉 〈3,2,1〉

≤

≤

≤

≤

≤

>

>

>>

Contains 3! = 6 leaves.

Simply unroll all loops for all 
possible inputs.

Node i:j means compare 
A[i] to A[j].

Leaves show outputs;

No two paths go to same 
leaf!

10



Comparison-Based Decision 
Trees for Sorting

A comparative decision tree is a binary tree where:
Each internal node is a comparison

It implicitly holds all remaining undecided possibilities (for 
future decisions)

The path to each node
represents an already determined sorted prefix of elements 
(partial sort info)

Each branch 
represents an outcome of a particular comparison

Each leaf
represents a particular final ordering of the original array 
elements (everything is decided)
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A decision tree to sort 
three elements {a,b,c}
(assuming no 
duplicates)

possible

If a<b:
Root = all open 
possibilities

all remaining 
open 
possibilities If a<c:

possible

Worst-case
evaluation path 
for any algorithm

n! leaves
in this tree

Height = 
Ω(lg n!)
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Decision Tree
Execution of sorting algorithm corresponds to tracing 
a path from root to leaf.
The tree models all possible execution traces.
At each internal node, a comparison ai ≤ aj is made.

If ai ≤ aj, follow left subtree, else follow right subtree.
When we come to a leaf, a full ordering aπ(1) ≤ a π(2) ≤
… ≤ a π(n) is established.
A correct sorting algorithm must be able to produce 
any permutation of its input.

Hence, each of the n! permutations must appear at one or 
more of the leaves of the decision tree.
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Decision Trees for Sorting
The logic of any sorting algorithm that uses 
comparisons can be represented by a decision tree

In the worst case, the number of comparisons used by 
the algorithm equals the height of the decision tree

In the average case, the number of comparisons is the 
mean depth of all leaves

There are N! different orderings of N elements
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A Lower Bound for Worst Case
Worst case no. of comparisons for a sorting 
algorithm is the

length of the longest path from root to any of the 
leaves in the decision tree for the algorithm.

which is the height of its decision tree.

A lower bound on the running time of any 
comparison sort is given by

a lower bound on the height of all decision trees
in which each permutation appears as a 
reachable leaf.
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Optimal Sort of Three Elements
Any sort of six elements has 5 internal nodes.

1:2

2:3 1:3

1:3 2:3〈1,2,3〉

〈1,3,2〉 〈3,1,2〉

〈2,1,3〉

〈2,3,1〉 〈3,2,1〉

≤

≤

≤

≤

≤

>

>

>>

There must be a worst-case path of length ≥ 3.
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Lower Bound for
Comparison Sorting

Lemma: A binary tree with L leaves must 
have depth at least lg 𝐿𝐿

Any sorting decision tree has N! leaves 

Theorem: Any comparison sort must 
require at least  lg𝑁𝑁! = Θ(𝑁𝑁 lg𝑁𝑁)
comparisons in the worst case
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Lower Bound for
Comparison Sorting

Theorem: Any comparison sort requires 
Ω(N log N) comparisons
Proof (using Stirling’s approximation)

! 2 ( / ) (1 (1/ ))
! ( / )

log( !) log log ( log )
log( !) ( log )

N

N

N N N e N
N N e

N N N N e N N
N N N

π= +Θ

>
> − = Θ

∴ = Ω
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Implications of Lower Bound

Comparison-based sorting cannot be achieved 
in less than Ω(n lg n) steps

=> MergeSort, HeapSort are optimal worst-
case asymptotically optimal

=> QuickSort is not optimal, but very efficient in 
practice

=> InsertionSort, is sub-optimal, even in practice
19



Non-Comparative Sorts

• Counting sort
• Radix sort
• Bucket sort
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Integer Sorting

Some input properties allow to eliminate the need for 
comparison

Because we can decide the order of the keys some other way
E.g., sorting an employee database by age of employees

Counting Sort (for small integer data)
Given array A[1..N], where 1 ≤ A[i] ≤ M
Create array C of size M, where C[i] is the number of i’s in A
Use C to place elements into new sorted array B
Running time Θ(N+M) = Θ(N) if M = Θ(N)

Non-comparison based
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Counting Sort: Example

0 3 2 1 3 2 1 2 2 3Input A:

1 2 3 4 5 6 7 8 9 10

(all elements in input between 0 and 3)
Count array C:

1
2
4
3

0

1

2

3

3332222110
10987654321

Output sorted array B:

N=10
M=4

Time = O(N + M)

If (M < N),  Time = O(N)
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Stable vs. Nonstable Sorting

A stable sorting method is one which 
preserves the original input order 
among duplicates in the output

0 3 2 1 3 2 1 2 2 3

3332222110Output:

Input:

Useful when each data is a struct of form {key, value} and we care
to preserve the ordering of the values
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Making Counting Sort Stable

0 3 2 1 3 2 1 2 2 3Input A:

1 2 3 4 5 6 7 8 9 10

(all elements in input between 0 and 3)
Count array C:

1
2
4
3

0

1

2

3

N=10
M=4

0

1 1

2 2 2 2

3 3 3
10987654321

3332222110

Output sorted array:

But this algorithm has too much overhead
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Example
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Stable Counting Sort

1 CountingSort(A, B, k)
2 for i=1 to k
3 C[i]= 0;
4 for j=1 to n
5 C[A[j]] += 1;
6 for i=2 to k
7 C[i] = C[i] + C[i-1];
8 for j=n downto 1
9 B[C[A[j]]] = A[j];
10 C[A[j]] -= 1;
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Stable Counting Sort Summary 
Counting sort: 

Assumption: input is n numbers in the range 
1..k
Basic idea: 

Count number of elements k ≤ each element i
Use that number to place i in position k of sorted 
array 

No comparisons! Runs in time O(n + k)
Stable sort
Does not sort in place:

O(n) array to hold sorted output
O(k) array for scratch storage (the counts) 27



From A Different Era
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Radix Sort

How did IBM made its money originally?
Answer: punched card readers for census 
tabulation in early 1900’s.  

In particular, a card sorter that could sort 
cards into different bins

A card has 72 columns
Each column can be punched in 12 places
Decimal digits use 10 places

Problem: only one column can be sorted on 
at a time 29



Radix Sort
Same problem in sorting ordinary decimal 
numbers
Intuitively, you might sort on the most 
significant digit, then the second msd, etc.
Problem: lots of intermediate piles of cards 
(read: scratch arrays) to keep track of
Key idea: sort on the least significant digit 
first, use a stable sort

RadixSort(A, d)
for i=1 to d

StableSort(A) on digit I
30



Example
 
 

Radix sort is the algorithm used by card-sorting machines 

that today may be found only in museums. 

 
 

input   output 
329    
457    
657    
839    
436    
720    
355    

  

31




[image: image1.wmf] 


 


Radix sort 


is the algorithm used by card


-


sorting machines 


that today may be found only in museums.


 


 


 


input


 


 


 


output


 


32


9


 


 


 


 


45


7


 


 


 


 


65


7


 


 


 


 


83


9


 


 


 


 


43


6


 


 


 


 


72


0


 


 


 


 


35


5


 


 


 


 


 




_1459447191.doc

Radix sort is the algorithm used by card-sorting machines that today may be found only in museums.
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Example
 
 

Radix sort is the algorithm used by card-sorting machines 

that today may be found only in museums. 

 
 

input   output 
329 720   
457 355   
657 436   
839 457   
436 657   
720 329   
355 839   
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Radix sort is the algorithm used by card-sorting machines that today may be found only in museums.
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Example
 
 

Radix sort is the algorithm used by card-sorting machines 

that today may be found only in museums. 

 
 

input   output 
329 720 720  
457 355 329  
657 436 436  
839 457 839  
436 657 355  
720 329 457  
355 839 657  
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Radix sort is the algorithm used by card-sorting machines that today may be found only in museums.
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Example
 
 

Radix sort is the algorithm used by card-sorting machines 

that today may be found only in museums. 

 
 

input   output 
329 720 720 329 
457 355 329 355 
657 436 436 436 
839 457 839 457 
436 657 355 657 
720 329 457 720 
355 839 657 839 
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Radix sort is the algorithm used by card-sorting machines that today may be found only in museums.



			input


			


			


			output





			329


			720


			720


			329





			457


			355


			329


			355





			657


			436


			436


			436





			839


			457


			839


			457





			436


			657


			355


			657





			720


			329


			457


			720





			355


			839


			657


			839












Radix Sort
Can we prove it will work?
Sketch of an inductive argument (induction 
on the number of passes):

Assume lower-order digits 1…i-1 are sorted
Show that sorting next digit i leaves array 
correctly sorted for digits 1…i

If two digits at position i are different, ordering 
numbers by that digit is correct (lower-order digits 
irrelevant)
If they are the same, numbers are already sorted on 
the lower-order digits.  Since we use a stable sort, the 
numbers stay in the right order
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Radix Sort
What sort will we use to sort on digits?
Counting sort is the obvious choice: 

Sort n numbers on digits that range from 1..k
Time: O(n + k)

Each pass over n numbers with d digits 
takes time O(n+k), so total time O(dn+dk)

When d is constant and k=O(n), this takes 
O(n) time
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Radix Sort

Sort N numbers, each with k bits
E.g, input {4, 1, 0, 10, 5, 6, 1, 8}, 4 bits

4 0100
1 0001
0 0000
10 1010
5 0101
6 0110
1 0001
8 1000

0100
0000
1010
0110
1000
0001
0101
0001

0100
0000
1000
0001
0101
0001
1010
0110

0000
1000
0001
0001
1010
0100
0101
0110

0000 0
0001 1
0001 1
0100 4
0101 5
0110 6
1000 8
1010 10

• Radix sort achieves stable sorting 
• To sort each column, use counting sort (O(n))

=> To sort d columns, O(dn) time

lsb msb

37



Radix Sort
Problem: sort 1 million 64-bit numbers

Treat as four-digit radix 216 numbers
Can sort in just four passes with radix sort!

Compares well with typical O(n lg n) 
comparison sort 

Requires approx lg n = 20 operations per 
number being sorted

So why would we ever use anything but 
radix sort?
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Radix Sort Summary

Radix sort:
Assumption: input has n numbers with d digits 
ranging from 0 to k
Basic idea: 

Sort elements by digit starting with the least significant 
first
Use a stable sort (like counting sort) for each stage

Each pass over n numbers with d digits takes 
time O(n+k), so total time O(dn+dk)

When d is constant and k=O(n), takes O(n) time
Fast, stable, and simple
Doesn’t sort in place
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Bucket Sort

Assume N elements of A uniformly distributed over 
the range [0,1]
Create M equal-sized buckets over [0,1], s.t., M≤N
Add each element of A into appropriate bucket
Sort each bucket internally 

Can use recursion here, or
Can use something like InsertionSort

Return concatentation of buckets
Average case running time Θ(N)

assuming each bucket will contain Θ(1) elements
40



Bucket Example

41



BucketSort (A)

BucketSort(A)
1.  n ← length[A]
2.  for i ← 1 to n
3.        do insert A[i] into list B[ nA[i] ]
4.  for i ← 0 to n – 1 
5.        do sort list B[i] with insertion sort
6. concatenate the lists B[i]s together in 

order
7. return the concatenated lists

Input: A[1..n], where 0 ≤ A[i] < 1 for all i.
Auxiliary array: B[0..n – 1] of linked lists, each list initially empty.

# buckets = # elements
42



 
 

Why does it work? 
 

Left as an exercise. 
 

(Prove that any two elements land up in the right order 
regardless of all the others).   

BucketSort: Correctness

43
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Analysis

Relies on no bucket getting too many values.
All lines except insertion sorting in line 5 take 
O(n) altogether.
Intuitively, if each bucket gets a constant [O(1)] 
number of elements, it takes O(1) time to sort 
each bucket ⇒ O(n) sort time for all buckets.
We “expect” each bucket to have few elements, 
if elements are evenly distributed.
But we need to do a careful analysis.
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Analysis – Contd.
RV  ni = no. of elements placed in bucket 
B[i].
Insertion sort runs in quadratic time. Hence, time 
for bucket sort is:
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Analysis – Contd.

Claim: E[ni
2] = 2 – 1/n.

Proof:
Define indicator random variables.

Xij = I{A[j] falls in bucket i}
Pr{A[j] falls in bucket i} = 1/n.

ni = ∑
=

n

j
ijX

1

(8.2)
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Analysis – Contd.
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Analysis – Contd.
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Analysis – Contd.
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Substituting (8.2) in (8.1), we have,

(8.3)  is hence,
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Non-Comparative Sorts: 
Summary

It is possible to sort without comparisons by 
“looking inside” the keys and exploiting that 
structure
Sometimes that’s the only way: sorting 
strings
Numbers also have digit representations

CountingSort
RadixSort

Or we use digits to sort numbers into 
buckets

BucketSort
50
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