CS161:
 Design and Analysis of Algorithms

Outline

*Review of last lecture: Heaps and HeapSort

- All sorts we saw take $\Omega(n \log n)$ time
- Sorting in linear time
- Lower bounds for sorting
-CountingSort
-RadixSort
-BucketSort

Heaps

- A heap can be seen as a complete binary tree

- A tree in which every node holds a key larger than or equal to those of its children

Heap Operations: Heapify()

- Heapify (): maintain the heap property
- Given: a node i in the heap with children / and r
- Given: two subtrees rooted at / and r, assumed to be heaps
- Problem: The subtree rooted at i may violate the heap property
- Action: let the value of the parent node "sift down" so subtree at i satisfies the heap property
* Fix up the relationship between i, l, and r recursively

Heap Operations: BuildHeap()

* We can build a heap in a bottom-up manner by running Heapify () on successive subarrays
- Fact: for array of length n, all elements in range $\mathrm{A}[$ n $\mathrm{n} / 2\rfloor+1$.. n$]$ are heaps (Why?)
- So:
- Walk backwards through the array from n/2 to 1, calling Heapify () on each node.
* Order of processing guarantees that the children of node i are heaps when i is processed

Heapsort

- Given BuildHeap(), an in-place sorting algorithm is easily constructed:
- Maximum element is at A[1]
-Discard by swapping with element at A[n]
-Decrement heap_size[A]
-A[n] now contains correct value
- Restore heap property at A[1] by calling Heapify()
-Repeat, always swapping A[1] for A[heap_size(A)]

Abstract Data Structure:

Priority Queue

* Insert(S, x) inserts the element x into set S
- Maximum(S) returns the element of S with the maximum key
* ExtractMax(S) removes and returns the element of S with the maximum key
- ChangeKey(S, i, key) changes the key for element i to something else
- All these operations can be implemented in $\mathrm{O}(\lg \mathrm{n})$ time using a heap

Comparison Sorting

Sort	Worst Case	Average Case	Best Case	Comments
InsertionSort	$\Theta\left(N^{2}\right)$	$\Theta\left(N^{2}\right)$	$\Theta(N)$	Fast for small N
MergeSort	$\Theta(N \log N)$	$\Theta(N \log N)$	$\Theta(N \log N)$	Requires memory
HeapSort	$\Theta(N \log N)$	$\Theta(N \log N)$	$\Theta(N \log N)$	Large constants
QuickSort	$\Theta\left(N^{2}\right)$	$\Theta(N \log N)$	$\Theta(N \log N)$	Small constants

Lower Bound on Sorting

What is the best we can do on comparison based sorting?

- Best worst-case sorting algorithm (so far) is $\mathrm{O}(\mathrm{N} \log \mathrm{N})$
- Can we do better?
- Can we prove a lower bound on the sorting problem, independent of the algorithm?
- For comparison sorting, no, we cannot do better than $\mathrm{O}(\mathrm{N} \log \mathrm{N})$
- Can show lower bound of $\Omega(\mathrm{N} \log \mathrm{N})$

A lower bound is something that applies to a whole class of algorithms, not just a single algorithm

Decision Tree Approach

For InsertionSort operating on three elements.

Simply unroll all loops for all possible inputs.
Node i:j means compare $A[1]$ to $A[J]$.

Leaves show outputs;
No two paths go to same leaf!

Contains 3! = 6 leaves.

Comparison-Based Decision Trees for Sorting

A comparative decision tree is a binary tree where:

- Each internal node is a comparison
* It implicitly holds all remaining undecided possibilities (for future decisions)
* The path to each node
- represents an already determined sorted prefix of elements (partial sort info)
- Each branch
- represents an outcome of a particular comparison
- Each leaf
- represents a particular final ordering of the original array elements (everything is decided)
Root = all open
possibilities

$$
\square
$$

A decision tree to sort (assuming no duplicates)

Decision Tree

- Execution of sorting algorithm corresponds to tracing a path from root to leaf.
- The tree models all possible execution traces.
- At each internal node, a comparison $a_{i} \leq a_{j}$ is made.
- If $a_{i} \leq a_{j}$, follow left subtree, else follow right subtree.
- When we come to a leaf, a full ordering $a_{\pi(1)} \leq a_{\pi(2)} \leq$ $\ldots \leq a_{\pi(n)}$ is established.
- A correct sorting algorithm must be able to produce any permutation of its input.
- Hence, each of the n ! permutations must appear at one or more of the leaves of the decision tree.

Decision Trees for Sorting

- The logic of any sorting algorithm that uses comparisons can be represented by a decision tree
- In the worst case, the number of comparisons used by the algorithm equals the height of the decision tree
- In the average case, the number of comparisons is the mean depth of all leaves
- There are N ! different orderings of N elements

A Lower Bound for Worst Case

-Worst case no. of comparisons for a sorting algorithm is the
*length of the longest path from root to any of the leaves in the decision tree for the algorithm.
*which is the height of its decision tree.

- A lower bound on the running time of any comparison sort is given by
- a lower bound on the height of all decision trees in which each permutation appears as a reachable leaf.

Optimal Sort of Three Elements

Any sort of six elements has 5 internal nodes.

There must be a worst-case path of length ≥ 3.

Lower Bound for Comparison Sorting

Lemma: A binary tree with L leaves must have depth at least $\lceil\lg L\rceil$

Any sorting decision tree has N ! leaves

Theorem: Any comparison sort must require at least $\lceil\lg N!\rceil=\Theta(N \lg N)$ comparisons in the worst case

Lower Bound for Comparison Sorting

Theorem: Any comparison sort requires $\Omega(N \log N)$ comparisons

* Proof (using Stirling's approximation)

$$
\begin{aligned}
& N!=\sqrt{2 \pi N}(N / e)^{N}(1+\Theta(1 / N)) \\
& N!>(N / e)^{N} \\
& \log (N!)>N \log N-N \log e=\Theta(N \log N) \\
& \therefore \log (N!)=\Omega(N \log N)
\end{aligned}
$$

Implications of Lower Bound

- Comparison-based sorting cannot be achieved in less than $\Omega(\mathrm{n} \lg \mathrm{n})$ steps
=> MergeSort, HeapSort are optimal worstcase asymptotically optimal
=> QuickSort is not optimal, but very efficient in practice
=> InsertionSort, is sub-optimal, even in practice

Non-Comparative Sorts

- Counting sort
- Radix sort
- Bucket sort

Integer Sorting

- Some input properties allow to eliminate the need for comparison
- Because we can decide the order of the keys some other way
- E.g., sorting an employee database by age of employees
- Counting Sort (for small integer data)
- Given array A[1..N], where $1 \leq A[i] \leq M$
- Create array C of size M, where $C[i]$ is the number of i 's in A
- Use C to place elements into new sorted array B
- Running time $\Theta(N+M)=\Theta(N)$ if $M=\Theta(N)$

Counting Sort: Example

Input A:

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 3 | 2 | 1 | 3 | 2 | 1 | 2 | 2 | 3 | | $\mathrm{~N}=10$

(all elements in input between 0 and 3)
Count array C:

Output sorted array B:

1	2	3	4	5	6	7	8	9	10
0	1	1	2	2	2	2	3	3	3
Time $=\mathrm{O}(\mathrm{N}+\mathrm{M})$									

Stable vs. Nonstable Sorting

- A stable sorting method is one which preserves the original input order among duplicates in the output

Making Counting Sort Stable

Input A:	1	2	3	4	5	6	7	8	9	10	$\mathrm{N}=10$
	0	3	2	1	3	2	1	2	2	3	
	-	1		1		1	1	1	-	1	$\mathrm{M}=4$

(all elements in input betwéen 0 and 3)
Count array C:

But this algorithm has too much overhead

Example

Stable Counting Sort

1	CountingSort (A, B, k)
2	for $i=1$ to k
3	$C[i]=0 ;$
4	for $j=1$ to n
5	$C[A[j]]+=1 ;$
6	for $i=2$ to k
7	$C[i]=C[i]+C[i-1] ;$
8	for $j=n$ downto 1
9	$B[C[A[j]]]=A[j] ;$
10	$C[A[j]]=1 ;$

Stable Counting Sort Summary

Counting sort:

* Assumption: input is n numbers in the range 1..k
- Basic idea:
*Count number of elements $k \leq$ each element i
*Use that number to place i in position k of sorted array
* No comparisons! Runs in time $\mathrm{O}(\mathrm{n}+\mathrm{k})$
- Stable sort
- Does not sort in place:
-O(n) array to hold sorted output
-O(k) array for scratch storage (the counts)

From A Different Era

Radix Sort

- How did IBM made its money originally?
- Answer: punched card readers for census tabulation in early 1900's.
- In particular, a card sorter that could sort cards into different bins
- A card has 72 columns
- Each column can be punched in 12 places
- Decimal digits use 10 places
- Problem: only one column can be sorted on at a time

Radix Sort

- Same problem in sorting ordinary decimal numbers
- Intuitively, you might sort on the most significant digit, then the second msd, etc.
- Problem: lots of intermediate piles of cards (read: scratch arrays) to keep track of
- Key idea: sort on the least significant digit first, use a stable sort

```
RadixSort(A, d)
    for \(i=1\) to d
        StableSort(A) on digit I
```


Example

Radix sort is the algorithm used by card-sorting machines that today may be found only in museums.

329
457
657
839
436
720
355

Example

Radix sort is the algorithm used by card-sorting machines that today may be found only in museums.

input		output
329	720	
457	355	
657	436	
839	457	
436	657	
720	329	
355	839	

Example

Radix sort is the algorithm used by card-sorting machines that today may be found only in museums.

input			output
329	720	$\mathbf{7 2 0}$	
457	355	$\mathbf{3 2 9}$	
657	436	$\mathbf{4 3 6}$	
839	457	$\mathbf{8 3 9}$	
436	657	355	
720	329	$\mathbf{4 5 7}$	
355	839	$\mathbf{6 5 7}$	

Example

Radix sort is the algorithm used by card-sorting machines that today may be found only in museums.

input			output
329	720	$\mathbf{7 2 0}$	329
$\mathbf{4 5 7}$	355	$\mathbf{3 2 9}$	355
657	436	$\mathbf{4 3 6}$	436
839	457	$\mathbf{8 3 9}$	457
$\mathbf{4 3 6}$	657	$\mathbf{3 5 5}$	657
720	329	$\mathbf{4 5 7}$	720
$\mathbf{3 5 5}$	839	$\mathbf{6 5 7}$	839

Radix Sort

-Can we prove it will work?
-Sketch of an inductive argument (induction on the number of passes):

- Assume lower-order digits 1...i-1 are sorted
- Show that sorting next digit i leaves array correctly sorted for digits $1 . .$. i
* If two digits at position i are different, ordering numbers by that digit is correct (lower-order digits irrelevant)
* If they are the same, numbers are already sorted on the lower-order digits. Since we use a stable sort, the numbers stay in the right order

Radix Sort

-What sort will we use to sort on digits?

- Counting sort is the obvious choice:
- Sort n numbers on digits that range from 1..k
- Time: O($n+k)$
- Each pass over n numbers with d digits takes time $\mathrm{O}(n+k)$, so total time $\mathrm{O}(d n+d k)$
-When d is constant and $k=\mathrm{O}(n)$, this takes $\mathrm{O}(n)$ time

Radix Sort

- Sort N numbers, each with k bits
*E.g, input $\{4,1,0,10,5,6,1,8\}, 4$ bits

- Radix sort achieves stable sorting
- To sort each column, use counting sort (O(n)) 37
=> To sort d columns, O(dn) time

Radix Sort

- Problem: sort 1 million 64-bit numbers
- Treat as four-digit radix 2^{16} numbers
-Can sort in just four passes with radix sort!
- Compares well with typical $\mathrm{O}(n \lg n)$ comparison sort
-Requires approx $\lg n=20$ operations per number being sorted
- So why would we ever use anything but radix sort?

Radix Sort Summary

- Radix sort:
- Assumption: input has n numbers with d digits ranging from 0 to k
- Basic idea:
- Sort elements by digit starting with the least significant first
* Use a stable sort (like counting sort) for each stage
- Each pass over n numbers with d digits takes time $O(n+k)$, so total time $O(d n+d k)$
*When d is constant and $k=O(n)$, takes $\mathrm{O}(n)$ time
- Fast, stable, and simple
- Doesn't sort in place

Bucket Sort

- Assume N elements of A uniformly distributed over the range [0,1]
- Create M equal-sized buckets over [0,1], s.t., M $\leq N$
- Add each element of A into appropriate bucket
- Sort each bucket internally
- Can use recursion here, or
- Can use something like InsertionSort
- Return concatentation of buckets
- Average case running time $\Theta(\mathrm{N})$
* assuming each bucket will contain $\Theta(1)$ elements

Bucket Example

	A
1	. 78
2	. 17
3	. 39
4	. 26
5	. 72
6	.
7	. 2
8	. 12
9	. 23
10	. 68

(a)

(b)

BucketSort (A)

Input: $A[1 . . n]$, where $0 \leq A[i]<1$ for all i.
Auxiliary array: $B[0 . . n-1]$ of linked lists, each list initially empty.

BucketSort(A)

1. $n \leftarrow$ length $[A]$
2. for $i \leftarrow 1$ to n
3. do insert $A[i]$ into list $B[\operatorname{LnA[i]}]]$
4. for $i \leftarrow 0$ to $n-1$
5. do sort list $B[1]$ with insertion sort
6. concatenate the lists $B[I]$ s together in order
7. return the concatenated lists

BucketSort: Correctness

Why does it work?

Left as an exercise.

(Prove that any two elements land up in the right order regardless of all the others).

Analysis

- Relies on no bucket getting too many values.
- All lines except insertion sorting in line 5 take $O(n)$ altogether.
- Intuitively, if each bucket gets a constant [$O(1)$] number of elements, it takes O(1) time to sort each bucket $\Rightarrow O(n)$ sort time for all buckets.
- We "expect" each bucket to have few elements, if elements are evenly distributed.
- But we need to do a careful analysis.

Analysis - Contd.

- $\mathrm{RV} n_{i}=$ no. of elements placed in bucket $B[1]$.
- Insertion sort runs in quadratic time. Hence, time for bucket sort is:

$$
T(n)=\Theta(n)+\sum_{i=0}^{n-1} O\left(n_{i}^{2}\right)
$$

Taking expectations of both sides and using linearity of expectation, we have

$$
\begin{array}{rlrl}
E[T(n)] & =E\left[\Theta(n)+\sum_{i=0}^{n-1} O\left(n_{i}^{2}\right)\right] & \\
& =\Theta(n)+\sum_{i=0}^{n-1} E\left[O\left(n_{i}^{2}\right)\right] & & \text { (by linearity of expectation) } \tag{8.1}\\
& =\Theta(n)+\sum_{i=0}^{n-1} O\left(E\left[n_{i}^{2}\right]\right) & & (E[a X]=a E[X])
\end{array}
$$

Analysis - Contd.

- Claim: $\mathrm{E}\left[n_{\mathrm{i}}^{2}\right]=2-1 / n$.
- Proof:
- Define indicator random variables.
- $X_{i j}=\mid\{A[J]$ falls in bucket i\}
- $\operatorname{Pr}\{A[J]$ falls in bucket $i\}=1 / n$.
- $n_{i}=\sum_{j=1}^{n} X_{i j}$

Analysis - Contd.

$$
\begin{align*}
E\left[n_{i}^{2}\right] & =E\left[\left(\sum_{j=1}^{n} X_{i j}\right)^{2}\right] \\
& =E\left[\sum_{j=1}^{n} \sum_{k=1}^{n} X_{i j} X_{i k}\right] \\
& =E\left[\sum_{j=1}^{n} X_{i j}^{2}+\sum_{\substack{1 \leq j \leq n \leq 1 \leq k \leq n \\
j \neq k}} X_{i j} X_{i k}\right] \\
& =\sum_{j=1}^{n} E\left[X_{i j}^{2}\right]+\sum_{\substack{1 \leq j \leq n \leq 1 \leq k \leq n \\
j \neq k}} E\left[X_{i j} X_{i k}\right], \text { by linearity of expectation. } \tag{8.3}
\end{align*}
$$

Analysis - Contd.

$E\left[X_{i j}^{2}\right]=0^{2} \cdot \operatorname{Pr}\{A[j]$ doesn't fall in bucket $i\}+$ $1^{2} \cdot \operatorname{Pr}\{A[j]$ falls in bucket $i\}$

$$
=0 \cdot\left(1-\frac{1}{n}\right)+1 \cdot \frac{1}{n}
$$

$$
=\frac{1}{n}
$$

$E\left[X_{i j} X_{i k}\right]$ for $j \neq k$:
Since $j \neq k, X_{i j}$ and $X_{i k}$ are independent random variables.

$$
\begin{aligned}
\Rightarrow E\left[X_{i j} X_{i k}\right] & =E\left[X_{i j}\right] E\left[X_{i k}\right] \\
& =\frac{1}{n} \cdot \frac{1}{n}=\frac{1}{n^{2}}
\end{aligned}
$$

Analysis - Contd.

(8.3) is hence, $E\left[n_{i}^{2}\right]=\sum_{j=1}^{n} \frac{1}{n}+\sum_{\substack{1 \leq \leq \leq \leq n \\ k \leq k \leq j \leq}} \sum_{n} \frac{1}{n^{2}}$

$$
\begin{aligned}
& =n \cdot \frac{1}{n}+n(n-1) \cdot \frac{1}{n^{2}} \\
& =1+\frac{n-1}{n} \\
& =2-\frac{1}{n} .
\end{aligned}
$$

Substituting (8.2) in (8.1), we have,

$$
\begin{aligned}
E[T(n)] & =\Theta(n)+\sum_{i=0}^{n-1} O(2-1 / n) \\
& =\Theta(n)+O(n) \\
& =\Theta(n)
\end{aligned}
$$

Non-Comparative Sorts: Summary

- It is possible to sort without comparisons by "looking inside" the keys and exploiting that structure
- Sometimes that's the only way: sorting strings
* Numbers also have digit representations
- CountingSort
- RadixSort

Or we use digits to sort numbers into buckets
*BucketSort

