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Outline

Review of last lecture: Sorting Lower 
Bounds, Linear Time Sorting

Hashing
Chained hashing methods
Open addressing methods
Hash functions
Universal families Slides modified from

• http://www.cs.unc.edu/~plaisted/comp122/00-intro.ppt
• http://school.eecs.wsu.edu/undergraduate/cpts/courses/223
/
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Decision Tree Approach
For InsertionSort operating on three elements.
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Contains 3! = 6 leaves.

Simply unroll all loops for all 
possible inputs.

Node i:j means compare 
A[i] to A[j].

Leaves show outputs;

No two paths go to same 
leaf!

3



CountingSort: Example

0 3 2 1 3 2 1 2 2 3Input A:

1 2 3 4 5 6 7 8 9 10

(all elements in input between 0 and 3)
Count array C:

1
2
4
3

0

1

2

3

3332222110
10987654321

Output sorted array B:

N=10
M=4

Time = O(N + M)

If (M < N),  Time = O(N)
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RadixSort Example
 
 

Radix sort is the algorithm used by card-sorting machines 

that today may be found only in museums. 

 
 

input   output 
329 720 720 329 
457 355 329 355 
657 436 436 436 
839 457 839 457 
436 657 355 657 
720 329 457 720 
355 839 657 839 
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Radix sort is the algorithm used by card-sorting machines that today may be found only in museums.
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BucketSort Example
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Hashing and Hash Tables
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Caller ID Problem Scenario

Consider a large phone company that wants to 
provide Caller ID service to its customers: 
- Given a phone number, return the caller’s name

Key Element
phone number caller’s name

Assumption: Phone numbers are unique and are in the 
range 0..107 - 1.  However, not all those numbers are 
current phone numbers. 

How shall we store and look up our (phone number, name) 
pairs?

How do we update the record data base?



Abstract Data Structure:
A Dictionary 

Dictionary:
Dynamic-set data structure for storing items, 
indexed using keys.
Supports operations: Insert, Search, and Delete.
Applications:

Symbol table of a compiler.
Memory-management tables in operating systems. 
Large-scale distributed systems.

Hash Tables:
Effective way of implementing dictionaries.
Generalization of ordinary arrays.
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Hash Tables
Hash table:

Given a table T and a record x, with a key 
and satellite data, we need to support:

Insert (T, x)
Delete (T, x)
Search(T, x)

We want these to be fast, but don’t care 
about sorting the records, or about the 
relative order of the records
In this discussion we consider all keys to be 
(possibly large) natural numbers
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One Solution: Direct Addressing

Suppose:
The range of keys is 0..M-1 
All keys are distinct

The idea:
Set up an array T[0..M-1] in which 

T[i] = x if x∈ T and key[x] = i
T[i] = NULL otherwise

This is called a direct-address table
All operations take O(1) time!
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The Problem With 
Direct Addressing

Direct addressing works well when the range 
m of keys is relatively small
But what if the keys are 32-bit integers?

Problem 1: direct-address table will have 
232 entries,  more than 4 billion
Problem 2: even if memory is not an issue, the 
time to initialize the elements to NULL  may be 
significant

Solution: map keys to smaller range 0..m-1 (m
<< M)
This mapping is called a hash function 
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Hash Tables
Notation:

U – Universe of all possible keys (of size M).
K – Set of keys actually stored in the dictionary.
|K| = n (where n<< M).

When U is very large,
Arrays are not practical.
|K| << |U|.

Use a table of size m, proportional to |K| – The hash 
table.

However, we lose the direct-addressing ability.
Define functions that map keys to slots of the hash table.
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Hashing
Hash function h: Mapping from U to the slots 
of a hash table T[0..m–1].

h : U → {0,1,…, m–1}
With arrays, key k maps to slot A[k].
With hash tables, key k maps, or “hashes”, to 
slot T[h[k]].
h[k] is the hash value of key k.
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Hashing

0

m–1

h(k1)

h(k4)

h(k2)=h(k5)

h(k3)

U
(universe of keys)

K
(actual
keys)

k1

k2

k3

k5

k4

collision
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Issues with Hashing

Multiple keys can hash to the same slot –
collisions are possible.

Design hash functions such that collisions are 
minimized.
But avoiding collisions is impossible.

Design collision-resolution techniques.

Search will cost Ө(n) time in the worst case.
However, all operations can be made to have an 
expected complexity of Ө(1).
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Methods of Collision Resolution
Chaining:

Store all elements that hash to the 
same slot in a linked list.
Store a pointer to the head of the 
linked list in the hash table slot.

Open Addressing:
All elements stored in hash table 
itself.
When collisions occur, use a 
systematic (consistent) procedure 
to store (and search for) elements 
in free slots of the table.

k2

0

m–1

k1 k4

k5 k6

k7 k3

k8
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Collision Resolution by Chaining
0

m–1

h(k1)=h(k4)

h(k2)=h(k5)=h(k6)

h(k3)=h(k7)

U
(universe of keys)

K
(actual
keys)

k1

k2

k3

k5

k4

k6

k7k8

h(k8)

X

X

X
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k2

Collision Resolution by Chaining
0

m–1

U
(universe of keys)

K
(actual
keys)

k1

k2

k3

k5

k4

k6

k7k8

k1 k4

k5 k6

k7 k3

k8
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Hashing with Chaining
Dictionary Operations:

Chained-Hash-Insert (T, x)
Insert x at the head of list T[h(key[x])].
Worst-case complexity – O(1).

Chained-Hash-Delete (T, x)
Delete x from the list T[h(key[x])].
Worst-case complexity – proportional to length of list.

Chained-Hash-Search (T, k)
Search an element with key k in list T[h(k)].
Worst-case complexity – proportional to length of list.
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k2

Operations in Chained Hash 
Table

0

m–1

U
(universe of keys)

K
(actual
keys)

k1

k2

k3

k5

k4

k6

k7k8

k1 k4

k5 k6

k7 k3

k8

• Insert
• Delete
• Search

21
Singly or doubly linked?



Analysis on Chained-Hash-Search
Load factor α=n/m = average keys per slot.

m – number of slots (size of the table).
n – number of elements stored in the hash table.

Worst-case complexity: Θ(n) + time to compute h(k), 
resolve collisions
Average depends on how h distributes keys among m slots.
Assume

Simple uniform hashing.
Any key is equally likely to hash into any of the m slots, 
independent of where any other key hashes to.

O(1) time to compute h(k).
Time to search for an element with key k is 
Θ(|T[h(k)]|).
Expected length of a linked list = load factor = α = 
n/m. 22



Expected Cost of an Unsuccessful 
Search

Proof:
Any key not already in the table is equally likely to 
hash to any of the m slots.
To search unsuccessfully for any key k, need to 
search to the end of the list T[h(k)], whose expected 
length is α.
Adding the time to compute the hash function, the 
total time required is Θ(1+α).

Theorem:
An unsuccessful search takes expected time 
Θ(1+α).
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Expected Cost of a Successful 
Search

Proof:
The probability that a list is searched is proportional to the 
number of elements it contains.
The number of elements examined during a successful 
search for an element x is 1 more than the number of 
elements that appear before x in x’s list.

These are the elements inserted after x was inserted.
Goal:

Find the average, over the n elements x in the table, of how many 
elements were inserted into x’s list after x was inserted.

Theorem:
A successful search takes expected time Θ(1+α).

24

Assume each element
present is equally
likely to be searched for



Expected Cost of a Successful 
Search

Proof (contd):
Let xi be the ith element inserted into the table, and let ki = key[xi].
Define indicator random variables Xij = I{h(ki) = h(kj)}, for all i, j.
Simple uniform hashing ⇒ Pr{h(ki) = h(kj)} = 1/m

⇒ E[Xij] = 1/m.
Expected number of elements examined in a successful search 
is:

Theorem:
A successful search takes expected time Θ(1+α).
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Proof – Contd.
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Expected total time for a successful search = Time 
to compute hash function + Time to search

= O(2+α/2 – α/2n) = O(1+ α).
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Expected Cost – Interpretation
If n = O(m), then α=n/m = O(m)/m = O(1).
⇒ Searching takes constant time on average.
Insertion is O(1) on the average.
Deletion also takes O(1) on the average.

Hence, all dictionary operations take O(1) time on 
average with hash tables with chaining.

But they are all Θ(n) in the worst-case.
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Re-Hashing

• If n starts to become comparable to m, then 
we need another strategy.

• To grow:  Whenever α ≥ some threshold 
(e.g. 3/4), double the number of slots 
(double m).

• Requires rehashing everything into the new 
table—but by this cost can me amortized 
over the subsequent operations (wait till the 
amortized analysis lecture)
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Collision Resolution by
Open Addressing

Store colliders in the hash table array 
itself:
T:      1     Andy

2

3    Cindy

20    Tony

21

20    Tony

21     Thomas

Insert Thomas
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Collision Resolution by Open 
Addressing

Advantages:
– No extra storage for lists

Disadvantages:
– Harder to program, especially deletion
– Harder to analyze
– Table can overflow
– Performance is worse 30



• When there is a collision, where should 
the new item go?

• Many answers. It is crucial to put the 
key in a pace where we can find it later 
when we come looking for it.

• We generate a table probing sequence

Table Probing Strategies

31



Open Addressing Hashing 
Algorithms

INSERT(T,x)   in this version,  we don' t check
                               for duplicates
p  the first probe
while T[p] is not empty do assumes T is not full
    p  the next probe
T[p]  x





←

←
←
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SEARCH(T,k)
p the first probe
while T[p] is not empty do      again, assumes T is not full
   if T[p] is empty then
       return NIL
   else if key[T[p]] = k then
       return T[p]
else 
      p  next pro

←

←



be

DELETE  is best avoided with open address hashing

Search

33



Linear Probing

Linear probing: if a slot is occupied, just 
go to the next slot in the table. (Wrap 
around at the end.) 

h k i h k i m( , ) ( ' ( ) )mod= +

# of slots in tablekey  probe # our original 
hash function
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Example of Linear Probing

0
1
2       a         m=5
3       b
4       c

h(k,i) = (h’(k)+i) mod m                      
INSERT(d).  h’(d) =3

i h’(d,i)
0                      3
1                      4
2                      0

Put d in slot 0

Problem: long runs of items tend to build up, slowing down the 
subsequent operations. (primary clustering)
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Quadratic Probing

       h k i h k c i c i m( , ) ( ' ( ) )mod= + +1 2
2

two constants, fixed at “compile-time”

Better than linear probing, but still leads to clustering, 
because keys with the same value for h’ have the same 
probe sequence.
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Double Hashing

Use one hash function to start, and a 
second to pick the probe sequence:

must be relatively prime in m in order to 
sweep out all slots.  E.g. pick m a power of 2 
and make            always odd.

       h k i h k ih k m( , ) ( ( ) ( ))mod= +1 2

 h k2 ( )

 h k2 ( )
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Uniform Hashing

Use a sequence of m independent hash 
functions ℎ1(𝑘𝑘), ℎ2(𝑘𝑘), … ℎ𝑚𝑚 𝑘𝑘 to probe 
the table, with each table position equally 
likely to be chosen.

[Strictly speaking, each of the 𝑚𝑚!
permutations of table entries should be 
equally likely.]
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Linear and quadratic probing give us  probe sequences,
because each value  results in a different, fixed sequence:
  '( ) 3 3 4 5     ( '( ) has values from 0 to -1)
  '( ) 8  8 9 10 

m
h'(k)

h k h k m
h k

= →
= →



2

1 2

Double hashing gives about  sequences, because every pair
( ( ), ( )) yields a different probe sequence.
The analysis assumes  ,  which holds that all of 
the ! possible probe sequences

m
h k h k

uniform hashing
m

2

 are equally likely.

Though ! ,  in practice double hashing 
has performance close to uniform hashing.

m m>>
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Analysis of open address hashing (assuming uniform hashing model,  independent hash functions):
#  of keysRecall load factor: .  
# of slots

Here 0 1. (with chaining,  can be 1.)

Time for unsuccessf

n

α

α α

=

≤ ≤ >

ul search: we count probes.

worst case =  ( you hit every key before you hit a blank slot)
avg case: assume a very large table.
Probability of doing a first probe: 1
Prob of 2nd probe = prob that 1st is 

n

2

occupied 
Pr ob of 3rd probe (prob of 2nd probe)
                                                (prob. 2nd is occ.)

α

αα α

≈
= ×

≈ =
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Expected # of probes =  1+

              

α α

α
α

+ +

< =
−=

∞
∑

2

0

1
1



i

i

41

Analysis



1
1-

1
1- 1-

open address hashing, unsuccessful search: 
chain hashing unsuccessful search: 1+
Which is better?
Note: 1

When is ?    When 0 1,  is always > .
1 1

It's only less when >1 - but th

a

α

α
α α

α

α αα α
α α

α

= +

< ≤ ≤
− −

1 1
1

is cannot happen in open address hashing!
           So chain hashing always wins an unsuccessful search.

Successful search: # of probes in open address hashing is at most 
    ln    .  This is < 4 α α− for <90%.
A successful search is like an "average" unsuccessful search
(you find something that was searched for earlier, not found, and inserted).

α

Asymptotic Behavior
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Asymptotic Behavior

If 𝑘𝑘 was the (𝑖𝑖 + 1) −st key inserted , the 
expected number of probes is the search for it 
is at most 1/(1 − 𝑖𝑖/𝑚𝑚) = 𝑚𝑚/(𝑚𝑚 − 𝑖𝑖).

1
𝑛𝑛
∑𝑖𝑖=0𝑛𝑛−1𝑚𝑚 /(𝑚𝑚 − 𝑖𝑖) = 𝑚𝑚

𝑛𝑛
∑𝑖𝑖=0𝑛𝑛−1 1 /(𝑚𝑚 − 𝑖𝑖) =

1/𝛼𝛼 ∑𝑘𝑘=𝑚𝑚−𝑛𝑛+1
𝑚𝑚 1/ 𝑘𝑘 < 1

𝛼𝛼 ∫𝑚𝑚−𝑛𝑛
𝑚𝑚 1

𝑥𝑥
𝑑𝑑𝑑𝑑 = 1/𝛼𝛼 ln 𝑚𝑚

𝑚𝑚−𝑛𝑛
=

1/𝛼𝛼 ln
1

1 − 𝛼𝛼
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Expected Number of Probes vs. 
Load Factor

1.0

1.00.5

Number of Probes

Load Factor

Unsuccessful

Successful

Linear Probing

Double Hashing

Chaining



Open Addressing vs. Chaining
with Cashes
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Choosing a Good Hash 
Function

It should run quickly and distribute the 
keys up — each key should be equally 
likely to fit in any slot.

General rules:
–Exploit known facts about the keys
–Try to use all bits of the key

46



Choosing A Good Hash Function 
(Continued)

Although most commonly strings are 
being hashed, we’ll assume k is an 
integer.
Can always interpret strings (byte 
sequences) as numbers in base 256:

                     " " ' ' ' ' ' 'cat c a t= × + × +256 2562
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The Division Method
h(k) = k mod m

In words: hash k into a table with m slots using 
the slot given by the remainder of k divided by m

Elements with adjacent keys hashed to 
different slots: good
If keys bear relation to m: bad
– E.g. if you’re hashing decimal integers, then m= 

a power of ten means you’re just taking the low-
order digits.

– If you’re hashing strings, then m = 256 means 
you only use the last character.

Upshot: pick table size m = prime number 
not too close to a power of 2 (or 10) 48



The Multiplication Method
For a constant A, 0 < A < 1:
h(k) =  m (kA - kA) 

Upshot:
Choose m = 2P

Choose A not too close to 0 or 1
Knuth: Good choice for A = (√5  - 1)/2

Fractional part of kA

49



• Almost all hashing is done on strings.  
Typically, one computes byte-by-byte on the 
string to get a non-negative integer, then takes 
that mod m.

• E.g. (sum of all the bytes) mod m.
• Problem: anagrams hash to the same value.
• Other ideas: xor, etc.
• Hash function in Microsoft Visual C++ class 

library:

int(s[i])+33x   x
do length[s]  to1for 

0

←
←

=
i

x

Hash Functions in Practice

50



Choosing A Hash Function
Choosing the hash function well is crucial

Bad hash function puts all elements in same 
slot
A good hash function:

Should distribute keys uniformly into slots
Should not depend on patterns in the data

We discussed two methods:
Division method
Multiplication method

One more in worth mentioning
Universal hashing
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Universal Hashing

When attempting to foil a malicious 
adversary, randomize the algorithm
Universal hashing: pick a hash function 
randomly when the algorithm begins 
(not upon every insert!)

Guarantees good performance on average, 
no matter what keys adversary chooses
Need a family of hash functions to choose 
from

52



Universal Hashing
Let ς be a (finite) collection of hash 
functions 

…that map a given universe U of keys…
…into the range {0, 1, …, m - 1}.

ς is said to be universal if:
for each pair of distinct keys x, y ∈ U,
the number of hash functions h ∈ ς
for which h(x) = h(y) is |ς|/m
In other words:

With a random hash function from ς, the chance of a 
collision between x and y is exactly 1/m     (x ≠ y) 53



Universal Hashing
Theorem 11.3:

Choose h from a universal family of hash functions
Hash n keys into a table of m slots, n ≤ m
Then the expected number of collisions involving a 
particular key x is less than 1
Proof:

For each pair of keys y, z, let cyz = 1 if y and z collide, 0 
otherwise
E[cyz] = 1/m (by definition)
Let Cx be total number of collisions involving key x

Since n ≤ m, we have E[Cx] < 1

m
ncC

xy
Ty

xyx
1][E][E −

== ∑
≠
∈
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A Universal Hash Function 
Family

Choose table size m to be prime
Decompose key x into r+1 bytes, so that 
x = {x0, x1, …, xr}

Only requirement is that max value of byte < m
Let a = {a0, a1, …, ar} denote a sequence of 
r+1 elements chosen randomly from {0, 1, …, 
m - 1}
Define corresponding hash function ha ∈ ς:

With this definition, ς has mr+1 members

( ) ∑
=

=
r

i
iia mxaxh

0
mod
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A Universal Hash Function
Family

ς is a universal collection of hash 
functions (CLRS Theorem 11.4)
How to use:

Pick r based on m and the range of keys in U
Pick a hash function by (randomly) picking 
the a’s
Use that hash function on all keys
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